comp.lang.c Frequently Asked Questions

comp.lang.c Frequently Asked
Questions

This collection of hypertext pagesis Copyright 1995 by Steve Summit. Content from
the book " C Programming FAQs: Frequently Asked Questions' (Addison-Wesley,
1995, ISBN 0-201-84519-9) is made available here by permission of the author and
the publisher as a service to the community. It isintended to complement the use of
the published text and is protected by international copyright laws. The content is
made available here and may be accessed freely for personal use but may not be
published or retransmitted without written permission.

This pageisthe top of an HTML version of the Usenet comp.lang.c Frequently
Asked Questions (FAQ) list. An FAQ list is a collection of questions commonly
asked on Usenet, together with presumably definitive answers, provided in an
attempt to keep repeated questions on the newsgroup down to alow background
drone so that discussion can move on to more interesting matters. Since they distill
knowledge gleaned from many sources and answer questions which are
demonstrably Frequent, FAQ lists serve as useful references outside of their
originating Usenet newsgroups. Thislist is, | dareto claim, no exception, and the
HTML version you're looking at now, as well as other versions referenced just
below, are intended to be useful to C programmers everywhere.

Several other versions of this FAQ list are available, including a book-length version
published by Addison-Wesley. (The book, though longer, also has afew more errors,
I've prepared an erratalist.) See also question 20.40.

Like so many web pages, thisisvery much a "work in progress.” | would, of course,
likeit if it were perfect, but it's been two years or so since | first started talking about
putting this thing on the web, and if | were to wait until al the glitches were worked
out, you might never seeit. Each page includes a "mail feedback™ button, so you can
help me debug it. (At first, you don't have to worry about reporting minor formatting
hiccups; many of these result from lingering imperfections in the programs that
generate these pages, or from the fact that | have not exhaustively researched how
various browsers implement the HTML tags I'm using, or from the fact that | haven't
gonethelast yard in trying to rig up HTML that looks good in spite of the fact that
HTML doesn't have everything you need to make things ook good.)

These pages are synchronized with the posted Usenet version and the Addison-
Wesley book version. Since not all questions appear in al versions, the question
numbers are not always contiguous.

http://www.eskimo.com/~scs/C-fag/top.html (1 of 3) [26/03/2003 11:39:58 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.aw.com/cseng/

comp.lang.c Frequently Asked Questions

[Note to web authors, catalogers, and bookmarkers: the URL
<http://www.eskimo.com/~scs/C-fag/top.html> is the right way to link to these
pages. All other URL's implementing this collection are subject to change.]

Y ou can browse these pagesin at least three ways. The table of contents below is of
the list's major sections; these links lead to sub-lists of the questions for those
sections. The ""all questions” link leadsto alist of all the questions; each question is
(obvioudly) linked to its answer. Finally, the ““read sequentially” link leads to the
first question; you can then follow the ""next" link at the bottom of each question's
page to read through all of the questions and answers sequentially.

Steve Summit
scs@eskimo.com

1. Declarations and Initializations

2. Structures, Unions, and Enumerations

3. Expressions

4. Pointers

5. Null Pointers

6. Arrays and Pointers

7. Memory Allocation

8. Characters and Strings

9. Boolean Expressions and Variables

10. C Preprocessor

11. ANSI/ISO Standard C

http://www.eskimo.com/~scs/C-fag/top.html (2 of 3) [26/03/2003 11:39:58 p.m.]

http://www.eskimo.com/~scs/
mailto:scs@eskimo.com

comp.lang.c Frequently Asked Questions

12. Stdio

13. Library Functions

14. Floating Point

15. Variable-L ength Argument Lists

16. Strange Problems

17. Style

18. Tools and Resources

19. System Dependencies

20. Miscellaneous

Bibliography

Acknowledgements

All Questions

Read Segquentially

http://www.eskimo.com/~scs/C-fag/top.html (3 of 3) [26/03/2003 11:39:58 p.m.]

versions of comp.lang.c FAQ list

comp.lang.c FAQ list(s)

Y ou probably just came from there, but there is a browsable, web-based HTML
version. (Beware: as of 1999, the web-based version is somewhat out-of-date with

respect to the plain-text versions below.) (Please don't ask me for a downloadable
archive of the HTML version, as I'm currently unable to provide one. Just browse it
here, or download one of the versions below.)

An expanded, book-length version, with even longer answers to even more questions,
has been published by Addison-Wesley (ISBN 0-201-84519-9). Printed books, alas,
tend to have afew errors; I've prepared an erratallist for this one.

Hereis arecent, compressed copy of the ASCII FAQ list, as posted to Usenet (~100k
compressed, ~260k when uncompressed). Thisis currently the most up-to-date
version. [This and the other compressed files ending in .Z referenced from this page
are compressed with the Unix "compress' utility and can be uncompressed with
"uncompress' or "gunzip”, versions of which are, | believe, available for all popular
operating systems.]

Here isthe abridged version (~26k compressed, ~55k when uncompressed).

Here are the differences from the previous version (compressed, sometimes quite
large; or maybe uncompressed, if they were minimal). Here is a collection of
incremental differences with respect to even older versions. NOTE: All of these diff

lists pertain to the versions posted to Usenet, which are not always synchronized with
the web/html version.

Hereis a(considerably older) compressed, PostScript rendition (152k compressed).

BEWARE: the question numbers don't match current versions. (Rather than printing
it out, you could -- hint, hint -- get the book.)

There are several trandations into other languages:

. to German, by Jochen Schoof et al. (If that link doesn't work, try this one.)

. to Japanese, by Kinichi Kitano. (I don't know of aURL, but it is or was posted
regularly to fj.comp.lang.c, and has been published by Toppan, ISBN 4-8101-
8097-2.)

. Seong-Kook Cin has completed a Korean translation, which is at

http://pcrc.hongik.ac.kr/~cinsk/cfags.

http://www.eskimo.com/~scs/C-fag/versions.html (1 of 2) [26/03/2003 11:40:00 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.aw.com/cseng/
ftp://ftp.eskimo.com/u/s/scs/C-faq/faq.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/abridged.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/diff.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/diff
ftp://ftp.eskimo.com/u/s/scs/C-faq/diffs/
ftp://ftp.eskimo.com/u/s/scs/C-faq/diffs/
ftp://ftp.eskimo.com/u/s/scs/C-faq/faq.PS.Z
http://home.pages.de/~c-faq/
http://www-info2.informatik.uni-wuerzburg.de/staff/joscho
http://www-info2.informatik.uni-wuerzburg.de/dclc-faq/
http://pcrc.hongik.ac.kr/~cinsk/
http://pcrc.hongik.ac.kr/~cinsk/cfaqs/

versions of comp.lang.c FAQ list

. A French C FAQ list (not adirect trandation of thisone) is at http://www.isty-
info.uvsq.fr/~rumeau/fclc/.

Hereisan, um, er, aternate version" by Peter Seebach.

If you'reinterested in C++, Marshall Cline maintainsa C++ FAQ list.

For web access to other Usenet FAQ lists, visit fags.org.

SCS

http://www.eskimo.com/~scs/C-fag/versions.html (2 of 2) [26/03/2003 11:40:00 p.m.]

http://www.isty-info.uvsq.fr/~rumeau/fclc/
http://www.isty-info.uvsq.fr/~rumeau/fclc/
http://www.plethora.net/~seebs/faqs/c-iaq.html
http://www.plethora.net/~seebs/
http://www.cerfnet.com/~mpcline/c++-faq-lite/
http://www.faqs.org/faqs/
http://www.eskimo.com/~scs/index.html

C Programming FAQs Errata

Errata list for "C Programm ng FAQs: Frequently Asked Questions",
by Steve Summ t, Addi son-Wesley, 1996, |SBN 0-201-84519-9
(first printing).

A possibly nore up-to-date copy of this errata |ist may be
obtained at any tinme by anonynous ftp fromftp.eskino.com
inthe file ~scs/ C-faqg/book/Errata, or on the web at
http://ww. eski no. com ~scs/ C-f aqg/ book/ Errat a. ht n

(If you read this years fromnow and t hose addresses don't
work, try ftp://ftp.aw com cseng/authors/sunmt/cfaq/ or
http://ww. awl . conf cseng/titles/0-201-84519-9 .)

scs 2002-Cct - 26

page qguestion

front cover The | adder has no rungs.

XXI X "woundn't" should be "woul dn't"

2 1.1 The fourth bull eted guarantee (about the sizes

foll owi ng the "obvious progression") is
inproperly stated. Wat the C Standard actually
tal ks about, as in the rest of this answer, is
just the ranges of the standard types, not their
sizes in bits. So the real guarantees (as
sumari zed bel ow) are that

si zeof (char) is at least 8 bits
si zeof (short) is at least 16 bits
si zeof (i nt) is at least 16 bits
sizeof (long) is at least 32 bits

and, in C99,
sizeof (long long) is at least 64 bits

3-4 1.3 In C99, the new <inttypes. h> header provides
St andard nanmes for exact-size types: intl6_t,
uint32_t, etc.

4 1.4 In C99, long long is defined as an integer type
with, in effect, at least 64 bits.

6 1.7 There may be zero definitions of an externa
function or variable that is not referenced
in any expression.

[Thanks and $1 to Janes Stern]

7 1.7 "use include to bring" should be
"use #include to bring"

11 1.14 In the second fix, at the bottom of the page,
it could conceivably be necessary to precede

http://www.eskimo.com/~scs/C-fag/book/Errata.html (1 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

the line

t ypedef struct node * NODEPTR
with the |ine

struct node;

for the reason nentioned on page 13, although
in that case one of the two other fixes would
clearly be preferable.
[Thanks to Janes Stern]

13 1.15 In the alternate fix, at the bottom of the page,
it could conceivably be necessary to precede
the typedef declarations with the |ines

struct a;
struct b;

al t hough again, putting those typedefs after the
conpl ete structure definitions would clearly be
preferable in that case.

[Thanks to Janes Stern]

18 1.22 The odd "return 0;" line is not really necessary.
20 1.24 Anot her possi bl e arrangenent is

[* filel.h */
#defi ne ARRAYSZ 3
extern int array[ARRAYSZ];

/* filel.c */
#include "filel. h"
i nt array[ARRAYSZ] ;

[* file2.c"
#include "filel. h"

[Thanks to Jon Jagger]

23 1.29 [2nd bullet] "everything el se termed"” should be
"everything else, ternmed"

24 1.29 [Rule 3] "if the header” should be "if any header".
[Thanks and $1 to Janmes Stern]

24 1.29 [Rule 4] "(i.e., function names)" should be
"(e.qg., function nanes)".
[Thanks and $1 to Janmes Stern]

24 1.29 The text at the bottom of the page suggests that
"future directions"” name patterns such as str[a-z]*
are reserved only if their correspondi ng headers
(e.g. <stdlib.h>) are included. The reserved
function names are unconditionally reserved;

http://www.eskimo.com/~scs/C-fag/book/Errata.html (2 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

25 1.29
32 2.4
33-36 2.6
38 2.10
40 2.12
43 2.20
50 3.3
51 3.4
52 3.6
57 3.12
68 4.5
72-3 4.10
73 4.11
75 4.13
84 5.8

it is only the macro nanes that are reserved only
if the header is included.
[Thanks and $1 to Mark Brader]

"if you don't include the header files" should be
"if you don't include any header files".

Besi des -> and sizeof, the . operator, as well as
decl arations of actual structures, also require
the conmpiler to know nore about the structure and
so preclude inconplete or hidden definitions.

[Thanks to James Stern]

In C99, a structure can contain a variable-length
array (VLA) as its last nenber, providing a
wel | - defined, Standard-conpliant alternative.

C99 *does* have a way of generating anonynous
structure values: "conpound literals".

When trying to mnimze wasted space in structures,
array nenbers should be ordered based on the size
of their primtive types, not their overall size.

[Thanks and $1 to Janmes Stern]

"ANSI/ SI O should be "ANSI/| SO'

In C99, the "designated initializer" mechani sm
al l ows any nenber of a union to be initialized.

O course, another way to increnent i is i += 1.
[Thanks to Janes Stern]

"hi gher precedence than *):" should be
"hi gher precedence than *:"

Del ete the close parenthesis at the end of the answer.

In C++, the prefix form++i is preferred.
[Thanks to Janes Stern]

The reference to ANSI Sec. 3.3.4 should say
"esp. footnote 44".
[Thanks to WIlis Gooch]

In C99, it is possible to use a "conpound
literal”™ to generate a pointer to an (unnaned)
const ant val ue.

The reference to K&R2 sec. 5.2 should be pp. 95-7.
[Thanks and $1 to N kos Triantafillis]

"can i nterconverted" should be "can be interconverted"
[Thanks and $1 to Howard Hanij

Ei ther the conma or the parentheses in the answer

http://www.eskimo.com/~scs/C-fag/book/Errata.html (3 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

95

104-5

105-7

110

115

121

126

132

134

136

136

143

.15

. 16

.19

. 10

. 30

.32

shoul d be changed.

The typography in the following line is inconsistent
for the "x" of "x[3]".

C99 introduces variable-length arrays (VLA s) which,
anong ot her things, *do* allow declaration of a
| ocal array of size matching a passed-in array.

In C99, another solution is to use a
vari abl e-1 ength array.

C99's variable-length arrays are also a nice
solution to this problem

The cl ose parenthesis and period ")." at the bottom
of the page are not part of the #define |ine.

There is an extra semi colon at the end of the first
line of nymalloc's definition
[Thanks and $1 to Todd Burruss]

Mssing "it"; should be "even if it is not
der ef erenced".
[Thanks and $1 to dinton Sheppard]

It would be even safer to add a second test on
nchmax:

i f(nchread >= nchmax) {

nchmax += 20;

i f(nchread >= nchmax) ({
free(retbuf);
return NULL,;

}

newbuf = realloc(retbuf, nchmax + 1);

The concern is that, while reading a *very* long line,
nchmax m ght overflow, w apping back around to O.
[Thanks to Mark Brader]

C99's variable-length arrays (VLA s) can be used
to nore cleanly acconplish nost of the tasks
whi ch alloca used to be put to.

"Al though string literal" should be
"Al though a string literal”

C can be tricked into seeming to assign an array
as a whole if you hide the array inside a
structure or union.

[Thanks and $1 to Janes Stern]

The exanpl e variabl e i svegetabl e shoul d perhaps
be naned is_vegetable to avoid nam ng conflicts
(see question 1.29).

http://www.eskimo.com/~scs/C-fag/book/Errata.html (4 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

151

152

158

161

163-4

164-5

168

169-70

174

175

180

182

183-4

10. 4

10.

10.

10.

10.

10.

11.

11.

11.

11.

11.

11.

11.

6

15

21

29

27

10

10

19

25

27

[Thanks and $1 to Jon Jagger]
Extra space in "/* (no trailing ;) */"

[paragraph bel ow bul l ets] "bring the header wherever”
shoul d be "bring the header in wherever"”

If you have to, you can obviously #define a conpanion
macro nane for each typedef, and use #i fdef with that.
[Thanks to James Stern]

The suggested repl acenent nmacro shoul d
par ent hesi ze c:

#define CTRL(c) ((c) & 037)
[Thanks and $1 to Janmes Stern]

C99 introduces formal support for macros with
vari abl e nunbers of argunents

The file paranmeter of the dbginfo() function and
the fm paraneter of the debug() function could
be of type const char *.
[Thanks to James Stern]

The story has gotten |onger: A new revision of
the C Standard, "C99", has been ratified,
supersedi ng the original ANSI C Standard.

This Errata |ist has been updated to note those
answers in the book which have becone dated due
to C99 changes.

C99 *is* available in electronic form for $18
fromww. ansi.org .

As witten, the "conplicated series of assignnments”
of course includes sone declarations and initializations.
[Thanks to James Stern]

e.g., (const char) ** in this case" should be
"e.g., (const char **) in this case”

"when the pointers which" should either be
"when the pointers"” or "with pointers which"

"questions 20.20" should be "question 20.20"

"The function offers" should be
"The memmove function offers”.
[Thanks and $1 to Gordon Burditt]

In C99, external identifiers are required
to be unique in the first 32 characters;
C90's extrenely Spartan limtation to six
characters has been rel axed.

http://www.eskimo.com/~scs/C-fag/book/Errata.html (5 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

186

186

189

198

201

205

207-8

212

213

224

11.

11.

11.

12.

12.

12.

12.

12.

29

29

33

11

16

19

21

28

12. 30

13. 4

You rmay al so need to rework calls to realloc
that use NULL or 0 as first or second argunents
(see question 7.30).

You may al so need to rework conditional conpilation
i nvol ving #elif.

See also the Rationale's |ist of "Quiet Changes"
(see question 11.2).

[Thanks to Janes Stern]

A fourth class of behavior is |ocale-specific.
[Thanks and $1 to Janes Stern]

A semicolon is mssing after "int i = 0"

The } just before the line "*p ="'\0"" is
i ndented one tab too few

Two instances of "*--p" have the m nus signs nerged
SO as to appear as one.

[case 2] The variable line is not declared;
it should probably be a char [], suitably
initialized, e.qg.:

char line[] = "1 2.3 4.5e6 789e10";
[Thanks and $1 to Janmes Stern]

There's an extraneous doubl e quote in what
shoul d be "interveni ng whitespace:".

The technique of witing to a file may give the
wong answer if the disk fills up
[Thanks and $1 to Mark Brader]

The "hope that a future revision of the ANSI/| SO

C Standard will include" the snprintf function

has been fulfilled: C99 does specify it.

As a bonus, the C99 snprintf can be used to predict
the size required for an arbitrary sprintf call,
too -- it can be called with a null pointer

i nstead of a destination buffer (and 0 as the

size of that nonexistent buffer) and it returns

t he nunber of characters it would have witten.

The answer is in the wong font.

Updating (overwiting) a text file in-place is
not fully portable; the C Standard | eaves it

i npl enent ati on-defined whether a wite to a
text file truncates it at that point.

[Thanks and $1 to Tannoy Bhattacharya]

"upper- or |owercase" should probably be

http://www.eskimo.com/~scs/C-fag/book/Errata.html (6 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

"upper or |ower case".

225 13.6 Since the fragnent calls printf, it mnust
#i ncl ude <stdio. h>.
[Thanks and $1 to Janes Stern]

226 13. 6 [last code fragnent] A declaration and initialization
char string[] = "this\thas\t\tm ssing\tfield";

simlar to the one on p. 225 shoul d appear.
[Thanks and $1 to Doug Liu]

227 13.6 Al so, since the input string is nodified,

it nust be witable; see question 1.32.
234 13. 14 "tinme_ts" should perhaps be "tine_t's"
240 13.17 The code

srand((unsigned int)tinme((time_t *)NULL));

t hough popul ar and generally effective is, alas,
not strictly conformng. |It's theoretically
possible that tinme_t could be defined as a

fl oati ng-point type under sone inplenmentation,
and that the tinme_t values returned by tinme()
could therefore exceed the range of an unsigned
int in such a way that a well-defined cast to
(unsigned int) is not possible.

242- 3 13. 20 The attributions listed for nethods 2 and 3 are
scranbled. Method 2 is the one described in
t he 1958 Box and Mil |l er paper (as well as by
Abramowi tz and Stegun, apparently). Method 3
is originally due to Marsagli a.

244 13.21 If you' re not famliar with the notation [0, 1),
it means that drand48() returns a nunber Xx
such that 0 <= x and x < 1.

250 14.5 The suggest ed expression should read
fabs(a - b) <= epsilon * fabs(a)

It perforns poorly if a == 0.0 (which is another
argument in favor of "mak[ing] the threshold
a function of b, or of both a and b").

253 14.8 O course, you can always conpute pi using
4*atan(1.0) or acos(-1.0).
[Thanks to Janmes Stern and Cinton Sheppard]

253 14.9 C99 specifies isnan() and several other
classification routines.

254-5 14. 11 C99 supports conplex as a standard type.

http://www.eskimo.com/~scs/C-fag/book/Errata.html (7 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

260-1 15. 4 The first argunent to vstrcat() could be const char *,
as could the fnt argunment to miniprintf().
[Thanks to Janes Stern]

264 15.5 The fm argunent to error() could be const char *.

269-71 15.12 The fnt argunents to faterror(), verror(), and
error() could all be const char *.

274 16.4 [point 2] The problem could be caused by a set buf
or setvbuf buffer local to any function.
[Thanks and $1 to Janmes Stern]

276 16. 7 Variable "s" isn't declared. |It's pretty obvious
what it should be, but to nake it explicit, change
the struct declaration to

struct nystruct { ... } s;
[Thanks to Peter Hryczanek]

287 18.1 The URL in the list of metrics tools is really
"http://ww. quci s. queensu. ca: 1999/ Sof t war e-
Engi neering/ Cnetrics. htm ".

294 18. 13 The conventional spelling is "NetBSD'.
[Thanks and $1 to Peter Seebach]
294 18. 14 Extra space in site which should be "sunsite.unc.edu".
296 18. 16 Extra space in address which should be
"archie@rchie.cs.ncgill.ca"
308 19. 11 Note that a test using fopen() *is* approximate;

failure does not necessarily indicate nonexistence.

310 19. 14 Updating (overwiting) a text file in-place is
not fully portable; the C Standard | eaves it
i npl enent ati on-defined whether a wite to a
text file truncates it at that point.
[Thanks and $1 to Tannoby Bhattacharyal]

314 19. 23 In C99, the guarantee on the possible size of a
singl e object has been raised to 64K

315 19. 25 Use of the “volatile' qualifier is often
appropri ate when perform ng nenory-nmapped 1/ QO
[Thanks to Lee Crawf ord]

317 19. 27 The return val ue of systen() is not guaranteed
to be the command' s exit status.
[Thanks and $1 to Peter Seebach]

318 19. 30 If you forget to call pclose, it's probably at
|l east as likely that you'll run out of file

http://www.eskimo.com/~scs/C-fag/book/Errata.html (8 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

319 19.31
324 19. 42
339-40

342-44 20.13

346 20. 17

350 20. 21

355 20. 29

363

368

370-1

376

379

382

back cover

descri ptors as processes.
[Thanks and $1 to Jens Schwei khar dt]

argv[0] nmay also be a null pointer.
[Thanks and $1 to Tannoy Bhattacharya]

"control characters, such as" should be
"control characters such as"

The page break nmakes the code very hard to foll ow

The tone of this question's answer can be read as
suggesting that efficiency isn't inportant at all.
That's not the case, of course -- efficiency can
very inmportant, and poorly-witten prograns can
run abysmally inefficiently.

The point is that there are good ways and bad
ways of achieving an appropriate |evel of
performance for a given program and that (for
exanpl e) picking a good algorithmtends to make a
much bi gger difference than does m crooptim zing
the coding details of a |esser algorithm

M ssing tab in |ine which should be
#defi ne CODE_NONE 0
The overbars are m sal i gned.

"and conputes that nunber" should either be
"conputed" or "and is conputed"

[aggregate] Unions are not aggregates.
[Thanks and $1 to Kinichi Kitano]

[paraneter] Extraneous sem colon at end of
i ne which should be

f(int i)

The gl ossary entry for "undefined" is m splaced.
[Thanks and $1 to Janes Stern]

The two m nus signs in the index entry for
"-- operator" overlap and appear to be one.

The pairs of underscores in the index entry for
" FILE__ macro" overlap and m ght appear to be one.

The pairs of underscores in the index entry for
" LINE__ nmacro" overlap and m ght appear to be one.

"on the Usenet/Internet on the C FAQ' is nuddl ed
and shoul d say somet hi ng el se.

"com | ang.c" should be "conp.lang.c".

http://www.eskimo.com/~scs/C-fag/book/Errata.html (9 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

The ftp address for source code shoul d be
ftp://ftp.aw com cseng/ aut hors/sunmit/cfaq

nore information about this book

on-line version of FAQ |ist

scs hone page

http://www.eskimo.com/~scs/C-fag/book/Errata.html (10 of 10) [26/03/2003 11:40:03 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.eskimo.com/~scs/C-faq.top.html
http://www.eskimo.com/~scs/

Question 20.40

Question 20.40

Where can | get extra copies of thislist? What about back issues?

An up-to-date copy may be obtained from aw.com in directory xxx or ftp.eskimo.com
in directory u/s/scs/C-fag/. You can also just pull it off the net; it is normally posted
to comp.lang.c on the first of each month, with an Expires: line which should keep it
around all month. A parallel, abridged version is available (and posted), asisalist of
changes accompanying each significantly updated version.

The various versions of thislist are also posted to the newsgroups comp.answers and
news.answers . Several sites archive news.answers postings and other FAQ lists,
including this one; two sites are rtfm.mit.edu (directories pub/usenet/news.answers/C-
fag/ and pub/usenet/comp.lang.c/) and ftp.uu.net (directory usenet/news.answers/C-
fag/). An archie server (see question 18.16) should help you find others; ask it to
“find C-fag". If you don't have ftp access, amailserver at rtfm.mit.edu can mail you
FAQ lists: send a message containing the single word hel p to mail-
server@rtfm.mit.edu . See the meta-FAQ list in news.answers for more information.

An extended version of this FAQ list is being published by Addison-Wesley asC
Programming FAQs: Frequently Asked Questions (ISBN 0-201-84519-9). It should
be available in November 1995.

Thislist is an evolving document of gquestions which have been Frequent since before
the Great Renaming, not just a collection of this month's interesting questions. Older
copies are obsolete and don't contain much, except the occasional typo, that the
current list doesn't.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.40.html [26/03/2003 11:40:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.16

Question 18.16

Where and how can | get copies of al these freely distributable programs?

Asthe number of available programs, the number of publicly accessible archive
sites, and the number of people trying to access them al grow, this question becomes
both easier and more difficult to answer.

There are anumber of large, public-spirited archive sites out there, such as ftp.uu.net,
archive.umich.edu, oak.oakland.edu, sumex-aim.stanford.edu, and
wuarchive.wustl.edu, which have huge amounts of software and other information all
freely available. For the FSF's GNU project, the central distribution siteis
prep.ai.mit.edu . These well-known sites tend to be extremely busy and hard to
reach, but there are also numerous "~ mirror" sites which try to spread the load

around.

On the connected Internet, the traditional way to retrieve files from an archive siteis
with anonymous ftp. For those without ftp access, there are also severa ftp-by-mail
serversin operation. More and more, the world-wide web (WWW) is being used to
announce, index, and even transfer large datafiles. There are probably yet newer
access methods, too.

Those are some of the easy parts of the question to answer. The hard part isin the
details--this article cannot begin to track or list all of the available archive sites or dll
of the various ways of accessing them. If you have access to the net at all, you
probably have access to more up-to-date information about active sites and useful
access methods than this FAQ list does.

The other easy-and-hard aspect of the question, of course, is simply finding which
site has what you're looking for. There is a tremendous amount of work going on in
this area, and there are probably new indexing services springing up every day. One
of thefirst was ~"archie": for any program or resource available on the net, if you
know its name, an archie server can usually tell you which anonymous ftp sites have
it. Your system may have an ar chi e command, or you can send the mail message
“"help” to archie@archie.cs.mcgill.cafor information.

If you have access to Usenet, see the regular postings in the comp.sources.unix and
comp.sources.misc newsgroups, which describe the archiving policies for those
groups and how to access their archives. The comp.archives newsgroup contains
numerous announcements of anonymous ftp availability of variousitems. Finally,

http://www.eskimo.com/~scs/C-fag/q18.16.html (1 of 2) [26/03/2003 11:40:06 p.m.]

Question 18.16

the newsgroup comp.sources.wanted is generally a more appropriate place to post
gueries for source availability, but check its FAQ list, "How to find sources,” before
posting there.

See also question 14.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.16.html (2 of 2) [26/03/2003 11:40:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.12

Question 14.12

I'm looking for some code to do:

Fast Fourier Transforms (FFT's)
matrix arithmetic (multiplication, inversion, etc.)
complex arithmetic

Ajay Shah maintains an index of free numerical software; it is posted periodically,
and available where this FAQ list is archived (see question 20.40). See also question
18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.12.html [26/03/2003 11:40:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.15a

Question 18.15a

Does anyone have a C compiler test suite | can use?

Plum Hall (formerly in Cardiff, NJ; now in Hawaii) sells one; another packageis
Ronald Guilmette's RoadTest(tm) Compiler Test Suites (ftp to netcom.com,
pub/rfg/roadtest/announce.txt for information). The FSF's GNU C (gcc) distribution
includes a c-torture-test which checks a number of common problems with
compilers. Kahan's paranoiatest, found in netlib/paranoia on netlib.att.com,
strenuoudly tests a C implementation's floating point capabilities.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.15a.html [26/03/2003 11:40:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.1

Question 19.1

How can | read a single character from the keyboard without waiting for the
RETURN key? How can | stop characters from being echoed on the screen asthey're
typed?

Alas, thereis no standard or portable way to do these thingsin C. Concepts such as
screens and keyboards are not even mentioned in the Standard, which deals only with
simple /O "“streams" of characters.

At some level, interactive keyboard input is usually collected and presented to the
requesting program aline at atime. This gives the operating system a chanceto
support input line editing (backspace/del ete/rubout, etc.) in a consistent way, without
requiring that it be built into every program. Only when the user is satisfied and
presses the RETURN key (or equivalent) is the line made available to the calling
program. Even if the calling program appears to be reading input a character at atime
(with get char or thelike), the first call blocks until the user has typed an entire
line, at which point potentially many characters become available and many character
requests (e.g. get char calls) are satisfied in quick succession.

When a program wants to read each character immediately asit arrives, its course of
action will depend on where in the input stream the line collection is happening and
how it can be disabled. Under some systems (e.g. MS-DOS, VMS in some modes), a
program can use adifferent or modified set of OS-level input calls to bypass line-at-a-
time input processing. Under other systems (e.g. Unix, VMS in other modes), the part
of the operating system responsible for serial input (often called the " "terminal
driver") must be placed in a mode which turns off line-at-a-time processing, after
which all callsto the usual input routines (e.g. r ead, get char , etc.) will return
charactersimmediately. Finally, afew systems (particularly older, batch-oriented
mainframes) perform input processing in peripheral processors which cannot be told
to do anything other than line-at-a-time input.

Therefore, when you need to do character-at-a-time input (or disable keyboard echo,
which is an analogous problem), you will have to use a technique specific to the
system you're using, assuming it provides one. Since comp.lang.c is oriented towards
topics that C does deal with, you will usually get better answers to these questions by
referring to a system-specific newsgroup such as comp.unix.questions or
comp.os.msdos.programmer, and to the FAQ lists for these groups. Note that the
answers are often not unique even across different variants of a system; bear in mind
when answering system-specific questions that the answer that applies to your system

http://www.eskimo.com/~scs/C-fag/q19.1.html (1 of 3) [26/03/2003 11:40:10 p.m.]

Question 19.1

may not apply to everyone else's.

However, since these questions are frequently asked here, here are brief answers for
Some common situations,

Some versions of curses have functions called cbr eak, noecho, and get ch which
do what you want. If you're specifically trying to read a short password without echo,
you might try get pass. Under Unix, you can usei oct | to play with the terminal
driver modes (CBREAK or RAW under ""classic" versions; ICANON, c¢_cc[VMIN]
and c_cc[VTIME] under System V or POSIX systems; ECHO under all versions), or
inapinch, syst emand thest t y command. (For more information, see

<sgtty. h>and tty(4) under classic versions, <t er m 0. h> and termio(4) under
System V, or <t er m 0s. h> and termios(4) under POSIX.) Under MS-DOS, use
get ch or get che, or the corresponding BIOS interrupts. Under VMS, try the
Screen Management (SMG$) routines, or curses, or issue low-level $QIO's with the
IO$ READVBLK function code (and perhaps |IO$M_NOECHO, and others) to ask
for one character at atime. (It's al'so possible to set character-at-a-time or ~"pass
through” modes in the VM S terminal driver.) Under other operating systems, you're
on your own.

(Asan aside, note that simply using set buf or set vbuf toset st di nto
unbuffered will not generally serve to allow character-at-a-time input.)

If you're trying to write a portable program, a good approach is to define your own
suite of three functionsto (1) set the terminal driver or input system into character-at-
a-time mode (if necessary), (2) get characters, and (3) return the terminal driver to its
initial state when the program is finished. (Ideally, such a set of functions might be
part of the C Standard, some day.) The extended versions of this FAQ list (see
guestion 20.40) contain examples of such functions for several popular systems.

See also question 19.2.

References: PCS Sec. 10 pp. 128-9, Sec. 10.1 pp. 130-1
POSIX Sec. 7

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q19.1.html (2 of 3) [26/03/2003 11:40:10 p.m.]

Question 19.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.1.html (3 of 3) [26/03/2003 11:40:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Tools and Resources

18. Tools and Resources

18.1 I'm looking for C development tools (cross-reference generators, code
beautifiers, etc.).

18.2 How can | track down these pesky malloc problems?

18.3 What's afree or cheap C compiler | can use?

18.4 | just typed in this program, and it's acting strangely. Can you see anything
wrong with it?

18.5 How can | shut off the "“warning: possible pointer alignment problem" message

which |l i nt givesmeforeachcaltomal | oc?

18.7 Where can | get an ANSI-compatible| i nt ?

18.8 Don't ANSI function prototypesrender | i nt obsolete?

18.9 Arethere any C tutorials or other resources on the net?

18.10 What's a good book for learning C?

18.13 Where can | find the sources of the standard C libraries?

18.14 | need code to parse and evaluate expressions.

18.15 Where can | get a BNF or YACC grammar for C?

18.15a Does anyone have a C compiler test suite | can use?

18.16 Where and how can | get copies of all these freely distributable programs?

http://www.eskimo.com/~scs/C-fag/s18.html [26/03/2003 11:40:11 p.m.]

Copyright

This collection of hypertext pagesis Copyright 1995 by Steve Summit. Content from
the book "C Programming FAQs:. Frequently Asked Questions' (Addison-Wesley,
1995, ISBN 0-201-84519-9) is made available here by permission of the author and
the publisher as a service to the community. It is intended to complement the use of
the published text and is protected by international copyright laws. The content is
made available here and may be accessed freely for personal use but may not be
published or retransmitted without written permission.

http://www.eskimo.com/~scs/C-fag/copyright.html [26/03/2003 11:40:14 p.m.]

Question 20.39

Question 20.39

How do you pronounce “"char "?

Y ou can pronounce the C keyword ““char " in at |east three ways: like the English
words "“char," ““care," or “car;" the choice is arbitrary.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.39.html [26/03/2003 11:40:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.38

Question 20.38

Where does the name ~"C" come from, anyway?

C was derived from Ken Thompson's experimental language B, which was inspired
by Martin Richards's BCPL (Basic Combined Programming Language), which was a
simplification of CPL (Cambridge Programming Language). For awhile, there was
speculation that C's successor might be named P (the third letter in BCPL) instead of
D, but of course the most visible descendant language today is C++.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.38.html [26/03/2003 11:40:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Miscellaneous

20. Miscellaneous

20.1 How can | return multiple values from a function?

20.3 How do | access command-line arguments?

20.5 How can | write data files which can be read on other machines with different
data formats?

20.6 How can | call afunction, given its name as a string?

20.8 How can | implement sets or arrays of bits?

20.9 How can | determine whether a machine's byte order is big-endian or little-
endian?

20.10 How can | convert integers to binary or hexadecimal ?

20.11 Can | use base-2 constants (something like0b101010)?
Isthereapri nt f format for binary?

20.12 What is the most efficient way to count the number of bitswhich are set in a
value?

20.13 How can | make my code more efficient?

20.14 Are pointers really faster than arrays? How much do function calls slow things

down?

20.17 Isthereaway to swi t ch on strings?

20.18 |s there away to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

20.19 Are the outer parenthesesinr et ur n statements really optional ?

20.20 Why don't C comments nest? Are they legal inside quoted strings?

http://www.eskimo.com/~scs/C-fag/s20.html (1 of 2) [26/03/2003 11:40:25 p.m.]

Miscellaneous

20.24 Why doesn't C have nested functions?

20.25 How can | call FORTRAN (C++, BASIC, Pascal, Ada, L1SP) functions from
c?

20.26 Does anyone know of a program for converting Pascal or FORTRAN to C?

20.27 Can | use a C++ compiler to compile C code?

20.28 | need to compare two strings for close, but not necessarily exact, equality.

20.29 What is hashing?

20.31 How can | find the day of the week given the date?

20.32 Will 2000 be a leap year?

20.34 How do you write a program which produces its own source code as its
output?

20.35 What is " "Duff's Device"?

20.36 When will the next Obfuscated C Code Contest be held? How can | get a copy

of previous winning entries?

20.37 What wasthe ent r y keyword mentioned in K& R1?

20.38 Where does the name ~"C" come from, anyway?

20.39 How do you pronounce “"char "?

20.40 Where can | get extra copies of thislist?

http://www.eskimo.com/~scs/C-fag/s20.html (2 of 2) [26/03/2003 11:40:25 p.m.]

Bibliography

Bibliography

American National Standards Institute, American National Sandard for Information
Systems--Programming Language--C, ANS| X3.159-1989 (see question 11.2).
[ANSI]

American National Standards Institute, Rationale for American National Standard
for Information Systems--Programming Language--C (see question 11.2). [Rational€]

Jon Bentley, Writing Efficient Programs, Prentice-Hall, 1982, ISBN 0-13-970244-X.

G.E.P. Box and Mervin E. Muller, ""A Note on the Generation of Random Normal
Deviates," Annals of Mathematical Satistics, Vol. 29 #2, June, 1958, pp. 610-611.

David Burki, ""Date Conversions,” The C Users Journal, February 1993, pp. 29-34.
lan F. Darwin, Checking C Programs with lint, O'Reilly, 1988, ISBN 0-937175-30-7.

David Goldberg, "What Every Computer Scientist Should Know about Floating-
Point Arithmetic," ACM Computing Surveys, Vol. 23 #1, March, 1991, pp. 5-48.

Samuel P. Harbison and Guy L. Steele, Jr., C: A Reference Manual, Fourth Edition,
Prentice-Hall, 1995, ISBN 0-13-326224-3. [H& G

Mark R. Horton, Portable C Software, Prentice Hall, 1990, ISBN 0-13-868050-7.
[PCS]

Institute of Electrical and Electronics Engineers, Portable Operating System
Interface (POS X)--Part 1. System Application Program Interface (API) [C
Language, |EEE Std. 1003.1, |SO/IEC 9945-1.

International Organization for Standardization, SO 9899:1990 (see question 11.2).
[1S0]

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style, Second
Edition, McGraw-Hill, 1978, ISBN 0-07-034207-5.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-
Hall, 1978, ISBN 0-13-110163-3. [K& R1]

http://www.eskimo.com/~scs/C-fag/sx1.html (1 of 3) [26/03/2003 11:40:29 p.m.]

Bibliography

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second
Edition, Prentice Hall, 1988, ISBN 0-13-110362-8, 0-13-110370-9. [K& R2]

Donald E. Knuth, The Art of Computer Programming. Volume 1: Fundamental
Algorithms, Second Edition, Addison-Wesley, 1973, ISBN 0-201-03809-9. Volume
2: Seminumerical Algorithms, Second Edition, Addison-Wesley, 1981, ISBN 0-201-
03822-6. Volume 3: Sorting and Searching, Addison-Wedley, 1973, ISBN 0-201-
03803-X. [Knuth]

Andrew Koenig, C Traps and Pitfalls, Addison-Wesley, 1989, ISBN 0-201-17928-8.
[CT&P

Stephen K. Park and Keith W. Miller, "Random Number Generators. Good Ones are
Hard to Find," Communications of the ACM, Vol. 31 #10, October, 1988, pp. 1192-
1201 (aso technical correspondence August, 1989, pp. 1020-1024, and July, 1993,
pp. 108-110).

P.J. Plauger, The Sandard C Library, Prentice Hall, 1992, ISBN 0-13-131509-9.

Thomas Plum, C Programming Guidelines, Second Edition, Plum Hall, 1989, ISBN
0-911537-07-4.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipesin C, Second Edition, Cambridge University Press, 1992, ISBN O-
521-43108-5.

Dae Schumacher, Ed., Software Solutionsin C, AP Professional, 1994, ISBN 0-12-
632360-7.

Robert Sedgewick, Algorithmsin C, Addison-Wesley, 1990, ISBN 0-201-51425-7.

Charles Simonyi and Martin Heller, " The Hungarian Revolution," Byte, August,
1991, pp.131-138.

David Straker, C Style: Sandards and Guidelines, Prentice Hall, ISBN 0-13-116898-
3.

Steve Summit, C Programming FAQs. Frequently Asked Questions, Addison-
Wedley, 1995, ISBN 0-201-84519-9. [The book version of this FAQ list.]

Sun Wu and Udi Manber, ~"AGREP--A Fast Approximate Pattern-Matching Tool,"

http://www.eskimo.com/~scs/C-fag/sx1.html (2 of 3) [26/03/2003 11:40:29 p.m.]

Bibliography

USENIX Conference Proceedings, Winter, 1992, pp. 153-162.

There is another bibliography in the revised Indian Hill style guide (see question
17.9). See aso question 18.10.

http://www.eskimo.com/~scs/C-fag/sx1.html (3 of 3) [26/03/2003 11:40:29 p.m.]

Question 11.2

Question 11.2

How can | get a copy of the Standard?

[Late-breaking news: I've been told that copies of the new C99 can be obtained
directly from www.ansi.org; the price for an electronic document is only US $18.00.]

Copies are available in the United States from

Anerican National Standards Institute
11 W 42nd St., 13th floor

New York, NY 10036 USA

(+1) 212 642 4900

and

A obal Engi neering Docunents

15 I nverness Wy E

Engl ewood, CO 80112 USA

(+1) 303 397 2715

(800) 854 7179 (U.S. & Canada)

In other countries, contact the appropriate national standards body, or 1SO in Geneva
at:

| SO Sal es

Case Postal e 56
CH 1211 Geneve 20
Switzerl and

(or see URL http://www.iso.ch or check the comp.std.internat FAQ list,
Standards.Faq).

At the time of this writing, the cost is $130.00 from ANSI or $410.00 from Global.
Copies of the original X3.159 (including the Rationale) may still be available at
$205.00 from ANSI or $162.50 from Global. Note that ANSI derives revenuesto
support its operations from the sale of printed standards, so electronic copies are not
available.

http://www.eskimo.com/~scs/C-fag/q11.2.html (1 of 2) [26/03/2003 11:40:31 p.m.]

http://www.ansi.org/
http://www.iso.ch/

Question 11.2

Inthe U.S., it may be possible to get a copy of the original ANSI X3.159 (including
the Rationale) as " FIPS PUB 160" from

Nati onal Technical Information Service (NTIYS)
U.S. Departnment of Commerce

Springfield, VA 22161

703 487 4650

The mistitled Annotated ANS C Sandard, with annotations by Herbert Schildt,
contains most of the text of 1SO 9899; it is published by Osborne/McGraw-Hill,
ISBN 0-07-881952-0, and sellsin the U.S. for approximately $40. It has been
suggested that the price differential between this work and the official standard
reflects the value of the annotations:. they are plagued by numerous errors and
omissions, and afew pages of the Standard itself are missing. Many people on the
net recommend ignoring the annotations entirely. A review of the annotations
("annotated annotations") by Clive Feather can be found on the web at
http://www.lysator.liu.se/c/schildt.html .

The text of the Rationale (not the full Standard) can be obtained by anonymous ftp
from ftp.uu.net (see question 18.16) in directory doc/standards/ansi/X3.159-1989,

and is also available on the web at http://www.lysator.liu.se/c/rat/title.html . The
Rationale has aso been printed by Silicon Press, ISBN 0-929306-07-4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql1.2.html (2 of 2) [26/03/2003 11:40:31 p.m.]

http://www.lysator.liu.se/c/schildt.html
http://www.lysator.liu.se/c/rat/title.html
http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.9

Question 17.9

Where can | get the “Indian Hill Style Guide" and other coding standards?

Various documents are available for anonymous ftp from:

Site: File or directory:

cs. washi ngt on. edu pub/cstyle.tar.Z
(the updated Indian H Il guide)

ftp.cs.toronto. edu doc/ pr ogr anm ng

(i ncluding Henry Spencer's

"7 10 Commandnents for C Programrers'')
ftp.cs.und. edu pub/ styl e- gui de

Y ou may also be interested in the books The Elements of Programming Style, Plum Hall Programming
Guidelines, and C Style: Sandards and Guidelines; see the Bibliography. (The Sandards and
Guidelines book is not in fact a style guide, but a set of guidelines on selecting and creating style
guides.)

See also question 18.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.9.html [26/03/2003 11:40:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.10

Question 18.10

What's a good book for learning C?

There are far too many books on C to list here; it'simpossible to rate them all. Many
people believe that the best one was also the first: The C Programming Language, by
Kernighan and Ritchie (" K&R," now in its second edition). Opinionsvary on K&R's
suitability as an initial programming text: many of usdid learn C from it, and learned
it well; some, however, feel that it isabit too clinical asafirst tutorial for those
without much programming background.

An excellent reference manual is C: A Reference Manual, by Samuel P. Harbison
and Guy L. Steele, now in its fourth edition.

Though not suitable for learning C from scratch, this FAQ list has been published in
book form; see the Bibliography.

Mitch Wright maintains an annotated bibliography of C and Unix books; it is
available for anonymous ftp from ftp.rahul.net in directory pub/mitch/Y ABL/.

This FAQ list's editor maintains a collection of previous answersto this question,
which is available upon request. See also question 18.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.10.html [26/03/2003 11:40:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.1

Question 20.1

How can | return multiple values from a function?

Either pass pointers to several locations which the function can fill in, or have the
function return a structure containing the desired values, or (in a pinch) consider
global variables. See aso questions 2.7, 4.8, and 7.5.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.1.html [26/03/2003 11:40:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.3

Question 20.3

How do | access command-line arguments?

They are pointed to by thear gv array with which mai n() iscalled.

References: K&R1 Sec. 5.11 pp. 110-114

K&R2 Sec. 5.10 pp. 114-118

ANS| Sec. 2.1.2.2.1

ISO Sec. 5.1.2.2.1

H&S Sec. 20.1 p. 416

PCS Sec. 5.6 pp. 81-2, Sec. 11 p. 159, pp. 339-40 Appendix F
Schumacher, ed., Software Solutionsin C Sec. 4 pp. 75-85

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.3.html [26/03/2003 11:40:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.5

Question 20.5

How can | write data files which can be read on other machines with different word
size, byte order, or floating point formats?

The most portable solution isto use text files (usually ASCII), written with
fprintf andread withf scanf or thelike. (Similar advice also appliesto network
protocols.) Be skeptical of arguments which imply that text files are too big, or that
reading and writing them istoo slow. Not only istheir efficiency frequently
acceptable in practice, but the advantages of being able to interchange them easily
between machines, and manipulate them with standard tools, can be overwhelming.

If you must use a binary format, you can improve portability, and perhaps take
advantage of prewritten I/O libraries, by making use of standardized formats such as
Sun's XDR (RFC 1014), OSI's ASN.1 (referenced in CCITT X.409 and 1SO 8825
“"Basic Encoding Rules"), CDF, netCDF, or HDF. See also questions 2.12 and 12.38.

References. PCS Sec. 6 pp. 86,88

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.5.html [26/03/2003 11:40:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.6

Question 20.6

If | haveachar * variable pointing to the name of afunction, how can | call that
function?

The most straightforward thing to do isto maintain a correspondence table of names
and function pointers:

int func(), anotherfunc();

struct { char *nane; int (*funcptr)(); } syntab[] = {
“func", func,
"anot her func", anotherfunc,

b

Then, search the table for the name, and call viathe associated function pointer. See
also questions 2.15 and 19.36.

References: PCS Sec. 11 p. 168

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.6.html [26/03/2003 11:40:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.8

Question 20.8

How can | implement sets or arrays of bits?

Usearraysof char ori nt, with afew macros to access the desired bit at the proper
index. Here are some simple macros to use with arrays of char :

#include <limts. h> /* for CHAR BIT */

#defi ne BI TMASK(b) (1 << ((b) % CHAR BIT))

#define BITSLOT(b) ((b) / CHAR BIT)

#define BITSET(a, b) ((a)[BITSLOT(b)] |= Bl TMASK(b))
#define BITTEST(a, b) ((a)[BITSLOT(b)] & BI TMASK(Db))

(If youdon'thave<l i mts. h>, try using 8 for CHAR BI T.)

References. H& S Sec. 7.6.7 pp. 211-216

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.8.html [26/03/2003 11:40:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.9

Question 20.9

How can | determine whether a machine's byte order is big-endian or little-endian?

One way isto use a pointer:
int x = 1;
I f(*(char *)& == 1)
printf("little-endian\n");
el se printf("big-endian\n");

It's al'so possible to use a union.

See also question 10.16.

References. H& S Sec. 6.1.2 pp. 163-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.9.html [26/03/2003 11:40:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.10

Question 20.10

How can | convert integers to binary or hexadecimal ?

Make sure you really know what you're asking. Integers are stored internally in
binary, although for most purposesit is not incorrect to think of them asbeingin
octal, decimal, or hexadecimal, whichever is convenient. The basein which a
number is expressed matters only when that number isread in from or written out to
the outside world.

In source code, anon-decimal base isindicated by aleading O or Ox (for octal or
hexadecimal, respectively). During 1/O, the base of aformatted number is controlled
inthepri ntf andscanf family of functions by the choice of format specifier
(%d, %0, %, etc.) andinthest rt ol andstrt oul functionsby thethird
argument. During binary I/O, however, the base again becomes immaterial.

For more information about ~"binary" 1/0, see question 2.11. See also questions 8.6
and 13.1.

References: ANSI Secs. 4.10.1.5,4.10.1.6
|SO Secs. 7.10.1.5,7.10.1.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.10.html [26/03/2003 11:40:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.11

Question 20.11

Can | use base-2 constants (something like 00101010)?
Isthereapri nt f format for binary?

No, on both counts. Y ou can convert base-2 string representations to integers with
strtol.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.11.html [26/03/2003 11:40:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.12

Question 20.12

What is the most efficient way to count the number of bits which are set in avalue?

Many “bit-fiddling" problems like this one can be sped up and streamlined using
lookup tables (but see question 20.13).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.12.html [26/03/2003 11:40:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.13

Question 20.13

How can | make my code more efficient?

Efficiency, though afavorite comp.lang.c topic, is not important nearly as often as
people tend to think it is. Most of the code in most programs is not time-critical.
When code is not time-critical, it is far more important that it be written clearly and
portably than that it be written maximally efficiently. (Remember that computers are
very, very fast, and that even ““inefficient” code can run without apparent delay.)

It is notorioudly difficult to predict what the "hot spots” in a program will be. When
efficiency isaconcern, it isimportant to use profiling software to determine which
parts of the program deserve attention. Often, actual computation time is swamped
by peripheral tasks such as I/O and memory allocation, which can be sped up by
using buffering and caching techniques.

Even for code that istime-critical, it is not as important to " microoptimize" the
coding details. Many of the “"efficient coding tricks" which are frequently suggested
(e.g. substituting shift operators for multiplication by powers of two) are performed
automatically by even ssmpleminded compilers. Heavyhanded optimization attempts
can make code so bulky that performance is actually degraded, and are rarely
portable (i.e. they may speed things up on one machine but slow them down on
another). In any case, tweaking the coding usually resultsin at best linear
performance improvements; the big payoffs are in better algorithms,

For more discussion of efficiency tradeoffs, as well as good advice on how to
improve efficiency when it isimportant, see chapter 7 of Kernighan and Plauger's
The Elements of Programming Style, and Jon Bentley's Writing Efficient Programs.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.13.html [26/03/2003 11:40:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.14

Question 20.14

Are pointers really faster than arrays? How much do function calls slow things
down?lIs++i fasterthani =1 + 17

Precise answers to these and many similar questions depend of course on the
processor and compiler in use. If you simply must know, you'll have to time test
programs carefully. (Often the differences are so dlight that hundreds of thousands of
iterations are required even to see them. Check the compiler's assembly language
output, if available, to seeif two purported alternatives aren't compiled identically.)

Itis usually" faster to march through large arrays with pointers rather than array
subscripts, but for some processors the reverse is true.

Function calls, though obviously incrementally slower than in-line code, contribute
so much to modularity and code clarity that there is rarely good reason to avoid
them.

Before rearranging expressionssuchasi = i + 1, remember that you are dealing
with a compiler, not a keystroke-programmable calculator. Any decent compiler will
generate identical codefor ++i ,i += 1l,andi = 1 + 1. Thereasonsfor using
++i ori += loveri =1 + 1 havetodowith style, not efficiency. (See aso
question 3.12.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.14.html [26/03/2003 11:40:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.17

Question 20.17

Isthereaway to swi t ch on strings?

Not directly. Sometimes, it's appropriate to use a separate function to map strings to
integer codes, and then switch on those. Otherwise, of course, you can fall back on
st r cnp and a conventional if/else chain. See also questions 10.12, 20.18, and

20.29.

References. K&R1 Sec. 3.4 p. 55
K&R2 Sec. 3.4 p. 58

ANSI Sec. 3.6.4.2

SO Sec. 6.6.4.2

H&S Sec. 8.7 p. 248

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.17.html [26/03/2003 11:40:49 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.18

Question 20.18

|s there away to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

No. Theswi t ch statement was originally designed to be quite simple for the
compiler to translate, therefore case labels are limited to single, constant, integral
expressions. Y ou can attach several case labels to the same statement, which will let
you cover asmall range if you don't mind listing all cases explicitly.

If you want to select on arbitrary ranges or non-constant expressions, you'll have to
use an if/else chain.

See also questions question 20.17.

References. K&R1 Sec. 3.4 p. 55
K&R2 Sec. 3.4 p. 58

ANSI Sec. 3.6.4.2

SO Sec. 6.6.4.2

Rationale Sec. 3.6.4.2

H&S Sec. 8.7 p. 248

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.18.html [26/03/2003 11:40:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.19

Question 20.19

Arethe outer parenthesesinr et ur n statements really optional ?

Yes.

Long ago, in the early days of C, they were required, and just enough people learned
C then, and wrote code which is still in circulation, that the notion that they might
still be required is widespread.

(Asit happens, parentheses are optional with thesi zeof operator, too, aslong as
its operand is avariable or a unary expression.)

References. K&R1 Sec. A18.3 p. 218
ANSI Sec. 3.3.3, Sec. 3.6.6

SO Sec. 6.3.3, Sec. 6.6.6

H&S Sec. 8.9 p. 254

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.19.html [26/03/2003 11:40:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.20

Question 20.20

Why don't C comments nest? How am | supposed to comment out code containing
comments? Are comments legal inside quoted strings?

C comments don't nest mostly because PL/I's comments, which C's are borrowed
from, don't either. Therefore, it is usually better to ~" comment out™ large sections of
code, which might contain comments, with #i f def or#i f 0 (but see question
11.19).

The character sequences/ * and */ are not specia within double-quoted strings, and
do not therefore introduce comments, because a program (particularly one which is
generating C code as output) might want to print them.

Notealsothat / / comments, asin C++, are not currently legal in C, soit'snot a
good ideato use them in C programs (even if your compiler supports them as an
extension).

References. K&R1 Sec. A2.1p. 179

K&R2 Sec. A2.2 p. 192

ANSI Sec. 3.1.9 (esp. footnote 26), Appendix E
SO Sec. 6.1.9, Annex F

Rationale Sec. 3.1.9

H&S Sec. 2.2 pp. 18-9

PCS Sec. 10 p. 130

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.20.html [26/03/2003 11:40:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.24

Question 20.24

Why doesn't C have nested functions?

It's not trivial to implement nested functions such that they have the proper access to
local variables in the containing function(s), so they were deliberately left out of C as
asimplification. (gcc does alow them, as an extension.) For many potential uses of
nested functions (e.g. qsor t comparison functions), an adequate if slightly
cumbersome solution is to use an adjacent function with st at i ¢ declaration,
communicating if necessary viaafew st at i ¢ variables. (A cleaner solution when
such functions must communicate is to pass around a pointer to a structure
containing the necessary context.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.24.html [26/03/2003 11:40:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.25

Question 20.25

How can | call FORTRAN (C++, BASIC, Pascal, Ada, LISP) functions from C?
(And vice versa?)

The answer is entirely dependent on the machine and the specific calling sequences
of the various compilersin use, and may not be possible at all. Read your compiler
documentation very carefully; sometimes thereisa ™ mixed-language programming
guide," although the techniques for passing arguments and ensuring correct run-time
startup are often arcane. More information may be found in FORT.gz by Glenn
Geers, available via anonymous ftp from suphys.physics.su.oz.au in the src directory.

cfortran.h, a C header file, smplifies C/FORTRAN interfacing on many popular
machines. It is available via anonymous ftp from zebra.desy.de (131.169.2.244).

In C++, a" C' modifier in an external function declaration indicates that the function
isto be called using C calling conventions.

References. H& S Sec. 4.9.8 pp. 106-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.25.html [26/03/2003 11:40:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.26

Question 20.26

Does anyone know of a program for converting Pascal or FORTRAN (or LISP, Ada,
awk, "OId"C, ..)to C?

Severdl freely distributable programs are available:

. p2c 8 A Pascal to C converter written by Dave Gillespie, posted to
comp.sources.unix in March, 1990 (Volume 21); also available by
anonymous ftp from csvax.cs.caltech.edu, file pub/p2c-1.20.tar.Z .

« ptoc Another Pascal to C converter, this one written in Pascal
(comp.sources.unix, Volume 10, also patchesin Volume 137).

. f2c A FORTRAN to C converter jointly developed by people from Bell Labs,
Bellcore, and Carnegie Mellon. To find out more about f2c, send the mail
message send index from f2c" to netlib@research.att.com or research! netlib.
(It isaso available via anonymous ftp on netlib.att.com, in directory
netlib/f2c.)

ThisFAQ list's maintainer also has available alist of afew other commercia
trandlation products, and some for more obscure languages.

See also questions 11.31 and 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.26.html [26/03/2003 11:40:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.27

Question 20.27

Is C++ asuperset of C? Can | use a C++ compiler to compile C code?

C++ was derived from C, and is largely based on it, but there are some legal C
constructs which are not legal C++. Conversely, ANSI C inherited several features
from C++, including prototypes and const , so neither language isreally a subset or
superset of the other. In spite of the differences, many C programs will compile
correctly in a C++ environment, and many recent compilers offer both C and C++
compilation modes.

References: H& S p. xviii, Sec. 1.1.5 p. 6, Sec. 2.8 pp. 36-7, Sec. 4.9 pp. 104-107

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.27.html [26/03/2003 11:40:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.28

Question 20.28

| need asort of an " approximate” strcmp routine, for comparing two strings for
close, but not necessarily exact, equality.

Some nice information and algorithms having to do with approximate string
matching, as well as a useful bibliography, can be found in Sun Wu and Udi
Manber's paper "AGREP--A Fast Approximate Pattern-Matching Tool."

Another approach involves the “soundex™ algorithm, which maps similar-sounding
words to the same codes. Soundex was designed for discovering similar-sounding
names (for telephone directory assistance, as it happens), but it can be pressed into
service for processing arbitrary words.

References. Knuth Sec. 6 pp. 391-2 Volume 3
Wu and Manber, "AGREP--A Fast Approximate Pattern-Matching Tool"

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.28.html [26/03/2003 11:40:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.29

Question 20.29

What is hashing?

Hashing is the process of mapping strings to integers, usually in arelatively small
range. A ~"hash function" maps a string (or some other data structure) to a a bounded
number (the “"hash bucket™) which can more easily be used as an index in an array,
or for performing repeated comparisons. (Obviously, a mapping from a potentially
huge set of stringsto asmall set of integers will not be unique. Any agorithm using
hashing therefore has to deal with the possibility of ““collisions.”) Many hashing
functions and related algorithms have been developed; afull treatment is beyond the
scope of thislist.

References. K& R2 Sec. 6.6
Knuth Sec. 6.4 pp. 506-549 Volume 3
Sedgewick Sec. 16 pp. 231-244

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.29.html [26/03/2003 11:40:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.31

Question 20.31

How can | find the day of the week given the date?

Usenkti me orl ocal ti me (seequestions 13.13 and 13.14, but beware of DST

adjustmentsif t m_hour is0), or Zeller's congruence (see the sci.math FAQ list), or this
elegant code by Tomohiko Sakamoto:

dayof week(y, m d) /* 0 = Sunday */

int y, m d; /* 1 <= m<=12, vy > 1752 or so */

{
static int t[] ={0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4};
y -= m< 3;
return (y + y/4 - y/100 + y/400 + t[m1] + d) %7;

}

See also questions 13.14 and 20.32.

References: ANSI Sec. 4.12.2.3
SO Sec. 7.12.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.31.html [26/03/2003 11:40:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.32

Question 20.32

Will 2000 bealeap year?Is(year % 4 == 0) an accurate test for leap years?

Y es and no, respectively. The full expression for the present Gregorian calendar is
year %4 == 0 && (year %100 != 0 || year % 400 == 0)

See agood astronomical almanac or other reference for details. (To forestall an eterna
debate: references which claim the existence of a4000-year rule are wrong.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.32.html [26/03/2003 11:41:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.34

Question 20.34

Here's agood puzzle: how do you write a program which produces its own source
code as its output?

It is actually quite difficult to write a self-reproducing program that is truly portable,
due particularly to quoting and character set difficulties.

Hereisaclassic example (which is normally presented on one line, although it will
“fix" itself the first timeit's run):

char*s="char*s=%%%; main(){printf(s,34,s,34);}";
mai n(){printf(s, 34,s,34);}

(This program, like many of the genre, assumes that the double-quote character " has
the value 34, asit doesin ASCII.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.34.html [26/03/2003 11:41:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.35

Question 20.35

What is " Duff's Device"?

It's a devastatingly deviously unrolled byte-copying loop, devised by Tom Duff while he was
at Lucasfilm. Inits “classic" form, it looks like:

register n = (count + 7) [/ 8; /* count > 0 assuned */
swtch (count % 8)
{
case O: do { *to = *fromt+,;
case 7: *to = *from-+;
case 6: *to = *fromt+;
case b5: *to = *from-+;
case 4: *to = *from-+
case 3: *to = *from-+;
case 2: *to = *from-+;
case 1: *to = *from-+;

} while (--n > 0);
}

where count bytes are to be copied from the array pointed to by f r omto the memory
location pointed to by t o (which is amemory-mapped device output register, which iswhy

t o isn't incremented). It solves the problem of handling the leftover bytes (when count isn't
amultiple of 8) by interleaving aswi t ch statement with the loop which copies bytes 8 at a
time. (Believeit or not, it islega to have case labels buried within blocks nested in a

SW t ch statement like this. In his announcement of the technique to C's devel opers and the
world, Duff noted that C'sswi t ch syntax, in particular its " fall through" behavior, had long
been controversial, and that *" This code forms some sort of argument in that debate, but I'm
not sure whether it'sfor or against.”)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.35.html [26/03/2003 11:41:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.36

Question 20.36

When will the next International Obfuscated C Code Contest (IOCCC) be held? How
can | get acopy of the current and previous winning entries?

The contest schedule is tied to the dates of the USENIX conferences at which the
winners are announced. At the time of thiswriting, it is expected that the yearly
contest will open in October. To obtain a current copy of the rules and guidelines,
send e-mail with the Subject: line "send rules’ to:

{ apple,pyramid,sun,uunet} hoptoad!judges or judges@toad.com
(Note that these are not the addresses for submitting entries.)

Contest winners should be announced at the winter USENIX conference in January,
and are posted to the net sometime thereafter. Winning entries from previous years
(back to 1984) are archived at ftp.uu.net (see question 18.16) under the directory

pub/ioccc/.

Asalast resort, previous winners may be obtained by sending e-mail to the above
address, using the Subject: “"send Y EAR winners’, where YEAR isasingle four-
digit year, ayear range, or al".

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.36.html [26/03/2003 11:41:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.37

Question 20.37

What wasthe ent r y keyword mentioned in K& R1?

It was reserved to allow the possibility of having functions with multiple, differently-
named entry points, ala FORTRAN. It was not, to anyone's knowledge, ever
implemented (nor does anyone remember what sort of syntax might have been
imagined for it). It has been withdrawn, and is not a keyword in ANSI C. (See also
guestion 1.12.)

References. K&R2 p. 259 Appendix C

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q20.37.html [26/03/2003 11:41:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Declarations and Initializations

1. Declarations and Initializations

1.1 How do you decide which integer type to use?

1.4 What should the 64-bit type on new, 64-bit machines be?

1.7 What's the best way to declare and define global variables?

1.11 What does ext er n mean in afunction declaration?

1.12 What's the aut o keyword good for?

1.14 1 can't seem to define a linked list node which contains a pointer to itsalf.

1.21 How do | declare an array of N pointers to functions returning pointers to
functions returning pointers to characters?

1.22 How can | declare afunction that returns a pointer to a function of its own type?

1.25 My compiler is complaining about an invalid redeclaration of afunction, but |
only defineit once and call it once.

1.30 What can | safely assume about the initial values of variables which are not
explicitly initialized?

1.31 Why can't | initialize alocal array with a string?

1.32 What isthe difference betweenchar a[] = "string"; andchar *p =

"string":; ?

1.34 How do | initialize a pointer to a function?

http://www.eskimo.com/~scs/C-fag/s1.html [26/03/2003 11:41:05 p.m.]

Structures, Unions, and Enumerations

2. Structures, Unions, and
Enumerations

2.1 What'sthe difference betweenstruct x1 { ... }; andt ypedef
struct { ... } x2;?
22Why doesn't"struct x { ... }; x thestruct;" work?

2.3 Can a structure contain a pointer to itself?

2.4 What's the best way of implementing opaque (abstract) data typesin C?

2.6 | came across some code that declared a structure with the last member an array
of one e ement, and then did some tricky allocation to make it act like the array had
several elements. Isthislegal or portable?

2.7 | heard that structures could be assigned to variables and passed to and from
functions, but K& R1 says not.

2.8 Why can't you compare structures?

2.9 How are structure passing and returning implemented?

2.10 Can | pass constant values to functions which accept structure arguments?

2.11 How can | read/write structures from/to data files?

2.12 How can | turn off structure padding?

2.13 Why does si zeof report alarger size than | expect for a structure type?

2.14 How can | determine the byte offset of afield within a structure?

2.15 How can | access structure fields by name at run time?

2.18 | have a program which works correctly, but dumps core after it finishes. Why?

http://www.eskimo.com/~scs/C-fag/s2.html (1 of 2) [26/03/2003 11:41:06 p.m.]

Structures, Unions, and Enumerations

2.20 Can | initialize unions?

2.22 What is the difference between an enumeration and a set of preprocessor

#def i nes?

2.24 |s there an easy way to print enumeration values symbolically?

http://www.eskimo.com/~scs/C-fag/s2.html (2 of 2) [26/03/2003 11:41:06 p.m.]

Expressions

3. Expressions

3.1 Why doesn'tthecode"a[i] = i ++;" work?

3.2 Under my compiler,thecode"int i = 7; printf("%\n", i++ *
| ++) ;" prints 49. Regardless of the order of evaluation, shouldn't it print 567

3.3How couldthecode"int I = 3;: i = |++;"everqive7?

3.4 Don't precedence and parentheses dictate order of evaluation?

3.5 But what about the && and | | operators?

3.8 What'sa " "sequence point"?

39Soqgiven"a[i] =i ++;" wedon't know which cell of a[] gets written to, but

I_does get incremented by one.

3.12 If I'm not using the value of the expression, should | usei ++ or ++i to
increment a variable?

3.14 Why doesn'tthecode"int _a = 1000, b = 1000; long int ¢ = a

* b: " work?

3.16 Can | use ?: on the left-hand side of an assignment expression?

http://www.eskimo.com/~scs/C-fag/s3.html [26/03/2003 11:41:07 p.m.]

Pointers

4. Pointers

4.2 What'swrong with"char *p; *p = mall oc(10);"?

4.3 Does* p++ increment p, or what it points to?

45| wanttouseachar * pointer to step over somei nt s. Why doesn't "((i nt
*)p) ++; " work?

4.8 | have afunction which accepts, and is supposed to initialize, a pointer, but the
pointer in the caller remains unchanged.

49 Canl useavoi d ** pointer to pass a generic pointer to afunction by
reference?

4.10 | have afunction which accepts a pointer to ani nt . How can | pass a constant

like51to it?

4.11 Does C even have "pass by reference"?

4.12 |'ve seen different methods used for calling functions via pointers.

http://www.eskimo.com/~scs/C-fag/s4.html [26/03/2003 11:41:08 p.m.]

Null Pointers

5. Null Pointers

5.1 What is this infamous null pointer, anyway?

5.2 How do | get anull pointer in my programs?

5.3 Isthe abbreviated pointer comparison i f (p) " to test for non-null pointers
valid?

5.4 What isNULL and how isit #def i ned?

5.5 How should NULL be defined on a machine which uses a nonzero bit pattern as
the internal representation of a null pointer?

5.6 If NULL weredefinedas "(((char *) 0)," wouldn't that make function calls
which pass an uncast NULL work?

5.9 1f NULL and O are equivalent as null pointer constants, which should | use?

5.10 But wouldn't it be better to use NULL, in case the value of NULL changes?

5.12 | usethe preprocessor macro "#define Nul I ptr(type) (type *)0"to
help me build null pointers of the correct type.

5.13 Thisis strange. NULL is guaranteed to be 0, but the null pointer is not?

5.14 Why is there so much confusion surrounding null pointers?

5.15 I'm confused. | just can't understand all this null pointer stuff.

5.16 Given all the confusion surrounding null pointers, wouldn't it be easier smply
to require them to be represented internally by zeroes?

5.17 Seriously, have any actual machinesreally used nonzero null pointers?

5.20 What does a run-time " "null pointer assignment” error mean?

http://www.eskimo.com/~scs/C-fag/s5.html (1 of 2) [26/03/2003 11:41:09 p.m.]

Null Pointers

http://www.eskimo.com/~scs/C-fag/s5.html (2 of 2) [26/03/2003 11:41:09 p.m.]

Arrays and Pointers

6. Arrays and Pointers

6.1 | had the definition char a[6] in one sourcefile, and in another | declared
extern char *a.Why didn'tit work?

6.2 But | heard that char a[] wasidentical tochar *a.

6.3 So what is meant by the ““eguivalence of pointers and arrays' in C?

6.4 Why are array and pointer declarations interchangeabl e as function formal
parameters?

6.7 How can an array be an lvalue, if you can't assign to it?

6.8 What isthe real difference between arrays and pointers?

6.9 Someone explained to me that arrays were really just constant pointers.

6.11 | came across some "joke" code containing the "expression” 5["abcdef "] .
How can this be legal C?

6.12 What's the difference between ar r ay and &array?

6.13 How do | declare a pointer to an array?

6.14 How can | set an array's Size at run time?

6.15 How can | declare local arrays of a size matching a passed-in array?

6.16 How can | dynamically allocate a multidimensional array?

6.17 Can | ssimulate a non-0-based array with a pointer?

6.18 My compiler complained when | passed a two-dimensional array to afunction
expecting a pointer to a pointer.

6.19 How do | write functions which accept two-dimensional arrays when the

http://www.eskimo.com/~scs/C-fag/s6.html (1 of 2) [26/03/2003 11:41:10 p.m.]

Arrays and Pointers

“width" is not known at compile time?

6.20 How can | use statically- and dynamically-allocated multidimensional arrays
interchangeably when passing them to functions?

6.21 Why doesn't si zeof properly report the size of an array which is a parameter

to afunction?

http://www.eskimo.com/~scs/C-fag/s6.html (2 of 2) [26/03/2003 11:41:10 p.m.]

Memory Allocation

/. Memory Allocation

7.1 Why doesn't thecode "char *answer; gets(answer) ;" work?

7.2 can'tget strcat towork. | tried char *s3 = strcat(sl, s2);"but
| got strange results.

7.3 But the man page for st r cat saysthat it takestwo char *'s as arguments.
How am | supposed to know to allocate things?

7.5 | have afunction that is supposed to return a string, but when it returns to its
caller, the returned string is garbage.

7.6 Why am | getting ~“warning: assignment of pointer from integer lacks a cast" for
calstomal | oc?

7.7 Why does some code carefully cast the values returned by nal | oc to the pointer

type being all ocated?

7.8 Why does so much code Ieave out the multiplication by si zeof (char) when
allocating strings?

7.14 I've heard that some operating systems don't actually allocate mal | oc'ed
memory until the program triesto useit. Isthislega?

7.16 I'm allocating alarge array for some numeric work, but mal | oc isacting
strangely.

7.17 1've got 8 meg of memory in my PC. Why can | only seem to mal | oc 640K or
Sord

7.19 My program is crashing, apparently somewhere down insidenal | oc.

7.20 Y ou can't use dynamically-allocated memory after you free it, can you?

7.21 Why isn't apointer null after callingf r ee?

http://www.eskimo.com/~scs/C-fag/s7.html (1 of 2) [26/03/2003 11:41:11 p.m.]

Memory Allocation

7.22When | cdl nal | oc to alocate memory for aloca pointer, do | haveto
explicitly f r ee it?

7.23 When | free a dynamically-allocated structure containing pointers, do | have to

free each subsidiary pointer first?

7.24 Must | free alocated memory before the program exits?

7.25 Why doesn't my program's memory usage go down when | free memory?

7.26 How doesf r ee know how many bytes to free?

7.27 So can | query the malloc package to find out how big an allocated block is?

7.30Isit legal to pass anull pointer asthefirst argumenttor eal | oc?

7.31 What's the difference between cal | oc and mal | oc?

7.32 \What isal | oca and why is its use discouraged?

http://www.eskimo.com/~scs/C-fag/s7.html (2 of 2) [26/03/2003 11:41:11 p.m.]

Characters and Strings

8. Characters and Strings

8.1 Why doesn't "strcat (string, '!'"');" work?
8.2 Why won't thetesti f (string == "val ue") correctly comparestri ng.
against the value?

8.3 Why can't | assign strings to character arrays?

8.6 How can | get the numeric (character set) value corresponding to a character?

8.9Whyissi zeof ("a') not1?

http://www.eskimo.com/~scs/C-fag/s8.html [26/03/2003 11:41:12 p.m.]

Boolean Expressions and Variables

9. Boolean Expressions and
Variables

9.1 What isthe right type to use for Boolean valuesin C?

9.2 What if abuilt-in logical or relational operator " returns' something other than 1?

9.31si f (p),wherep isapointer, valid?

http://www.eskimo.com/~scs/C-fag/s9.html [26/03/2003 11:41:13 p.m.]

C Preprocessor

10. C Preprocessor

10.2 I've got some cute preprocessor macros that let me write C code that |ooks more

like Pascal. What do y'all think?

10.3 How can | write a generic macro to swap two values?

10.4 What's the best way to write a multi-statement macro?

10.6 What are .h files and what should | put in them?

10.7 Isit acceptable for one header fileto #i ncl ude another?

10.8 Where are header (" '#i ncl ude") files searched for?

10.9 I'm getting strange syntax errors on the very first declaration in afile, but it
looks fine.

10.11 Where can | get a copy of a missing header file?

10.12 How can | construct preprocessor #i f expressions which compare strings?

10.13 Doesthe si zeof operator work in preprocessor #i f directives?

10.14 Can | use an #i f def ina#def i ne line, to define something two different
ways?

10.15 Isthere anything like an #i f def fort ypedef s?

10.16 How can | use a preprocessor #i f expression to detect endianness?

10.18 How can | preprocess some code to remove selected conditional compilations,
without preprocessing everything?

10.19 How can | list all of the pret#tdef i ned identifiers?

10.20 | have some old code that tries to construct identifiers with a macro like

http://www.eskimo.com/~scs/C-fag/s10.html (1 of 2) [26/03/2003 11:41:14 p.m.]

C Preprocessor

"#define Paste(a, b) a/**/Db", butitdoesn't work any more.

10.22

What does the message ~ warning: macro replacement within a string literal" mean?

10.23 How can | use a macro argument inside a string literal in the macro expansion?

10.25 I've got this tricky preprocessing | want to do and | can't figure out a way to do
it.

10.26 How can | write a macro which takes a variable number of arguments?

http://www.eskimo.com/~scs/C-fag/s10.html (2 of 2) [26/03/2003 11:41:14 p.m.]

ANSI/ISO Standard C

11. ANSI/ISO Standard C

11.1 What isthe "ANSI C Standard?’

11.2 How can | get a copy of the Standard?

11.3 My ANSI compiler is complaining about prototype mismatches for parameters
declared f | oat .

11.4 Can you mix old-style and new-style function syntax?

11.5 Why doesthe declaration "ext ern f(struct x *p):" give meawarning

message?

11.8 Why can't | use const vauesininitializers and array dimensions?

11.9 What's the difference between const char *p andchar * const p?

11.10 Why can't | passachar ** to afunction which expectsaconst char

* %0

11.12 Can | declare mai n asvoi d, to shut off these annoying ~~main returns no
value' messages?

11.13 But what about nai n'sthird argument, envp?

11.14 | believe that declaring voi d mai n() can't fail, sincel'm caling exi t
instead of returning.

11.15 The book I've been using alwaysusesvoi d mai n() .

11.16Isexi t (st at us) truly equivalent to returning the same st at us from
mai n?

11.17 How do | get the ANSI "“stringizing" preprocessing operator "#' to stringize
the macro's value instead of its name?

http://www.eskimo.com/~scs/C-fag/s11.html (1 of 3) [26/03/2003 11:41:15 p.m.]

ANSI/ISO Standard C

11.18 What does the message " warning: macro replacement within a string literal"
mean?

11.19 I'm getting strange syntax errorsinside lines I've #i f def fed out.

11.20 What are #pr agnas ?

11.21 What does " #pr agma_once" mean?

11.22Ischar _a[3] = "abc"; lega?

11.24 Why can't | perform arithmeticonavoi d * pointer?

11.25 What's the difference between nentpy and nemmove?

11.26 What should mal | oc(0) do?

11.27 Why does the ANSI Standard not guarantee more than six case-insensitive
characters of external identifier significance?

11.29 My compiler is rejecting the ssimplest possible test programs, with all kinds of

syntax errors.

11.30 Why are some ANSI/I SO Standard library routines showing up as undefined,
even though I've got an ANSI compiler?

11.31 Does anyone have atool for converting old-style C programs to ANSI C, or
for automatically generating prototypes?

11.32 Why won't frobozz-cc, which claims to be ANSI compliant, accept this code?

11.33 What's the difference between implementati on-defined, unspecified, and
undefined behavior?

11.34 I'm appalled that the ANSI Standard |eaves so many issues undefined.

11.351 just tried some allegedly-undefined code on an ANSI-conforming compiler,
and got the results | expected.

http://www.eskimo.com/~scs/C-fag/s11.html (2 of 3) [26/03/2003 11:41:15 p.m.]

ANSI/ISO Standard C

http://www.eskimo.com/~scs/C-fag/s11.html (3 of 3) [26/03/2003 11:41:15 p.m.]

Stdio

12. Stdio

12.1 What'swrong with thecode"char c; while((c = getchar()) !=
ECF) ..."?

12.2 Why won'tthecode " whi l e(! feof (infp)) { fgets(buf,
MAXLINE, infp); fputs(buf, outfp); } "work?

12.4 My program's prompts and intermediate output don't always show up on the
screen.

12.5 How can | read one character at atime, without waiting for the RETURN key?

12.6 How can |l printa' % character withprintf?

129 How canpri ntf use% fortypedoubl e, if scanf requires% f ?

12.10 How can | implement a variable field width withpri nt f ?

12.11 How can | print numbers with commas separating the thousands?

12.12 Why doesn't the call scanf (" %", i) work?

12.13 Why doesn't the code "doubl e d; scanf ("% ", &d) ;" work?

12.15 How can | specify avariable widthinascanf format string?

12.17 When | read numbers from the keyboard with scanf " %@\ n" | it seemsto
hang until | type one extraline of input.

12.18 I'm reading a number with scanf % and then astring with get s() , but the
compiler seemsto be skipping thecall toget s() !

12.19 I'm re-prompting the user if scanf fails, but sometimes it seemsto go into an

infinite loop.

12.20 Why does everyone say not to use scanf ? What should | use instead?

http://www.eskimo.com/~scs/C-fag/s12.html (1 of 2) [26/03/2003 11:41:17 p.m.]

Stdio

12.21 How can | tell how much destination buffer space I'll need for an arbitrary
sprintf cal?How canl avoid overflowing the destination buffer withspri ntf ?

12.23 Why does everyone say not touseget s() ?

12.24 Why doeser r no contain ENOTTY after acall toprint f ?

12.25 What's the difference between f get pos/f set pos andftel | /f seek?

12.26 Will f f 1 ush(st di n) flush unread characters from the standard input
stream?

12.30 I'm trying to update afilein place, by using f open mode " r +" , but it's not
working.

12.33 How can | redirect st di n or st dout from within a program?

12.34 Oncel'veused f r eopen, how can | get the original stream back?

12.38 How can | read a binary datafile properly?

http://www.eskimo.com/~scs/C-fag/s12.html (2 of 2) [26/03/2003 11:41:17 p.m.]

Library Functions

13. Library Functions

13.1 How can | convert numbers to strings?

13.2 Why does st r ncpy not awayswritea' \ 0" ?

13.5 Why do some versions of t oupper act strangely if given an upper-case |etter?

13.6 How can | split up a string into whitespace-separated fields?

13.7 | need some code to do regular expression and wildcard matching.

13.8 I'm trying to sort an array of stringswith gsort ,usingst r cnp asthe
comparison function, but it's not working.

13.9 Now I'm trying to sort an array of structures, but the compiler is complaining
that the function is of the wrong typefor gsort .

13.10 How can | sort alinked list?

13.11 How can | sort more data than will fit in memory?

13.12 How can | get the time of day in a C program?

13.13How canl convertastruct tmorastringintoatine_t?

13.14 How can | perform calendar manipul ations?

13.15 | need a random number generator.

13.16 How can | get random integersin a certain range?

13.17 Each time | run my program, | get the same sequence of numbers back from

rand() .

13.18 | need arandom true/false value, so I'mjust takingr and() % 2, but it's
aternating 0,1, 0,1, 0...

http://www.eskimo.com/~scs/C-fag/s13.html (1 of 2) [26/03/2003 11:41:18 p.m.]

Library Functions

13.20 How can | generate random numbers with a normal or Gaussian distribution?

13.24 I'm trying to port this old program. Why do | get ““undefined external" errors
for some library functions?

13.25 1 get errors due to library functions being undefined even though | #i ncl ude_
the right header files.

13.26 I'm still getting errors due to library functions being undefined, even though
I'm requesting the right libraries.

13.28 What does it mean when the linker saysthat end is undefined?

http://www.eskimo.com/~scs/C-fag/s13.html (2 of 2) [26/03/2003 11:41:18 p.m.]

Floating Point

14. Floating Point

14.1 When | set af | oat variableto 3.1, why ispri nt f printing it as 3.09999997?

14.2 Why issqgrt (144.) qgiving me crazy numbers?

14.3 | keep getting ““undefined: sin" compilation errors.

14.4 My floating-point calculations are acting strangely and giving me different
answers on different machines.

14.5 What's a good way to check for ~"close enough” floating-point equality?

14.6 How do | round numbers?

14.7 Where is C's exponentiation operator?

14.8 The pre-#def i ned constant M Pl seemsto be missing from <mat h. h>.

14.9 How do | test for IEEE NaN and other special values?

14.11 What's a good way to implement complex numbersin C?

14.12 I'm looking for some mathematical library code.

14.13 I'm having trouble with a Turbo C program which crashes and says something

like " floating point formats not linked."

http://www.eskimo.com/~scs/C-fag/s14.html [26/03/2003 11:41:18 p.m.]

Variable-Length Argument Lists

15. Variable-Length Argument
Lists

15.1 | heard that you haveto #i ncl ude <st di 0. h> beforecalingpri ntf.
Why?

15.2 How can % be used for both f | oat _and doubl e argumentsinpri ntf?

15.3 Why don't function prototypes guard against mismatchesinprint f's
arguments?

15.4 How can | write afunction that takes a variable number of argquments?

15.5 How can | write afunction that takes a format string and a variable number of
arguments, likepri nt f , and passesthemto pri nt f to do most of the work?

15.6 How can | write afunction analogousto scanf , that callsscanf to do most
of the work?

15.7 | have apre-ANSI compiler, without <st dar g. h>. What can | do?

15.8 How can | discover how many arguments a function was actually called with?

15.9 My compiler isn't letting me declare a function that accepts only variable
arguments.

15.10 Why isn't "va_ar g(argp, fl oat)" working?

15.11 | can't get va_ar g to pull in an argument of type pointer-to-function.

15.12 How can | write afunction which takes a variable number of arguments and
passes them to some other function ?

15.13 How can | call afunction with an argument list built up at run time?

http://www.eskimo.com/~scs/C-fag/s15.html (1 of 2) [26/03/2003 11:41:20 p.m.]

Variable-Length Argument Lists

http://www.eskimo.com/~scs/C-fag/s15.html (2 of 2) [26/03/2003 11:41:20 p.m.]

Strange Problems

16. Strange Problems

16.3 This program crashes before it even runs!

16.4 | have a program that seems to run correctly, but then crashes as it's exiting.

16.5 This program runs perfectly on one machine, but | get weird results on another.

16.6 Why doesthecode"char *p = "hello, world!"; p[0] ="H ;"
crash?

16.8 What does " Segmentation violation" mean?

http://www.eskimo.com/~scs/C-fag/s16.html [26/03/2003 11:41:22 p.m.]

Style

17. Style

17.1 What's the best style for code layout in C?

17.31sthecode”i f (! strcnp(sl, s2))" good style?

17.4 Why do some peoplewritei f (0 == x) insteadofi f (x == 0)?

17.5 | came across some code that putsa (voi d) cast beforeeachcal toprintf.
Why?

17.8 What is Hungarian Notation"? Is it worthwhile?

17.9 Where can | get the "Indian Hill Style Guide" and other coding standards?

17.10 Some people say that got o's are evil and that | should never use them. Isn't
that a bit extreme?

http://www.eskimo.com/~scs/C-fag/s17.html [26/03/2003 11:41:23 p.m.]

System Dependencies

19. System Dependencies

19.1 How can | read a single character from the keyboard without waiting for the
RETURN key?

19.2 How can | find out how many characters are available for reading, or do a non-
blocking read?

19.3 How can | display a percentage-done indication that updates itself in place, or
show one of those " twirling baton" progress indicators?

19.4 How can | clear the screen, or print things in inverse video, or move the cursor?

19.5 How do | read the arrow keys? What about function keys?

19.6 How do | read the mouse?

19.7 How can | do seria (" comm") port |/O?

19.8 How can | direct output to the printer?

19.9 How do | send escape sequences to control atermina or other device?

19.10 How can | do graphics?

19.11 How can | check whether afile exists?

19.12 How can | find out the size of afile, prior to reading it in?

19.13 How can afile be shortened in-place without completely clearing or rewriting
it?

19.14 How can | insert or delete aline in the middle of afile?

19.15 How can | recover the file name given an open file descriptor?

19.16 How can | delete afile?

http://www.eskimo.com/~scs/C-fag/s19.html (1 of 3) [26/03/2003 11:41:24 p.m.]

System Dependencies

19.17 What'swrong with thecall "f open("c:\newdir\file.dat", "r")"?

19.18 How can | increase the allowable number of simultaneously open files?

19.20 How can | read adirectory in a C program?

19.22 How can | find out how much memory is available?

19.23 How can | alocate arrays or structures bigger than 64K ?

19.24 What does the error message " DGROUP exceeds 64K" mean?

19.25 How can | access memory located at a certain address?

19.27 How can | invoke another program from within a C program?

19.30 How can | invoke another program and trap its output?

19.31 How can my program discover the complete pathname to the executable from
which it was invoked?

19.32 How can | automatically locate a program's configuration files in the same
directory as the executable?

19.33 How can a process change an environment variable in its caller?

19.36 How can | read in an object file and jump to routinesin it?

19.37 How can | implement adelay, or time a user's response, with sub-second
resolution?

19.38 How can | trap or ignore keyboard interrupts like control-C?

19.39 How can | handl e floating-point exceptions gracefully?

19.40 How do |... Use sockets? Do networking? Write client/server applications?

19.40b How do | use BIOS calls? How can | write ISR's? How can | create TSR's?

http://www.eskimo.com/~scs/C-fag/s19.html (2 of 3) [26/03/2003 11:41:24 p.m.]

System Dependencies

19.41 But | can't use all these nonstandard, system-dependent functions, because my

program has to be ANSI compatibl el

http://www.eskimo.com/~scs/C-fag/s19.html (3 of 3) [26/03/2003 11:41:24 p.m.]

Acknowledgements

Acknowledgements

Thanks to Jamshid Afshar, David Anderson, Tanner Andrews, Sudheer Apte, Joseph
Arceneaux, Randall Atkinson, Rick Beem, Peter Bennett, Wayne Berke, Dan
Bernstein, Tanmoy Bhattacharya, John Bickers, Gary Blaine, Yuan Bo, Dave
Boutcher, Michael Bresnahan, Vincent Broman, Stan Brown, Joe Buehler,
Kimberley Burchett, Gordon Burditt, Burkhard Burow, Conor P. Cahill, D'Arcy JM.
Cain, Christopher Calabrese, lan Cargill, Vinit Carpenter, Paul Carter, Mike
Chambers, Billy Chambless, Franklin Chen, Jonathan Chen, Raymond Chen,
Richard Cheung, Steve Clamage, Ken Corbin, lan Cottam, Russ Cox, Jonathan
Coxhead, Lee Crawford, Steve Dahmer, Andrew Daviel, James Davies, John E.
Davis, Ken Delong, Jutta Degener, Norm Diamond, Jeff Dunlop, Ray Dunn, Stephen

M. Dunn, Michael J. Eager, Scott Ehrlich, Arno Eigenwillig, Dave Eisen, Bjorn
Engsig, David Evans, Clive D.W. Feather, Dominic Feeley, Simao Ferraz, Chris
Flatters, Rod Flores, Alexander Forst, Steve Fosdick, Jeff Francis, Tom Gambill,
Dave Gillespie, Samuel Goldstein, Tim Goodwin, Alasdair Grant, Ron Guilmette,
Doug Gwyn, Michael Hafner, Tony Hansen, Elliotte Rusty Harold, Joe Harrington,
Des Herriott, Guy Harris, John Hascall, Ger Hobbelt, Jos Horsmeier, Blair
Houghton, James C. Hu, Chin Huang, David Hurt, Einar Indridason, Vladimir
Ivanovic, Jon Jagger, Ke Jin, Kirk Johnson, Larry Jones, Arjan Kenter, James Kew,
Lawrence Kirby, Kin-ichi Kitano, Peter Klausler, Andrew Koenig, Tom Koenig,
Adam Kolawa, Jukka Korpela, Ajoy Krishnan T, Markus Kuhn, Deepak Kulkarni,
Oliver Laumann, John Lauro, Felix Lee, Mike Lee, Timothy J. Lee, Tony Lee, Marty
Leisner, Don Libes, Brian Liedtke, Philip Lijnzaad, Keith Lindsay, Yen-Wei Liu,
Paul Long, Christopher Lott, Tim Love, Tim McDaniel, Kevin McMahon, Stuart
MacMartin, John R. MacMillan, Andrew Main, Bob Makowski, Evan Manning,
Barry Margolin, George Matas, Brad Mears, Roger Miller, Bill Mitchell, Mark
Moraes, Darren Morby, Bernhard Muenzer, David Murphy, Walter Murray, Ralf
Muschall, Ken Nakata, Todd Nathan, Landon Curt Noll, Tim Norman, Paul Nulsen,
David O'Brien, Richard A. O'Keefe, Adam Kolawa, James Ojaste, Hans Olsson, Bob
Peck, Andrew Phillips, Christopher Phillips, Francois Pinard, Nick Pitfield, Wayne
Pollock, Dan Pop, Lutz Prechelt, Lynn Pye, Kevin D. Quitt, Pat Rankin, Arjun Ray,
Eric S. Raymond, Peter W. Richards, Eric Roode, Manfred Rosenboom, J. M.
Rosenstock, Rick Rowe, Erkki Ruohtula, John Rushford, Kadda Sahnine, Tomohiko
Sakamoto, Matthew Saltzman, Rich Salz, Chip Salzenberg, Matthew Sams, Paul
Sand, DaviD W. Sanderson, Frank Sandy, Christopher Sawtell, Jonas Schlein, Paul
Schlyter, Doug Schmidt, Rene Schmit, Russell Schulz, Dean Schulze, Chris Sears,
Patricia Shanahan, Raymond Shwake, Peter da Silva, Joshua Simons, Ross Smith,
Henri Socha, Leslie J. Somos, Henry Spencer, David Spuler, James Stern, Bob Stout,
Steve Sullivan, Melanie Summit, Erik Tavola, Dave Taylor, Clarke Thatcher,
Wayne Throop, Chris Torek, Steve Traugott, Ilya Tsindlekht, Andrew Tucker, Garan

http://www.eskimo.com/~scs/C-fag/sx2.html (1 of 2) [26/03/2003 11:41:25 p.m.]

http://nqcd.lanl.gov/people/tanmoy/tanmoy.html
http://vinny.csd.mu.edu/
http://www.cs.tu-berlin.de/~jutta/index.html
http://www.hut.fi/~jkorpela/index.html
http://wwwcip.informatik.uni-erlangen.de/user/mskuhn
http://elib.cme.nist.gov/msid/staff/libes.don.html

Acknowledgements

Uddeborg, Rodrigo Vanegas, Jm Van Zandt, Wietse Venema, Tom Verhoeff, Ed
Vielmetti, Larry Virden, ChrisVolpe, Mark Warren, Alan Watson, Kurt Watzka,
Larry Weiss, Martin Weitzel, Howard West, Tom White, Freek Wiedijk, Dik T.
Winter, Lars Wirzenius, Dave Wolverton, Mitch Wright, Conway Y ee, Ozan S.

Yigit, and Zhuo Zang, who have contributed, directly or indirectly, to these pages.
Thanks to the reviewers of the book-length version: Mark Brader, Vinit Carpenter,
Stephen Clamage, Jutta Degener, Doug Gwyn, Karl Heuer, and Joseph Kent. Thanks
to Jukka Korpela and Jutta Degener for providing interim versions of thislist in web
form while | was dragging my feet. Special thanks to Karl Heuer, and particularly to
Mark Brader, who (to borrow aline from Steve Johnson) have goaded me beyond
my inclination, and occasionally beyond my endurance, in relentless pursuit of a
better FAQ list.

[If your name appears here, and you would like it to be alink to your home page, just
send me the URL]

http://www.eskimo.com/~scs/C-fag/sx2.html (2 of 2) [26/03/2003 11:41:25 p.m.]

http://www.cs.helsinki.fi/~wirzeniu/
http://www.hut.fi/~jkorpela/index.html
http://www.cs.tu-berlin.de/~jutta/index.html

Questions

1. Declarations and Initializations

1.1 How do you decide which integer type to use?

1.4 What should the 64-bit type on new, 64-bit machines be?

1.7 What's the best way to declare and define global variables?

1.11 What does ext er n mean in afunction declaration?

1.12 What's the aut o keyword good for?

1.14 | can't seem to define alinked list node which contains a pointer to itself.

1.21 How do | declare an array of N pointers to functions returning pointers to
functions returning pointers to characters?

1.22 How can | declare afunction that returns a pointer to afunction of its own type?

1.25 My compiler is complaining about an invalid redeclaration of afunction, but |
only define it once and call it once.

1.30 What can | safely assume about the initial values of variables which are not
explicitly initialized?

1.31 Why can't | initialize alocal array with a string?

1.32 What isthe difference betweenchar a[] = "string"; andchar *p =

"string"; ?

1.34 How do | initialize a pointer to a function?

2. Structures, Unions, and Enumerations

2.1 What'sthe difference betweenstruct x1 { ... }; andtypedef

http://www.eskimo.com/~scs/C-fag/questions.html (1 of 22) [26/03/2003 11:41:34 p.m.]

Questions

struct { ... } x2;7?

22Why doesn't"struct x { ... }; x thestruct;" work?

2.3 Can a structure contain a pointer to itself?

2.4 What's the best way of implementing opaque (abstract) data typesin C?

2.6 | came across some code that declared a structure with the last member an array
of one e ement, and then did some tricky allocation to make it act like the array had
several el ements. Isthislegal or portable?

2.7 | heard that structures could be assigned to variables and passed to and from
functions, but K& R1 says not.

2.8 Why can't you compare structures?

2.9 How are structure passing and returning implemented?

2.10 Can | pass constant values to functions which accept structure arguments?

2.11 How can | read/write structures from/to data files?

2.12 How can | turn off structure padding?

2.13 Why doessi zeof report alarger size than | expect for a structure type?

2.14 How can | determine the byte offset of afield within a structure?

2.15 How can | access structure fields by name at run time?

2.18 | have a program which works correctly, but dumps core after it finishes. Why?

2.20 Can | initialize unions?

2.22 What is the difference between an enumeration and a set of preprocessor
#def i nes?

http://www.eskimo.com/~scs/C-fag/questions.html (2 of 22) [26/03/2003 11:41:34 p.m.]

Questions

2.24 |s there an easy way to print enumeration values symbolically?

3. Expressions

3.1 Why doesn'tthecode"a[i] = i ++;" work?

3.2 Under my compiler,thecode"int i = 7; printf("%l\n", i++ *
| ++) ;" prints 49. Regardless of the order of evaluation, shouldn't it print 567

3.3 How could the code [CENSOREDY] ever give 7?

3.4 Don't precedence and parentheses dictate order of evaluation?

3.5 But what about the && and | | operators?

3.8 What's a " sequence point"?

39Soqgiven"a[i] =i ++;" wedon't know which cell of a[] gets written to, but

I_does get incremented by one.

3.12 If I'm not using the value of the expression, should | usei ++ or ++i to
increment a variable?

3.14 Why doesn'tthecode"int _a = 1000, b = 1000; long int ¢ = a

* b: " work?

3.16 Can | use ?: on the left-hand side of an assignment expression?

4. Pointers

4.2 What'swrong with"char *p; *p = malloc(10);"?

4.3 Does * p++ increment p, or what it points to?

451 wanttouseachar * pointer to step over somei nt s. Why doesn't "((i nt

http://www.eskimo.com/~scs/C-fag/questions.html (3 of 22) [26/03/2003 11:41:34 p.m.]

Questions

*) p) ++; " work?

4.8 | have afunction which accepts, and is supposed to initialize, a pointer, but the
pointer in the caller remains unchanged.

49 Canl useavoi d ** pointer to pass a generic pointer to afunction by
reference?

4.10 | have afunction which accepts a pointer toani nt . How can | pass a constant

like5toit?

4.11 Does C even have “pass by reference"?

4.12 |I've seen different methods used for calling functions via pointers.

5. Null Pointers

5.1 What is this infamous null pointer, anyway?

5.2 How do | get anull pointer in my programs?

5.3 Isthe abbreviated pointer comparison i f (p) " to test for non-null pointers
valid?

5.4 What isNULL and how isit #def i ned?

5.5 How should NULL be defined on a machine which uses a nonzero bit pattern as
the internal representation of a null pointer?

5.6 If NULL weredefinedas (((char *) 0)," wouldn't that make function calls
which pass an uncast NULL work?

5.9 If NULL and O are equivalent as null pointer constants, which should | use?

5.10 But wouldn't it be better to use NULL, in case the value of NULL changes?

http://www.eskimo.com/~scs/C-fag/questions.html (4 of 22) [26/03/2003 11:41:34 p.m.]

Questions

5.12 | usethe preprocessor macro "#define Nul I ptr(type) (type *)0"to
help me build null pointers of the correct type.

5.13 Thisis strange. NULL is quaranteed to be 0, but the null pointer is not?

5.14 Why is there so much confusion surrounding null pointers?

5.15 I'm confused. | just can't understand all this null pointer stuff.

5.16 Given all the confusion surrounding null pointers, wouldn't it be easier smply
to require them to be represented internally by zeroes?

5.17 Seriously, have any actual machinesreally used nonzero null pointers?

5.20 What does a run-time " "null pointer assignment” error mean?

6. Arrays and Pointers

6.1 | had the definition char a[6] in one sourcefile, and in another | declared
extern char *a.Why didn'tit work?

6.2 But | heardthat char a[] wasidentical tochar *a.

6.3 So what is meant by the " “equivalence of pointers and arrays' in C?

6.4 Why are array and pointer declarations interchangeabl e as function formal
parameters?

6.7 How can an array be an Ivalue, if you can't assign to it?

6.8 What is the real difference between arrays and pointers?

6.9 Someone explained to me that arrays were really just constant pointers.

6.11 | came across some "joke" code containing the "expression” 5[" abcdef "] .
How can this be legal C?

http://www.eskimo.com/~scs/C-fag/questions.html (5 of 22) [26/03/2003 11:41:34 p.m.]

Questions

6.12 What's the difference between ar r ay and &array?

6.13 How do | declare a pointer to an array?

6.14 How can | set an array's size at compile time?

6.15 How can | declare local arrays of a size matching a passed-in array?

6.16 How can | dynamically allocate a multidimensional array?

6.17 Can | ssimulate a non-0-based array with a pointer?

6.18 My compiler complained when | passed a two-dimensional array to a function

expecting a pointer to a pointer.

6.19 How do | write functions which accept two-dimensional arrays when the

“width" is not known at compile time?

6.20 How can | use statically- and dynamically-allocated multidimensional arrays

Interchangeably when passing them to functions?

6.21 Why doesn't si zeof properly report the size of an array which is a parameter

to afunction?

7. Memory Allocation

7.1 Why doesn't thecode "char *answer; gets(answer) ;" work?

7.2 can'tget strcat towork. | tried char *s3 = strcat(sl, s2);"but
| got strange results.

7.3 But the man page for st r cat saysthat it takestwo char *'s as arguments.
How am | supposed to know to allocate things?

7.5 | have afunction that is supposed to return a string, but when it returns to its
caller, the returned string is garbage.

http://www.eskimo.com/~scs/C-fag/questions.html (6 of 22) [26/03/2003 11:41:34 p.m.]

Questions

7.6 Why am | getting ~“"warning: assignment of pointer from integer lacks a cast" for
calstonal | oc?

7.7 Why does some code carefully cast the values returned by nal | oc to the pointer

type being allocated?

7.8 Why does so much code Ieave out the multiplication by si zeof (char) when
allocating strings?

7.14 1've heard that some operating systems don't actually allocate nal | oc'ed
memory until the program triesto use it. Isthislegal ?

7.16 I'm allocating alarge array for some numeric work, but mal | oc isacting
strangely.

7.17 1've got 8 meg of memory in my PC. Why can | only seem to mal | oc 640K or
so?

7.19 My program is crashing, apparently somewheredown insidenal | oc.

7.20 Y ou can't use dynamically-allocated memory after you free it, can you?

7.21 Why isn't apointer null after callingfr ee?

7.22 When | cal nal | oc to alocate memory for alocal pointer, do | haveto
explicitly f r ee it?

7.23 When | free a dynamically-allocated structure containing pointers, do | have to
free each subsidiary pointer first?

7.24 Must | free allocated memory before the program exits?

7.25 Why doesn't my program's memory usage go down when | free memory?

7.26 How doesf r ee know how many bytes to free?

7.27 S0 can | query the malloc package to find out how big an allocated block 1s?

http://www.eskimo.com/~scs/C-fag/questions.html (7 of 22) [26/03/2003 11:41:34 p.m.]

Questions

7.30Isit legal to pass anull pointer asthefirst argumenttor eal | oc?

7.31 What's the difference between cal | oc andmal | oc?

7.32 What isal | oca and why isits use discouraged?

8. Characters and Strings

8.1 Why doesn't "strcat (string, "'!'"');" work?
8.2 Why won't thetesti f (string == "val ue") correctly comparestri ng.
against the value?

8.3 Why can't | assign strings to character arrays?

8.6 How can | get the numeric (character set) value corresponding to a character?

8.9Whyissi zeof ("a') not1?

9. Boolean Expressions and Variables

9.1 What is the right type to use for Boolean valuesin C?

9.2 What if abuilt-in logical or relational operator " returns' something other than 1?

9.31si f (p),wherep isapointer, valid?

10. C Preprocessor

10.2 I've got some cute preprocessor macros that et me write C code that |ooks more

like Pascal. What do y'all think?

10.3 How can | write a generic macro to swap two values?

http://www.eskimo.com/~scs/C-fag/questions.html (8 of 22) [26/03/2003 11:41:34 p.m.]

Questions

10.4 What's the best way to write a multi-statement macro?

10.6 What are .h files and what should | put in them?

10.7 Is it acceptable for one header fileto #i ncl ude another?

10.8 Where are header (" #i ncl ude") files searched for?

10.9 I'm getting strange syntax errors on the very first declaration in afile, but it
looks fine.

10.11 Where can | get a copy of amissing header file?

10.12 How can | construct preprocessor #i f expressions which compare strings?

10.13 Doesthe si zeof operator work in preprocessor #i f directives?

10.14 Can | usean #i f def ina#def i ne line, to define something two different
ways?

10.15 Isthere anything like an #i f def fort ypedef s?

10.16 How can | use a preprocessor #i f expression to detect endianness?

10.18 How can | preprocess some code to remove selected conditional compilations,
without preprocessing everything?

10.19 How can | list al of the prettdef | ned identifiers?

10.20 | have some old code that tries to construct identifiers with a macro like
"#define Paste(a, b) a/**/Db", butitdoesn't work any more.

10.22

What does the message ~ warning: macro replacement within a string literal" mean?

10.23 How can | use a macro argument inside a string literal in the macro expansion?

http://www.eskimo.com/~scs/C-fag/questions.html (9 of 22) [26/03/2003 11:41:34 p.m.]

Questions

10.25 I've got this tricky preprocessing | want to do and | can't figure out a way to do
it.

10.26 How can | write a macro which takes a variable number of arguments?

11. ANSI/ISO Standard C

11.1 What isthe "ANSI C Standard?"

11.2 How can | get a copy of the Standard?

11.3 My ANSI compiler is complaining about prototype mismatches for parameters
declared f | oat .

11.4 Can you mix old-style and new-style function syntax?

11.5 Why doesthe declaration"ext ern f(struct x *p);" give meawarning

message?

11.8 Why can't | use const valuesininitializers and array dimensions?

11.9 What's the difference between const char *p andchar * const p?

11.10 Why can't | passachar ** to afunction which expectsaconst char

* %0

11.12 Can | declare mai n asvoi d, to shut off these annoying ~"main returns no
value" messages?

11.13 But what about nmai n's third argument, envp?

11.14 | believethat declaring voi d mai n() can't fail, sincel'm caling exi t
instead of returning.

11.15 The book I've been using alwaysusesvoi d nmai n() .

http://www.eskimo.com/~scs/C-fag/questions.html (10 of 22) [26/03/2003 11:41:34 p.m.]

Questions

11.16Isexi t (st at us) truly equivalent to returning the same st at us from
nai n?

11.17 How do | get the ANSI "“stringizing" preprocessing operator "#' to stringize
the macro's value instead of its name?

11.18 What does the message ““warning: macro replacement within a string literal"
mean?

11.19 I'm getting strange syntax errorsinside lines |'ve #i f def fed out.

11.20 What are #pr agnas ?

11.21 What does " #pr agnma_once" mean?

11.221schar _a[3] = "abc"; lega?

11.24 Why can't | perform arithmeticonavoi d * pointer?

11.25 What's the difference between nentpy and nermove?

11.26 What should mal | oc(0) do?

11.27 Why does the ANSI Standard not guarantee more than six case-insensitive
characters of externa identifier significance?

11.29 My compiler is rejecting the simplest possible test programs, with all kinds of

syntax errors.

11.30 Why are some ANSI/I SO Standard library routines showing up as undefined,
even though I've got an ANSI compiler?

11.31 Does anyone have atool for converting old-style C programs to ANSI C, or
for automatically generating prototypes?

11.32 Why won't frobozz-cc, which claims to be ANSI compliant, accept this code?

11.33 What's the difference between implementati on-defined, unspecified, and

http://www.eskimo.com/~scs/C-fag/questions.html (11 of 22) [26/03/2003 11:41:34 p.m.]

Questions

undefined behavior?

11.34 I'm appalled that the ANSI Standard leaves so many issues undefined.

11.351 just tried some allegedly-undefined code on an ANSI-conforming compiler,

and got the results | expected.

12. Stdio

12.1 What'swrong with thecode"char c; while((c = getchar()) !=

EOF) ..."?2

12.2 Why won't thecode "~ whi | e(! feof (infp)) { fgets(buf,
MAXLINE, infp); fputs(buf, outfp); } "work?

12.4 My program's prompts and intermediate output don't always show up on the
screen.

12.5 How can | read one character at atime, without waiting for the RETURN key?

12.6 How can | printa' % character withprintf?

12.9How canpri ntf use% fortypedoubl e, if scanf requires% f ?

12.10 How can | implement a variable field width withpri nt f ?

12.11 How can | print numbers with commas separating the thousands?

12.12 Why doesn't the call scanf (" %", i) work?

12.13 Why doesn't the code "doubl e d; scanf ("% ", &d) ;" work?

12.15 How can | specify avariable width in ascanf format string?

12.17 When | read numbers from the keyboard with scanf " %@\ n", it seemsto
hang until | type one extraline of input.

http://www.eskimo.com/~scs/C-fag/questions.html (12 of 22) [26/03/2003 11:41:34 p.m.]

Questions

12.18 I'm reading a number with scanf % and then astring with get s() , but the
compiler seemsto be skipping thecal toget s() !

12.19 I'm re-prompting the user if scanf fails, but sometimes it seems to go into an
infinite loop.

12.20 Why does everyone say not to use scanf ? What should | use instead?

12.21 How can | tell how much destination buffer space I'll need for an arbitrary
sprintf cal?How canl avoid overflowing the destination buffer withspri ntf ?

12.23 Why does everyone say not touseget s() ?

12.24 Why doeser r no contain ENOTTY after acall toprint f?

12.25 What's the difference between f get pos/f set pos andftel | /f seek?

12.26 Will f f 1 ush(st di n) flush unread characters from the standard input
stream?

12.30 I'm trying to update afilein place, by using f open mode" r +" , but it's not
working.

12.33 How can | redirect st di n or st dout from within a program?

12.34 Oncel'veused f r eopen, how can | get the original stream back?

12.38 How can | read a binary datafile properly?

13. Library Functions

13.1 How can | convert numbers to strings?

13.2 Why does st r ncpy not awayswritea' \ 0' ?

13.5 Why do some versions of t oupper act strangely if given an upper-case |etter?

http://www.eskimo.com/~scs/C-fag/questions.html (13 of 22) [26/03/2003 11:41:34 p.m.]

Questions

13.6 How can | split up a string into whitespace-separated fields?

13.7 | need some code to do regular expression and wildcard matching.

13.8 I'm trying to sort an array of stringswith gsort , using st r cnp asthe
comparison function, but it's not working.

13.9 Now I'm trying to sort an array of structures, but the compiler is complaining
that the function is of the wrong type for gsort .

13.10 How can | sort alinked list?

13.11 How can | sort more data than will fit in memory?

13.12 How can | get the time of day in a C program?

13.13How canl convertast ruct tmorastringintoatine_t?

13.14 How can | perform calendar manipul ations?

13.15 | need a random number generator.

13.16 How can | get random integers in a certain range?

13.17 Each time | run my program, | get the same sequence of numbers back from

rand() .

13.18 | need arandom true/false value, so I'mjust takingr and() % 2, but it's
aternating 0,1, 0, 1, O...

13.20 How can | generate random numbers with a normal or Gaussian distribution?

13.24 I'm trying to port this old program. Why do | get ““undefined external" errors
for some library functions?

13.25 1 get errors due to library functions being undefined even though | #i ncl ude_
the right header files.

http://www.eskimo.com/~scs/C-fag/questions.html (14 of 22) [26/03/2003 11:41:34 p.m.]

Questions

13.26 I'm still getting errors due to library functions being undefined, even though
I'm requesting the right libraries.

13.28 What does it mean when the linker saysthat end is undefined?

14. Floating Point

14.1 When | set af | oat variableto 3.1, why ispri nt f printing it as 3.0999999?

14.2 Why issqgrt (144.) giving me crazy numbers?

14.3 | keep getting ““undefined: sin" compilation errors.

14.4 My floating-point calculations are acting strangely and giving me different
answers on different machines.

14.5 What's a good way to check for ~“close enough" floating-point equality?

14.6 How do | round numbers?

14.7 Where is C's exponentiation operator?

14.8 The pre-#def i ned constant M Pl seemsto be missing from <mat h. h>.

14.9 How do | test for IEEE NaN and other special values?

14.11 What's a good way to implement complex numbersin C?

14.12 I'm looking for some mathematical library code.

14.13 I'm having trouble with a Turbo C program which crashes and says something

like " floating point formats not linked."

15. Variable-Length Argument Lists

http://www.eskimo.com/~scs/C-fag/questions.html (15 of 22) [26/03/2003 11:41:34 p.m.]

Questions

15.1 | heard that you have to #i ncl ude <st di 0. h> beforecalingprintf.
Why?

15.2 How can % be used for both f | oat _and doubl e argumentsinpri ntf?

15.3 Why don't function prototypes guard against mismatchesinpri nt f's
arguments?

15.4 How can | write afunction that takes a variable number of argquments?

15.5 How can | write afunction that takes a format string and a variable number of

arguments, likepri nt f , and passesthemtopri nt f to do most of the work?

15.6 How can | write afunction analogousto scanf , that callsscanf to do most
of the work?

15.7 | have apre-ANSI compiler, without <st dar g. h>. What can | do?

15.8 How can | discover how many arguments a function was actually called with?

15.9 My compiler isn't letting me declare a function that accepts only variable
arguments.

15.10 Why isn't"va_ar g(argp, fl oat)" working?

15.11 | can't get va_ar g to pull in an argument of type pointer-to-function.

15.12 How can | write afunction which takes a variable number of arguments and
passes them to some other function ?

15.13 How can | call afunction with an argument list built up at run time?

16. Strange Problems

16.3 This program crashes before it even runs!

http://www.eskimo.com/~scs/C-fag/questions.html (16 of 22) [26/03/2003 11:41:34 p.m.]

Questions

16.4 | have a program that seems to run correctly, but then crashes as it's exiting.

16.5 This program runs perfectly on one machine, but | get weird results on another.

16.6 Why doesthecode"char *p = "hello, world!'"; p[0] ="H ;"
crash?

16.8 What does *~ Segmentation violation" mean?

17. Style

17.1 What's the best style for code layout in C?

17.31sthecode"i f (! strcnp(sl, s2))" good style?

17.4 Why do some peoplewritei f (0 == x) insteadof i f (x == 0) ?

17.5 1 came across some code that putsa (voi d) cast beforeeach call topri nt f .
Why?

17.8 What is Hungarian Notation"? Is it worthwhile?

17.9 Where can | get the ““Indian Hill Style Guide" and other coding standards?

17.10 Some people say that got o's are evil and that | should never use them. Isn't
that a bit extreme?

18. Tools and Resources

18.1 I'm looking for C development tools (cross-reference generators, code
beautifiers, etc.).

18.2 How can | track down these pesky malloc problems?

18.3 What's afree or cheap C compiler | can use?

http://www.eskimo.com/~scs/C-fag/questions.html (17 of 22) [26/03/2003 11:41:34 p.m.]

Questions

18.4 | just typed in this program, and it's acting strangely. Can you see anything
wrong with it?

18.5 How can | shut off the ~“warning: possible pointer alignment problem" message

which | i nt givesmeforeachcaltomal | oc?

18.7 Where can | get an ANSI-compatible| i nt ?

18.8 Don't ANSI function prototypesrender | i nt obsolete?

18.9 Are there any C tutorials or other resources on the net?

18.10 What's a good book for |learning C?

18.13 Where can | find the sources of the standard C libraries?

18.14 | need code to parse and evaluate expressions.

18.15 Where can | get aBNF or YACC grammar for C?

18.15a Does anyone have a C compiler test suite | can use?

18.16 Where and how can | get copies of all these fregly distributable programs?

19. System Dependencies

19.1 How can | read a single character from the keyboard without waiting for the
RETURN key?

19.2 How can | find out how many characters are available for reading, or do a non-
blocking read?

19.3 How can | display a percentage-done indication that updates itself in place, or
show one of those "“twirling baton" progress indicators?

http://www.eskimo.com/~scs/C-fag/questions.html (18 of 22) [26/03/2003 11:41:34 p.m.]

Questions

19.4 How can | clear the screen, or print things in inverse video, or move the cursor?

19.5 How do | read the arrow keys? What about function keys?

19.6 How do | read the mouse?

19.7 How can | do seria (" comm") port 1/0?

19.8 How can | direct output to the printer?

19.9 How do | send escape sequences to control aterminal or other device?

19.10 How can | do graphics?

19.11 How can | check whether afile exists?

19.12 How can | find out the size of afile, prior to reading it in?

19.13 How can afile be shortened in-place without completely clearing or rewriting
it?

19.14 How can | insert or delete aline in the middle of afile?

19.15 How can | recover the file name given an open file descriptor?

19.16 How can | delete afile?

19.17 What'swrong with the call "f open("c:\newdir\file.dat", "r")"?

19.18 How can | increase the allowable number of simultaneously open files?

19.20 How can | read adirectory in a C program?

19.22 How can | find out how much memory is available?

19.23 How can | allocate arrays or structures bigger than 64K ?

19.24 What does the error message =" DGROUP exceeds 64K " mean?

http://www.eskimo.com/~scs/C-fag/questions.html (19 of 22) [26/03/2003 11:41:34 p.m.]

Questions

19.25 How can | access memory located at a certain address?

19.27 How can | invoke another program from within a C program?

19.30 How can | invoke another program and trap its output?

19.31 How can my program discover the compl ete pathname to the executable from

which it was invoked?

19.32 How can | automatically locate a program's configuration files in the same
directory as the executable?

19.33 How can a process change an environment variable in its caller?

19.36 How can | read in an object file and jump to routinesin it?

19.37 How can | implement adelay, or time a user's response, with sub-second
resolution?

19.38 How can | trap or ignore keyboard interrupts like control-C?

19.39 How can | handle floating-point exceptions gracefully?

19.40 How do |... Use sockets? Do networking? Write client/server applications?

19.40b How do | use BIOS calls? How can | write ISR's? How can | create TSR's?

19.41 But | can't use all these nonstandard, system-dependent functions, because my

program has to be ANSI compatible!

20. Miscellaneous

20.1 How can | return multiple values from a function?

20.3 How do | access command-line arguments?

http://www.eskimo.com/~scs/C-fag/questions.html (20 of 22) [26/03/2003 11:41:34 p.m.]

Questions

20.5 How can | write data files which can be read on other machines with different
dataformats?

20.6 How can | call afunction, given its name as a string?

20.8 How can | implement sets or arrays of bits?

20.9 How can | determine whether a machine's byte order is big-endian or little-
endian?

20.10 How can | convert integers to binary or hexadecimal ?

20.11 Can | use base-2 constants (something like 0b101010)?
Isthereapri nt f format for binary?

20.12 What is the most efficient way to count the number of bitswhich are set in a
value?

20.13 How can | make my code more efficient?

20.14 Are pointers really faster than arrays? How much do function calls slow things

down?

20.17 Isthere away to swi t ch on strings?

20.18 Is there away to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

20.19 Are the outer parenthesesinr et ur n statements really optiona ?

20.20 Why don't C comments nest? Are they legal inside quoted strings?

20.24 Why doesn't C have nested functions?

20.25 How can | call FORTRAN (C++, BASIC, Pascal, Ada, LI1SP) functions from
c?

20.26 Does anyone know of a program for converting Pascal or FORTRAN to C?

http://www.eskimo.com/~scs/C-fag/questions.html (21 of 22) [26/03/2003 11:41:34 p.m.]

Questions

20.27 Can | use a C++ compiler to compile C code?

20.28 | need to compare two strings for close, but not necessarily exact, equality.

20.29 What is hashing?

20.31 How can | find the day of the week given the date?

20.32 Will 2000 be a leap year?

20.34 How do you write a program which produces its own source code as its
output?

20.35 What is “"Duff's Device"?

20.36 When will the next Obfuscated C Code Contest be held? How can | get a copy

of previous winning entries?

20.37 What wastheent r y keyword mentioned in K& R1?

20.38 Where does the name " C" come from, anyway?

20.39 How do you pronounce “"char "?

20.40 Where can | get extra copies of thislist?

top

http://www.eskimo.com/~scs/C-fag/questions.html (22 of 22) [26/03/2003 11:41:34 p.m.]

Question 1.1

Question 1.1

How do you decide which integer type to use?

If you might need large values (above 32,767 or below -32,767), usel ong.
Otherwise, if spaceisvery important (i.e. if there are large arrays or many
structures), use shor t . Otherwise, usei nt . If well-defined overflow characteristics
are important and negative values are not, or if you want to steer clear of sign-
extension problems when manipulating bits or bytes, use one of the corresponding
unsi gned types. (Beware when mixing signed and unsigned values in expressions,
though.)

Although character types (especially unsi gned char) can be used as "tiny"
integers, doing so is sometimes more trouble than it's worth, due to unpredictable
sign extension and increased code size. (Usingunsi gned char can help; see
question 12.1 for arelated problem.)

A similar space/time tradeoff applies when deciding between f | oat and doubl e.
None of the above rules apply if the address of avariable istaken and must have a
particular type.

If for some reason you need to declare something with an exact size (usually the only
good reason for doing so is when attempting to conform to some externally-imposed
storage layout, but see question 20.5), be sure to encapsul ate the choice behind an

appropriate typedef.

References: K&R1 Sec. 2.2 p. 34

K&R2 Sec. 2.2 p. 36, Sec. A4.2 pp. 195-6, Sec. B11 p. 257
ANS| Sec. 2.2.4.2.1, Sec. 3.1.25

SO Sec. 5.2.4.2.1, Sec. 6.1.2.5

H&S Secs. 5.1,5.2 pp. 110-114

Read sequentially: next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.1.html [26/03/2003 11:41:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.1

Question 12.1

What's wrong with this code?

char c;
while((c = getchar()) !'= EOF)

For one thing, the variable to hold get char 'sreturn value must beani nt .
get char can return all possible character values, aswell as ECF. By passing
getchar's return value through achar , either anormal character might be
misinterpreted as EOF, or the EOF might be altered (particularly if type char is
unsigned) and so never seen.

References: K&R1 Sec. 1.5p. 14

K&R2 Sec. 1.5.1 p. 16

ANSI Sec. 3.1.2.5, Sec. 4.9.1, Sec. 4.9.7.5
SO Sec. 6.1.2.5, Sec. 7.9.1, Sec. 7.9.7.5
H&S Sec. 5.1.3 p. 116, Sec. 15.1, Sec. 15.6
CT&P Sec.5.1p. 70

PCS Sec. 11 p. 157

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.1.html [26/03/2003 11:41:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.4

Question 1.4

What should the 64-bit type on new, 64-bit machines be?

Some vendors of C products for 64-bit machines support 64-bit | ong i nt s. Others
fear that too much existing code is written to assumethat i nt sand | ongsarethe
same size, or that one or the other of them is exactly 32 bits, and introduce a new,
nonstandard, 64-bit| ong | ong (or __| ongl ong) type instead.

Programmers interested in writing portable code should therefore insulate their 64-
bit type needs behind appropriate typedefs. Vendors who feel compelled to introduce
anew, longer integral type should advertise it asbeing ""at least 64 bits" (whichis
truly new, atype traditional C does not have), and not ~“exactly 64 bits."

References: ANSI Sec. F.5.6
SO Sec. G.5.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.4.html [26/03/2003 11:41:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.7

Question 1.7

What's the best way to declare and define global variables?

First, though there can be many declarations (and in many translation units) of a
single "global” (strictly speaking, ~“external™) variable or function, there must be
exactly one definition. (The definition is the declaration that actually allocates space,
and provides an initialization value, if any.) The best arrangement is to place each
definition in some relevant .c file, with an external declaration in a header ("".h") file,
whichis#i ncl uded wherever the declaration is needed. The .c file containing the
definition should also #i ncl ude the same header file, so that the compiler can
check that the definition matches the declarations.

This rule promotes a high degree of portability: it is consistent with the requirements
of the ANSI C Standard, and is also consistent with most pre-ANSI compilers and
linkers. (Unix compilers and linkers typically use a™ common model" which allows
multiple definitions, aslong as at most one isinitialized; this behavior is mentioned
asa common extension" by the ANSI Standard, no pun intended. A few very odd
systems may require an explicit initializer to distinguish a definition from an external
declaration.)

It is possible to use preprocessor tricks to arrange that aline like
DEFI NE(int, 1i);
need only be entered once in one header file, and turned into a definition or a

declaration depending on the setting of some macro, but it's not clear if thisisworth
the trouble.

It's especially important to put global declarationsin header filesif you want the
compiler to catch inconsistent declarations for you. In particular, never place a
prototype for an external functionin a.cfile: it wouldn't generally be checked for
consistency with the definition, and an incompatible prototype is worse than usel ess.

See aso questions 10.6 and 18.8.

References. K&R1 Sec. 4.5 pp. 76-7
K&R2 Sec. 4.4 pp. 80-1
ANSI Sec. 3.1.2.2, Sec. 3.7, Sec. 3.7.2, Sec. F.5.11

http://www.eskimo.com/~scs/C-fag/ql.7.html (1 of 2) [26/03/2003 11:41:39 p.m.]

Question 1.7

SO Sec. 6.1.2.2, Sec. 6.7, Sec. 6.7.2, Sec. G.5.11
Rationale Sec. 3.1.2.2

H& S Sec. 4.8 pp. 101-104, Sec. 9.2.3 p. 267
CT&P Sec. 4.2 pp. 54-56

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.7.html (2 of 2) [26/03/2003 11:41:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.6

Question 10.6

I'm splitting up a program into multiple source files for the first time, and I'm wondering
what to put in .c files and what to put in .h files. (What does "".h" mean, anyway?)

Asagenera rule, you should put these things in header (.h) files:

macro definitions (preprocessor #defines)

structure, union, and enuneration declarations

t ypedef decl arations

external function declarations (see also question 1.11)

gl obal vari abl e decl arati ons

It's especially important to put a declaration or definition in a header file when it will be
shared between severa other files. (In particular, never put external function prototypes
in .c files. See also question 1.7.)

On the other hand, when a definition or declaration should remain private to one source
file it'sfineto leaveit there.

See also questions 1.7 and 10.7.

References: K&R2 Sec. 4.5 pp. 81-2
H&S Sec. 9.2.3 p. 267
CT&P Sec. 4.6 pp. 66-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.6.html [26/03/2003 11:41:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.8

Question 18.8

Don't ANSI function prototypesrender | i nt obsolete?

Not really. First of al, prototypes work only if they are present and correct; an
inadvertently incorrect prototype is worse than useless. Secondly, | i nt checks
consistency across multiple source files, and checks data declarations as well as
functions. Finally, an independent program likel i nt will probably always be more
scrupulous at enforcing compatible, portable coding practices than will any
particular, implementation-specific, feature- and extension-laden compiler.

If you do want to use function prototypesinstead of | i nt for cross-file consistency
checking, make sure that you set the prototypes up correctly in header files. See
guestions 1.7 and 10.6.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.8.html [26/03/2003 11:41:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.11

Question 1.11

What does ext er n mean in afunction declaration?

It can be used as a stylistic hint to indicate that the function's definition is probably in
another source file, but thereis no formal difference between

extern int f();
and
int f();

References: ANSI Sec. 3.1.2.2, Sec. 3.5.1
SO Sec. 6.1.2.2, Sec. 6.5.1

Rationale Sec. 3.1.2.2

H& S Secs. 4.3,4.3.1 pp. 75-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.11.html [26/03/2003 11:41:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.12

Question 1.12

What's the aut o keyword good for?

Nothing; it's archaic. See also question 20.37.

References: K&R1 Sec. A8.1 p. 193
ANSI Sec. 3.1.2.4, Sec. 3.5.1

SO Sec. 6.1.2.4, Sec. 6.5.1

H&S Sec. 4.3 p. 75, Sec. 4.3.1p. 76

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.12.html [26/03/2003 11:41:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.14

Question 1.14

| can't seem to define alinked list successfully. | tried

t ypedef struct {
char *item
NODEPTR next ;

} *NODEPTR,

but the compiler gave me error messages. Can't a structure in C contain a pointer to
itself?

Structures in C can certainly contain pointers to themselves; the discussion and
example in section 6.5 of K&R make this clear. The problem with the NODEPTR
example is that the typedef has not been defined at the point where the next fieldis
declared. To fix this code, first give the structure atag (" 'st ruct node"). Then,
declarethe next fieldasasmplestruct node *, or disentangle the typedef
declaration from the structure definition, or both. One corrected version would be

struct node {
char *item
struct node *next;

}s
t ypedef struct node *NODEPTR;

and there are at |east three other equivalently correct ways of arranging it.

A similar problem, with asimilar solution, can arise when attempting to declare a
pair of typedef'ed mutually referential structures.

See also question 2.1.

References: K&R1 Sec. 6.5 p. 101

K&R2 Sec. 6.5 p. 139

ANSI Sec. 3.5.2, Sec. 3.5.2.3, esp. examples
SO Sec. 6.5.2, Sec. 6.5.2.3

H& S Sec. 5.6.1 pp. 132-3

http://www.eskimo.com/~scs/C-fag/ql.14.html (1 of 2) [26/03/2003 11:41:44 p.m.]

Question 1.14

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.14.html (2 of 2) [26/03/2003 11:41:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.1

Question 2.1

What's the difference between these two declarations?

struct x1 { ... };
typedef struct { ... } x2;

The first form declares a structure tag; the second declares atypedef. The main
difference is that the second declaration is of a slightly more abstract type--its users
don't necessarily know that it is a structure, and the keyword st r uct isnot used
when declaring instances of it.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.1.html [26/03/2003 11:41:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.21

Question 1.21

How do | declare an array of N pointers to functions returning pointers to functions returning pointers to
characters?

Thefirst part of this question can be answered in at least three ways:

1 char *(*(*a[N)())();
2. Build the declaration up incrementally, using typedefs:

t ypedef char *pc; /* pointer to char */
typedef pc fpc(); /* function returning pointer to char */
t ypedef fpc *pfpc; /* pointer to above */

typedef pfpc fpfpc(); /* function returning... */
typedef fpfpc *pfpfpc; [/* pointer to... */
pfpfpc a[N ; /* array of... */

3. Usethecdecl program, which turns English into C and vice versa:

cdecl > declare a as array of pointer to function returning
poi nter to function returning pointer to char

char *(*(*a[])()) ()

cdecl can aso explain complicated declarations, help with casts, and indicate which set of parentheses
the arguments go in (for complicated function definitions, like the one above). Versions of cdecl arein
volume 14 of comp.sources.unix (see question 18.16) and K& R2.

Any good book on C should explain how to read these complicated C declarations " "inside out" to understand them
(" declaration mimics use").

The pointer-to-function declarations in the examples above have not included parameter type information. When
the parameters have complicated types, declarations can really get messy. (Modern versions of cdecl can help
here, t00.)

References. K& R2 Sec. 5.12 p. 122

ANSI Sec. 3.5ff (esp. Sec. 3.5.4)

SO Sec. 6.5ff (esp. Sec. 6.5.4)

H& S Sec. 4.5 pp. 85-92, Sec. 5.10.1 pp. 149-50

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.21.html [26/03/2003 11:41:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.22

Question 1.22

How can | declare afunction that can return a pointer to a function of the same type?
I'm building a state machine with one function for each state, each of which returns a
pointer to the function for the next state. But | can't find away to declare the
functions.

Y ou can't quite do it directly. Either have the function return a generic function
pointer, with some judicious casts to adjust the types as the pointers are passed
around; or have it return a structure containing only a pointer to a function returning
that structure.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.22.html [26/03/2003 11:41:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.25

Question 1.25

My compiler is complaining about an invalid redeclaration of afunction, but | only
defineit once and call it once.

Functions which are called without a declaration in scope (perhaps because the first
call precedes the function's definition) are assumed to be declared asreturning i nt
(and without any argument type information), leading to discrepanciesif the function
Is later declared or defined otherwise. Non-i nt functions must be declared before
they are called.

Another possible source of this problem is that the function has the same name as
another one declared in some header file.

See also questions 11.3 and 15.1.

References. K&R1 Sec. 4.2 p. 70
K&R2 Sec. 4.2p. 72

ANS| Sec. 3.3.2.2

SO Sec. 6.3.2.2

H&S Sec. 4.7 p. 101

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.25.html [26/03/2003 11:41:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.3

Question 11.3

My ANSI compiler complains about a mismatch when it sees

extern int func(float);

i nt func(x)
fl oat x;

{

Y ou have mixed the new-style prototype declaration “"ext ern i nt
func(fl oat) ;" withtheold-styledefinition i nt func(x) float x;". It
Isusually safe to mix the two styles (see question 11.4), but not in this case.

Old C (and ANSI C, in the absence of prototypes, and in variable-length argument
lists; see question 15.2) ““widens' certain arguments when they are passed to

functions. f | oat sare promoted to doubl e, and characters and short integers are
promoted to i nt . (For old-style function definitions, the values are automatically
converted back to the corresponding narrower types within the body of the called
function, if they are declared that way there.)

This problem can be fixed either by using new-style syntax consistently in the
definition:

int func(float x) { ... }
or by changing the new-style prototype declaration to match the old-style definition:
extern int func(double);

(In this case, it would be clearest to change the old-style definition to use doubl e as
well, aslong as the address of that parameter is not taken.)

It may also be safer to avoid “"narrow” (char , short i nt,andf | oat) function
arguments and return types altogether.

See also question 1.25.

References. K&R1 Sec. A7.1p. 186

http://www.eskimo.com/~scs/C-fag/q11.3.html (1 of 2) [26/03/2003 11:41:53 p.m.]

Question 11.3

K&R2 Sec. A7.3.2 p. 202
ANSI Sec. 3.3.2.2, Sec. 3.5.4.3

1SO Sec. 6.3.2.2, Sec. 6.5.4.3

Rationale Sec. 3.3.2.2, Sec. 3.5.4.3

H& S Sec. 9.2 pp. 265-7, Sec. 9.4 pp. 272-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.3.html (2 of 2) [26/03/2003 11:41:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.1

Question 15.1

| heard that you haveto #i ncl ude <st di 0. h> beforecalling pri nt f . Why?

So that a proper prototype for pri nt f will bein scope.

A compiler may use adifferent calling sequence for functions which accept variable-
length argument lists. (It might do so if calls using variable-length argument lists
were less efficient than those using fixed-length.) Therefore, a prototype (indicating,
using the ellipsisnotation " . . ", that the argument list is of variable length) must
be in scope whenever avarargs function is called, so that the compiler knows to use
the varargs calling mechanism.

References: ANSI Sec. 3.3.2.2, Sec. 4.1.6
SO Sec. 6.3.2.2, Sec. 7.1.7

Rationale Sec. 3.3.2.2, Sec. 4.1.6

H&S Sec. 9.2.4 pp. 268-9, Sec. 9.6 pp. 275-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.1.html [26/03/2003 11:41:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.30

Question 1.30

What can | safely assume about the initial values of variables which are not
explicitly initialized? If global variables start out as * zero," is that good enough for
null pointers and floating-point zeroes?

Variables with static duration (that is, those declared outside of functions, and those
declared with the storage class st at i ¢), are guaranteed initialized (just once, at
program startup) to zero, asif the programmer had typed "= 0". Therefore, such
variables areinitialized to the null pointer (of the correct type; see aso section 5) if

they are pointers, and to 0.0 if they are floating-point.

Variables with automatic duration (i.e. local variables without the st at i ¢ storage
class) start out containing garbage, unlessthey are explicitly initialized. (Nothing
useful can be predicted about the garbage.)

Dynamically-allocated memory obtained withmal | oc andr eal | oc isalso likely
to contain garbage, and must be initialized by the calling program, as appropriate.
Memory obtained with cal | oc isall-bits-0, but thisis not necessarily useful for
pointer or floating-point values (see question 7.31, and section 5).

References. K&R1 Sec. 4.9 pp. 82-4

K&R2 Sec. 4.9 pp. 85-86

ANSI Sec. 3.5.7, Sec. 4.10.3.1, Sec. 4.10.5.3

SO Sec. 6.5.7, Sec. 7.10.3.1, Sec. 7.10.5.3

H& S Sec. 4.2.8 pp. 72-3, Sec. 4.6 pp. 92-3, Sec. 4.6.2 pp. 94-5, Sec. 4.6.3 p. 96, Sec.
16.1 p. 386

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q1.30.html [26/03/2003 11:41:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.31

Question 7.31

What's the difference between cal | oc and mal | oc?Isit safe to take advantage of
cal | oc'szero-filling? Doesf r ee work on memory allocated with cal | oc, or do
youneed acfree?

cal l oc(m n) isessentially equivalent to

p =mlloc(m?* n);
menset (p, 0, m* n);

The zero fill is al-bits-zero, and does not therefore guarantee useful null pointer
values (see section 5 of thislist) or floating-point zero values. f r ee is properly used

to free the memory allocated by cal | oc.

References; ANS| Sec. 4.10.3 t0 4.10.3.2
1SO Sec. 7.10.3t0 7.10.3.2

H& S Sec. 16.1 p. 386, Sec. 16.2 p. 386
PCS Sec. 11 pp. 141,142

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.31.html [26/03/2003 11:41:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.31

Question 1.31

This code, straight out of a book, isn't compiling:

)
{

}

char a[] = "Hello, world!";

Perhaps you have a pre-ANSI compiler, which doesn't allow initialization of
“automatic aggregates” (i.e. non-st at i ¢ local arrays, structures, and unions). Asa
workaround, you can make the array global or st at i ¢ (if you won't need afresh
copy during any subsequent calls), or replace it with a pointer (if the array won't be
written to). (You can alwaysinitialize local char * variablesto point to string
literals, but see question 1.32.) If neither of these conditions hold, you'll have to

initialize the array by hand with st r cpy whenf iscalled. See also question 11.29.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.31.html [26/03/2003 11:41:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.32

Question 1.32

What is the difference between these initializations?

char a[]
char *p

“string literal";
“string literal";

My program crashesif | try to assign anew valuetop[i] .

A string literal can be used in two dlightly different ways. Asan array initializer (as
in the declaration of char a[]), it specifiesthe initial values of the charactersin
that array. Anywhere elsg, it turns into an unnamed, static array of characters, which
may be stored in read-only memory, which iswhy you can't safely modify it. Inan
expression context, the array is converted at once to a pointer, as usual (see section
6), so the second declaration initializes p to point to the unnamed array's first

element.

(For compiling old code, some compilers have a switch controlling whether strings
are writable or not.)

See also questions 1.31, 6.1, 6.2, and 6.8.

References. K&R2 Sec. 5.5 p. 104
ANSI Sec. 3.1.4, Sec. 3.5.7

SO Sec. 6.1.4, Sec. 6.5.7
Rationale Sec. 3.1.4

H&S Sec. 2.7.4 pp. 31-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.32.html [26/03/2003 11:41:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.29

Question 11.29

My compiler is rejecting the simplest possible test programs, with al kinds of syntax
errors.

Perhapsit isapre-ANSI compiler, unable to accept function prototypes and the like.

See also questions 1.31, 10.9, and 11.30.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.29.html [26/03/2003 11:42:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.1

Question 6.1

| had the definition char a[6] inone sourcefile, and in another | declared
extern char *a.Why didn'tit work?

The declaration ext ern char *a simply does not match the actual definition.
The type pointer-to-type-T is not the same as array-of-type-T. Useext er n char

al].

References: ANSI Sec. 3.5.4.2
SO Sec. 6.5.4.2
CT&P Sec. 3.3 pp. 33-4, Sec. 4.5 pp. 64-5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.1.html [26/03/2003 11:42:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.2

Question 6.2

But | heard that char a[] wasidentical tochar *a.

Not at all. (What you heard has to do with formal parameters to functions; see
guestion 6.4.) Arrays are not pointers. The array declaration char a[6] requests
that space for six characters be set aside, to be known by the name “"a." That is, there
isalocation named "a" at which six characters can sit. The pointer declaration

char *p, on the other hand, requests a place which holds a pointer, to be known by
the name ""p." This pointer can point almost anywhere: to any char , or to any
contiguous array of char s, or nowhere (see also questions 5.1 and 1.30).

Asusual, apicture isworth athousand words. The declarations

char a[] = "hell 0";
char *p = "world";

would initialize data structures which could be represented like this:

e g

a. | h|] e| I] I] o]\O
e
oo + e
p: | *======>| w| o| r | || d]|\0|
oo + e

It isimportant to realize that areference like x| 3] generates different code
depending on whether x is an array or a pointer. Given the declarations above, when
the compiler seesthe expression a[3] , it emits code to start at the location ""a,”
move three past it, and fetch the character there. When it sees the expression p[3] ,
It emits code to start at the location ~"p," fetch the pointer value there, add threeto
the pointer, and finally fetch the character pointed to. In other words, a[3] isthree
places past (the start of) the object named a, while p[3] isthree places past the
object pointed to by p. In the example above, both a[3] and p[3] happen to be the
character 'I', but the compiler gets there differently.

References. K&R2 Sec. 5.5 p. 104
CT&P Sec. 4.5 pp. 64-5

http://www.eskimo.com/~scs/C-fag/q6.2.html (1 of 2) [26/03/2003 11:42:02 p.m.]

Question 6.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.2.html (2 of 2) [26/03/2003 11:42:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.8

Question 6.8

Practically speaking, what is the difference between arrays and pointers?

Arrays automatically allocate space, but can't be relocated or resized. Pointers must
be explicitly assigned to point to allocated space (perhaps using mal | oc), but can
be reassigned (i.e. pointed at different objects) at will, and have many other uses
besides serving as the base of blocks of memory.

Due to the so-called equivalence of arrays and pointers (see question 6.3), arrays and

pointers often seem interchangeable, and in particular a pointer to a block of memory
assigned by mal | oc isfrequently treated (and can be referenced using []) exactly
asif it wereatrue array. See questions 6.14 and 6.16. (Be careful with si zeof ,

though.)

See also questions 1.32 and 20.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.8.html [26/03/2003 11:42:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.34

Question 1.34

| finally figured out the syntax for declaring pointers to functions, but now how do |
initialize one?

Use something like

extern int func();
int (*fp)() = func;

When the name of afunction appearsin an expression like this, it “"decays" into a
pointer (that is, it hasits address implicitly taken), much as an array name does.

An explicit declaration for the function is normally needed, since implicit external
function declaration does not happen in this case (because the function namein the
initialization is not part of afunction call).

See aso question 4.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql.34.html [26/03/2003 11:42:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.12

Question 4.12

I've seen different methods used for calling functions via pointers. What's the story?

Originally, apointer to afunction had to be ““turned into" a ""real” function, with the
* operator (and an extra pair of parentheses, to keep the precedence straight), before
calling:

int r, func(), (*fp)() = func;
r=(*fp)();

It can also be argued that functions are always called via pointers, and that ~ real”
function names always decay implicitly into pointers (in expressions, asthey doin
initializations; see question 1.34). This reasoning, made widespread through pcc and
adopted in the ANS| standard, means that

r="1p0):;

islegal and works correctly, whether f p isthe name of afunction or a pointer to
one. (The usage has always been unambiguous; there is nothing you ever could have
done with a function pointer followed by an argument list except call the function
pointed to.) An explicit * isstill allowed (and recommended, if portability to older
compilersisimportant).

See also question 1.34.

References. K&R1 Sec. 5.12 p. 116
K&R2 Sec. 5.11 p. 120

ANSI Sec. 3.3.2.2

SO Sec. 6.3.2.2

Rationale Sec. 3.3.2.2

H&S Sec. 5.8 p. 147, Sec. 7.4.3 p. 190

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q4.12.html (1 of 2) [26/03/2003 11:42:06 p.m.]

Question 4.12

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.12.html (2 of 2) [26/03/2003 11:42:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.2

Question 2.2
Why doesn't

struct x { ... };
X thestruct;

work?

C isnot C++. Typedef names are not automatically generated for structure tags. See
also question 2.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.2.html [26/03/2003 11:42:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.3

Question 2.3

Can a structure contain a pointer to itself?

Most certainly. See question 1.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.3.html [26/03/2003 11:42:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.4

Question 2.4

What's the best way of implementing opaque (abstract) datatypesin C?

One good way isfor clients to use structure pointers (perhaps additionally hidden
behind t ypedef s) which point to structure types which are not publicly defined.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.4.html [26/03/2003 11:42:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.6

Question 2.6

| came across some code that declared a structure like this:

struct nane {
I nt nanel en;
char nanestr[1];

¥

and then did some tricky allocation to make the nanest r array act like it had
severa elements. Isthislega or portable?

Thistechniqueis popular, although Dennis Ritchie has called it~ unwarranted
chumminess with the C implementation.” An official interpretation has deemed that
it is not strictly conforming with the C Standard. (A thorough treatment of the
arguments surrounding the legality of the technique is beyond the scope of thislist.)
It does seem to be portable to all known implementations. (Compilers which check
array bounds carefully might issue warnings.)

Another possibility isto declare the variable-size element very large, rather than very
small; in the case of the above example:

char nanestr[MAXSI ZE] ;
where MAXSI ZE islarger than any name which will be stored. However, it looks

like this technique is disallowed by a strict interpretation of the Standard as well.

References: Rationale Sec. 3.5.4.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.6.html [26/03/2003 11:42:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.7

Question 2.7

| heard that structures could be assigned to variables and passed to and from
functions, but K& R1 says not.

What K& R1 said was that the restrictions on structure operations would be lifted in a
forthcoming version of the compiler, and in fact structure assignment and passing
were fully functional in Ritchie's compiler even as K& R1 was being published.
Although afew early C compilerslacked these operations, all modern compilers
support them, and they are part of the ANSI C standard, so there should be no
reluctance to use them. [footnote]

(Note that when a structure is assigned, passed, or returned, the copying is done
monolithically; anything pointed to by any pointer fieldsis not copied.)

References: K&R1 Sec. 6.2 p. 121

K&R2 Sec. 6.2 p. 129

ANSI Sec. 3.1.2.5, Sec. 3.2.2.1, Sec. 3.3.16
SO Sec. 6.1.2.5, Sec. 6.2.2.1, Sec. 6.3.16
H&S Sec. 5.6.2 p. 133

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.7.html [26/03/2003 11:42:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Footnote 1

However, passing large structures to and from functions can be expensive (see
guestion 2.9), so you may want to consider using pointers, instead (aslong as you
don't need pass-by-value semantics, of course).

back

http://www.eskimo.com/~scs/C-fag/fnl.html [26/03/2003 11:42:12 p.m.]

Question 2.8

Question 2.8

Why can't you compare structures?

Thereisno single, good way for a compiler to implement structure comparison
which is consistent with C's low-level flavor. A simple byte-by-byte comparison
could founder on random bits present in unused ""holes" in the structure (such
padding is used to keep the alignment of later fields correct; see question 2.12). A
field-by-field comparison might require unacceptable amounts of repetitive code for
large structures.

If you need to compare two structures, you'll have to write your own function to do
so, field by field.

References. K&R2 Sec. 6.2 p. 129
ANSI Sec. 4.11.4.1 footnote 136
Rationale Sec. 3.3.9

H&S Sec. 5.6.2 p. 133

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.8.html [26/03/2003 11:42:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.12

Question 2.12

My compiler isleaving holes in structures, which is wasting space and preventing
“binary” I/0 to external datafiles. Can | turn off the padding, or otherwise control
the alignment of structure fields?

Y our compiler may provide an extension to give you this control (perhaps a
#pr agma; see question 11.20), but there is no standard method.

See aso question 20.5.

References. K&R2 Sec. 6.4 p. 138
H&S Sec. 5.6.4 p. 135

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.12.html [26/03/2003 11:42:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.9

Question 2.9

How are structure passing and returning implemented?

When structures are passed as arguments to functions, the entire structure is typically
pushed on the stack, using as many words as are required. (Programmers often
choose to use pointersto structures instead, precisely to avoid this overhead.) Some
compilers merely pass a pointer to the structure, though they may have to make a
local copy to preserve pass-by-value semantics.

Structures are often returned from functions in alocation pointed to by an extra,
compiler-supplied “"hidden" argument to the function. Some older compilers used a
special, static location for structure returns, although this made structure-valued
functions non-reentrant, which ANSI C disallows.

References: ANSI Sec. 2.2.3
SO Sec. 5.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q2.9.html [26/03/2003 11:42:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.10

Question 2.10

How can | pass constant values to functions which accept structure arguments?

C has no way of generating anonymous structure values. You will haveto usea
temporary structure variable or alittle structure-building function; see question 14.11
for an example. (gcc provides structure constants as an extension, and the
mechanism will probably be added to a future revision of the C Standard.) See also
guestion 4.10.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.10.html [26/03/2003 11:42:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.11

Question 14.11

What's a good way to implement complex numbersin C?

It is straightforward to define a simple structure and some arithmetic functions to
mani pulate them. See also questions 2.7, 2.10, and 14.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.11.html [26/03/2003 11:42:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.10

Question 4.10

| have afunction
externint f(int *);

which accepts a pointer to ani nt . How can | pass a constant by reference? A call
like

f(&5);

doesn't seem to work.

Y ou can't do this directly. Y ou will have to declare atemporary variable, and then
pass its address to the function:

int five = 5;
f(&ive);

See also questions 2.10, 4.8, and 20.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g4.10.html [26/03/2003 11:42:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.11

Question 2.11

How can | read/write structures from/to data files?

It isrelatively straightforward to write a structure out using f wri t e:
fwite(&onestruct, sizeof sonestruct, 1, fp);

and a corresponding f r ead invocation can read it back in. (Under pre-ANSI C, a
(char *) cast onthefirst argument isrequired. What'simportant isthat f wri t e
receive a byte pointer, not a structure pointer.) However, datafiles so written will not
be portable (see questions 2.12 and 20.5). Note also that if the structure contains any
pointers, only the pointer values will be written, and they are most unlikely to be
valid when read back in. Finally, note that for widespread portability you must use
the" b" flag when f opening thefiles; see question 12.38.

A more portable solution, though it's a bit more work initialy, isto write a pair of
functions for writing and reading a structure, field-by-field, in a portable (perhaps
even human-readable) way.

References: H& S Sec. 15.13 p. 381

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.11.html [26/03/2003 11:42:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.38

Question 12.38

How can | read abinary datafile properly? I'm occasionally seeing 0x0a and 0x0d
values getting garbled, and it seems to hit EOF prematurely if the data contains the
valueOx1a.

When you're reading a binary data file, you should specify " r b" mode when calling
f open, to make sure that text file translations do not occur. Similarly, when writing
binary datafiles, use" wh" .

Note that the text/binary distinction is made when you open the file: once afileis
open, it doesn't matter which 1/0 calls you use on it. See also question 20.5.

References: ANSI Sec. 4.9.5.3
SO Sec. 7.9.5.3
H&S Sec. 15.2.1 p. 348

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.38.html [26/03/2003 11:42:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.20

Question 11.20

What are #pr agnmas and what are they good for?

The #pr agna directive provides a single, well-defined " escape hatch" which can
be used for all sorts of implementation-specific controls and extensions. source
listing control, structure packing, warning suppression (likel i nt 'sold/ *
NOTREACHED */ comments), etc.

References: ANSI Sec. 3.8.6
SO Sec. 6.8.6
H&S Sec. 3.7 p. 61

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.20.html [26/03/2003 11:42:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.13

Question 2.13

Why doessi zeof report alarger size than | expect for astructure type, asif there
were padding at the end?

Structures may have this padding (as well asinternal padding), if necessary, to
ensure that alignment properties will be preserved when an array of contiguous
structures is allocated. Even when the structure is not part of an array, the end
padding remains, so that si zeof can aways return a consistent size. See question
2.12.

References. H& S Sec. 5.6.7 pp. 139-40

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.13.html [26/03/2003 11:42:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.14

Question 2.14

How can | determine the byte offset of afield within a structure?

ANSI C definesthe of f set of () macro, which should be used if available; see
<st ddef . h>. If you don't have it, one possible implementation is

#define offsetof (type, nmem ((size t) \
((char *)&((type *)0)->nmem - (char *)(type *)0))

Thisimplementation is not 100% portable; some compilers may legitimately refuse to accept it.

See question 2.15 for ausage hint.

References: ANSI Sec. 4.1.5
SO Sec. 7.1.6

Rationale Sec. 3.5.4.2

H&S Sec. 11.1 pp. 292-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.14.html [26/03/2003 11:42:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.15

Question 2.15

How can | access structure fields by name at run time?

Build atable of names and offsets, using the of f set of () macro. The offset of
fieldbinstruct ais

of fsetb = offsetof(struct a, b)

If st ruct p isapointer to an instance of this structure, and field b isani nt (with
offset as computed above), b's value can be set indirectly with

*(int *)((char *)structp + offsetb) = val ue;

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.15.html [26/03/2003 11:42:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.18

Question 2.18

This program works correctly, but it dumps core after it finishes. Why?

struct list {
char *item
struct |ist *next;

}
/* Here is the main program */

mai n(argc, argv)

(...}

A missing semicolon causes mai n to be declared as returning a structure. (The
connection is hard to see because of the intervening comment.) Since structure-
valued functions are usually implemented by adding a hidden return pointer (see
guestion 2.9), the generated code for mai n() triesto accept three arguments,

although only two are passed (in this case, by the C start-up code). See also questions
10.9 and 16.4.

References. CT&P Sec. 2.3 pp. 21-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.18.html [26/03/2003 11:42:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.9

Question 10.9

I'm getting strange syntax errors on the very first declaration in afile, but it looks
fine.

Perhaps there's a missing semicolon at the end of the last declaration in the last
header file you're #including. See also questions 2.18 and 11.29.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.9.html [26/03/2003 11:42:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.4

Question 16.4

| have a program that seems to run correctly, but it crashes asit's exiting, after the
last statement in mai n() . What could be causing this?

Look for amisdeclared mai n() (see questions2.18 and 10.9), or local buffers

passed to set buf or set vbuf , or problemsin cleanup functions registered by
at exi t . Seeaso questions 7.5 and 11.16.

References. CT&P Sec. 5.3 pp. 72-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q16.4.html [26/03/2003 11:42:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.20

Question 2.20

Can | initialize unions?

ANSI Standard C alows an initializer for the first member of aunion. Thereisno
standard way of initializing any other member (nor, under apre-ANSI compiler, is
there generally any way of initializing aunion at all).

References. K& R2 Sec. 6.8 pp. 148-9
ANSI Sec. 3.5.7

SO Sec. 6.5.7

H&S Sec. 4.6.7 p. 100

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.20.html [26/03/2003 11:42:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.22

Question 2.22

What is the difference between an enumeration and a set of preprocessor
#def i nes?

At the present time, thereislittle difference. Although many people might have
wished otherwise, the C Standard says that enumerations may be freely intermixed
with other integral types, without errors. (If such intermixing were disallowed
without explicit casts, judicious use of enumerations could catch certain
programming errors.)

Some advantages of enumerations are that the numeric values are automatically
assigned, that a debugger may be able to display the symbolic values when
enumeration variables are examined, and that they obey block scope. (A compiler
may also generate nonfatal warnings when enumerations and integers are
indiscriminately mixed, since doing so can still be considered bad style even though
itisnot strictly illegal.) A disadvantage is that the programmer has little control over
those nonfatal warnings; some programmers also resent not having control over the
sizes of enumeration variables.

References: K&R2 Sec. 2.3 p. 39, Sec. A4.2 p. 196
ANSI Sec. 3.1.2.5, Sec. 3.5.2, Sec. 3.5.2.2, Appendix E
1SO Sec. 6.1.2.5, Sec. 6.5.2, Sec. 6.5.2.2, Annex F
H&S Sec. 5.5 pp. 127-9, Sec. 5.11.2 p. 153

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.22.html [26/03/2003 11:42:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.24

Question 2.24

|s there an easy way to print enumeration values symbolically?

No. You can write alittle function to map an enumeration constant to a string. (If all
you're worried about is debugging, a good debugger should automatically print
enumeration constants symbolically.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g2.24.html [26/03/2003 11:42:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.1

Question 3.1
Why doesn't this code:
a[i] = i++;

work?

The subexpression i ++ causes a side effect--it modifiesi 's value--which leads to
undefined behavior sincei isalso referenced elsewhere in the same expression.
(Note that although the language in K& R suggests that the behavior of this
expression is unspecified, the C Standard makes the stronger statement that it is
undefined--see question 11.33.)

References: K& R1 Sec. 2.12
K&R2 Sec. 2.12

ANSI Sec. 3.3

SO Sec. 6.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.1.html [26/03/2003 11:42:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.33

Question 11.33

People seem to make a point of distinguishing between implementation-defined,
unspecified, and undefined behavior. What's the difference?

Briefly: implementation-defined means that an implementation must choose some
behavior and document it. Unspecified means that an implementation should choose
some behavior, but need not document it. Undefined means that absolutely anything
might happen. In no case does the Standard impose requirements; in the first two
cases it occasionally suggests (and may require a choice from among) a small set of
likely behaviors.

Note that since the Standard imposes no requirements on the behavior of a compiler
faced with an instance of undefined behavior, the compiler can do absolutely
anything. In particular, there is no guarantee that the rest of the program will perform
normally. It's perilous to think that you can tolerate undefined behavior in a program;
see question 3.2 for arelatively simple example.

If you're interested in writing portable code, you can ignore the distinctions, as you'll
want to avoid code that depends on any of the three behaviors.

See also questions 3.9, and 11.34.

References: ANSI Sec. 1.6
SO Sec. 3.10, Sec. 3.16, Sec. 3.17
Rationale Sec. 1.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.33.html [26/03/2003 11:42:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.2

Question 3.2
Under my compiler, the code

int i = 7;
printf("%\n", i++ * i++);

prints 49. Regardless of the order of evaluation, shouldn't it print 567

Although the postincrement and postdecrement operators ++ and - - perform their
operations after yielding the former value, theimplication of "~ after" is often
misunderstood. It is not guaranteed that an increment or decrement is performed
immediately after giving up the previous value and before any other part of the
expression is evaluated. It is merely guaranteed that the update will be performed
sometime before the expression is considered ~finished" (before the next ~ sequence
point,” in ANSI C'sterminology; see question 3.8). In the example, the compiler
chose to multiply the previous value by itself and to perform both increments
afterwards.

The behavior of code which contains multiple, ambiguous side effects has always
been undefined. (Loosely speaking, by ~“multiple, ambiguous side effects” we mean
any combination of ++, - - , =, +=, - =, etc. in asingle expression which causes the
same object either to be modified twice or modified and then inspected. Thisisa
rough definition; see question 3.8 for a precise one, and question 11.33 for the

meaning of ~undefined.”) Don't even try to find out how your compiler implements
such things (contrary to the ill-advised exercises in many C textbooks); asK&R
wisely point out, “"if you don't know how they are done on various machines, that
innocence may help to protect you."

References. K&R1 Sec. 2.12 p. 50
K&R2 Sec. 2.12 p. 54

ANS| Sec. 3.3

SO Sec. 6.3

CT&P Sec. 3.7 p. 47

PCS Sec. 9.5 pp. 120-1

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q3.2.html (1 of 2) [26/03/2003 11:43:01 p.m.]

Question 3.2

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.2.html (2 of 2) [26/03/2003 11:43:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.8

Question 3.8

How can | understand these complex expressions? What's a " sequence point"?

A sequence point is the point (at the end of afull expression, or at the| | , &&, ?: , or
comma operators, or just before afunction call) at which the dust has settled and all
side effects are guaranteed to be complete. The ANSI/ISO C Standard states that

Between the previous and next sequence point an object shall haveits
stored value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be accessed only to determine the
value to be stored.

The second sentence can be difficult to understand. It says that if an object iswritten
to within afull expression, any and all accessesto it within the same expression must
be for the purposes of computing the value to be written. This rule effectively
constrains legal expressions to those in which the accesses demonstrably precede the
modification.

See also question 3.9.

References. ANSI Sec. 2.1.2.3, Sec. 3.3, Appendix B
SO Sec. 5.1.2.3, Sec. 6.3, Annex C

Rationale Sec. 2.1.2.3

H&S Sec. 7.12.1 pp. 228-9

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.8.html [26/03/2003 11:43:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.3

Question 3.3

I've experimented with the code

int i = 3;
I = | ++;

on several compilers. Some gavei thevaue 3, some gave 4, but one gave 7. | know
the behavior is undefined, but how could it give 77?

Undefined behavior means anything can happen. See questions 3.9 and 11.33. (Also,
note that neither i ++ nor ++i isthesameasi +1. If you want to increment i , use
| =i +1 ori ++ or ++i , not some combination. See also question 3.12.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.3.html [26/03/2003 11:43:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.9

Question 3.9
So given
a[i] = i++;

we don't know which cell of a[] getswritten to, but i does get incremented by one.

No. Once an expression or program becomes undefined, all aspects of it become
undefined. See questions 3.2, 3.3, 11.33, and 11.35.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.9.html [26/03/2003 11:43:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.12

Question 3.12

If I'm not using the value of the expression, should | usei ++ or ++i toincrement a
variable?

Since the two forms differ only in the value yielded, they are entirely equivalent
when only their side effect is needed.

See also question 3.3.

References. K&R1 Sec. 2.8 p. 43

K&R2 Sec. 2.8 p. 47

ANSI Sec. 3.3.24, Sec. 3.3.3.1

SO Sec. 6.3.2.4, Sec. 6.3.3.1

H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5.8 pp. 199-200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.12.html [26/03/2003 11:43:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.4

Question 3.4

Can | use explicit parentheses to force the order of evaluation | want? Even if | don't,
doesn't precedence dictate it?

Not in general.

Operator precedence and explicit parentheses impose only a partial ordering on the
evaluation of an expression. In the expression

FO) +90) * h()

although we know that the multiplication will happen before the addition, thereis no
telling which of the three functions will be called first.

When you need to ensure the order of subexpression evaluation, you may need to use
explicit temporary variables and separate statements.

References: K&R1 Sec. 2.12 p. 49, Sec. A.7 p. 185
K&R2 Sec. 2.12 pp. 52-3, Sec. A.7 p. 200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.4.html [26/03/2003 11:43:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.5

Question 3.5

But what about the && and | | operators?
| seecodelike "whil e((c = getchar()) !'= EOF & ¢ !="\n")"..

Thereisaspecia exception for those operators (aswell asthe ?: operator): left-to-
right evaluation is guaranteed (as is an intermediate sequence point, see question
3.8). Any book on C should make this clear.

References. K&R1 Sec. 2.6 p. 38, Secs. A7.11-12 pp. 190-1
K&R2 Sec. 2.6 p. 41, Secs. A7.14-15 pp. 207-8

ANSI Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15

SO Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15

H&S Sec. 7.7 pp. 217-8, Sec. 7.8 pp. 218-20, Sec. 7.12.1 p. 229
CT&P Sec. 3.7 pp. 46-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.5.html [26/03/2003 11:43:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.35

Question 11.35

People keep saying that the behavior of i = i ++ isundefined, but | just tried it on
an ANSI-conforming compiler, and got the results | expected.

A compiler may do anything it likes when faced with undefined behavior (and,
within limits, with implementation-defined and unspecified behavior), including
doing what you expect. It's unwise to depend on it, though. See also questions 11.32,
11.33, and 11.34.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.35.html [26/03/2003 11:43:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.14

Question 3.14

Why doesn't the code

int a = 1000, b = 1000;
long int ¢ = a * b;

work?

Under C'sintegral promotion rules, the multiplication is carried out using i nt
arithmetic, and the result may overflow or be truncated before being promoted and
assignedtothel ong i nt left-hand side. Use an explicit cast to forcel ong
arithmetic:

long int ¢ = (long int)a * b;
Notethat (1 ong int)(a * b) would not have the desired effect.

A similar problem can arise when two integers are divided, with the result assigned
to afloating-point variable.

References. K&R1 Sec. 2.7 p. 41
K&R2 Sec. 2.7 p. 44

ANS| Sec. 3.2.1.5

SO Sec. 6.2.1.5

H&S Sec. 6.3.4 p. 176

CT&P Sec. 3.9 pp. 49-50

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.14.html [26/03/2003 11:43:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.16

Question 3.16

| have a complicated expression which | have to assign to one of two variables,
depending on a condition. Can | use code like this?

((condition) ? a : b) = conplicated expression;

No. The ?: operator, like most operators, yields avalue, and you can't assignto a
value. (In other words, ?: does not yield an lvalue.) If you really want to, you can try
something like

*((condition) ? & : &b) = conplicated _expression;
although thisis admittedly not as pretty.

References. ANSI Sec. 3.3.15 esp. footnote 50
SO Sec. 6.3.15
H&S Sec. 7.1 pp. 179-180

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q3.16.html [26/03/2003 11:43:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.2

Question 4.2

I'm trying to declare a pointer and allocate some space for it, but it's not working.
What's wrong with this code?

char *p;
*p = mall oc(10);

The pointer you declared is p, not * p. To make a pointer point somewhere, you just
use the name of the pointer:

p = malloc(10);

It's when you're manipulating the pointed-to memory that you use * as an indirection
operator:

*ple';

See also questions 1.21, 7.1, and 8.3.

References. CT&P Sec. 3.1 p. 28

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.2.html [26/03/2003 11:43:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.1

Question 7.1

Why doesn't this fragment work?

char *answer;

printf("Type sonething:\n");

get s(answer) ;

printf("You typed \"%\"\n", answer);

The pointer variable answer , which is handed to get s() asthelocation into
which the response should be stored, has not been set to point to any valid storage.
That is, we cannot say where the pointer answer points. (Since local variables are
not initialized, and typically contain garbage, it is not even guaranteed that answer
starts out as anull pointer. See questions 1.30 and 5.1.)

The simplest way to correct the question-asking program is to use alocal array,
instead of a pointer, and let the compiler worry about allocation:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

char answer[100], *p;

printf("Type sonething:\n");

fget s(answer, sizeof answer, stdin);

1 f((p = strchr(answer, '\n")) != NULL)
*p = '\0';

printf("You typed \"%\"\n", answer);

Thisexample also usesf get s() instead of get s(), so that the end of the array
cannot be overwritten. (See question 12.23. Unfortunately for this example,

f get s() doesnot automatically delete thetrailing\ n, get s() would.) It would
also be possibletousenal | oc() to allocate theanswer buffer.

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q7.1.html (1 of 2) [26/03/2003 11:43:13 p.m.]

Question 7.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.1.html (2 of 2) [26/03/2003 11:43:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.3

Question 8.3
If | can say

char a[] = "Hello, world!";
why can't | say

char a[14];

a="Hello, world!";

Strings are arrays, and you can't assign arrays directly. Use st r cpy instead:
strcpy(a, "Hello, world!'");

See also questions 1.32, 4.2, and 7.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q8.3.html [26/03/2003 11:43:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.3

Question 4.3

Does * p++ increment p, or what it points to?

Unary operators like * , ++, and - - all associate (group) from right to left. Therefore,
* p++ increments p (and returns the value pointed to by p before the increment). To
increment the value pointed to by p, use (* p) ++ (or perhaps ++* p, if the order of
the side effect doesn't matter).

References. K&R1 Sec. 5.1 p. 91

K&R2 Sec. 5.1 p. 95

ANSI Sec. 3.3.2, Sec. 3.3.3

SO Sec. 6.3.2, Sec. 6.3.3

H& S Sec. 7.4.4 pp. 192-3, Sec. 7.5 p. 193, Secs. 7.5.7,7.5.8 pp. 199-200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.3.html [26/03/2003 11:43:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.5

Question 4.5

| haveachar * pointer that happensto point to somei nt s, and | want to step it
over them. Why doesn't

((int *)p)++;

work?

In C, acast operator does not mean ~ pretend these bits have a different type, and
treat them accordingly"; it is a conversion operator, and by definition it yields an
rvalue, which cannot be assigned to, or incremented with ++. (It isan anomaly in
pcc-derived compilers, and an extension in gcc, that expressions such as the above
are ever accepted.) Say what you mean: use

p = (char *)((int *)p + 1);
or (sncepisachar *)smply
p += sizeof (int);

Whenever possible, you should choose appropriate pointer typesin the first place,
instead of trying to treat one type as another.

References. K&R2 Sec. A7.5 p. 205
ANSI Sec. 3.3.4 (esp. footnote 14)
SO Sec. 6.3.4

Rationale Sec. 3.3.2.4

H&S Sec. 7.1 pp. 179-80

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.5.html [26/03/2003 11:43:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.8

Question 4.8
| have afunction which accepts, and is supposed to initialize, a pointer:

void f(ip)

i nt *ip;

{
static int dummy = 5;
I p = &Jdumy;

}

But when | call it likethis:

int *ip;
f(ip);

the pointer in the caller remains unchanged.

Areyou sure the function initialized what you thought it did? Remember that
argumentsin C are passed by value. The called function altered only the passed copy
of the pointer. Y ou'll either want to pass the address of the pointer (the function will
end up accepting a pointer-to-a-pointer), or have the function return the pointer.

See also questions 4.9 and 4.11.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.8.html [26/03/2003 11:43:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.9

Question 4.9

Canluseavoi d ** pointer to pass a generic pointer to afunction by reference?

Not portably. There is no generic pointer-to-pointer typein C.voi d * actsasa
generic pointer only because conversions are applied automatically when other
pointer types are assigned to and from voi d *'s; these conversions cannot be
performed (the correct underlying pointer typeis not known) if an attempt is made to
indirect uponavoi d ** value which points at something other thanavoi d *.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q4.9.html [26/03/2003 11:43:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.11

Question 4.11

Does C even have " pass by reference”?

Not really. Strictly speaking, C always uses pass by value. Y ou can simulate pass by
reference yourself, by defining functions which accept pointers and then using the &
operator when calling, and the compiler will essentially ssmulate it for you when you
pass an array to afunction (by passing a pointer instead, see question 6.4 et a.), but
C has nothing truly equivalent to formal pass by reference or C++ reference
parameters. (However, function-like preprocessor macros do provide aform of ~“call
by name".)

See also questions 4.8 and 20.1.

References. K&R1 Sec. 1.8 pp. 24-5, Sec. 5.2 pp. 91-3
K&R2 Sec. 1.8 pp. 27-8, Sec. 5.2 pp. 91-3

ANSI Sec. 3.3.2.2, esp. footnote 39

SO Sec. 6.3.2.2

H&S Sec. 9.5 pp. 273-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g4.11.html [26/03/2003 11:43:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.4

Question 6.4

Then why are array and pointer declarations interchangeabl e as function formal
parameters?

It's supposed to be a convenience.

Since arrays decay immediately into pointers, an array is never actually passed to a
function. Allowing pointer parameters to be declared as arraysis asimply away of
making it look as though the array was being passed--a programmer may wish to
emphasize that a parameter istraditionally treated asif it were an array, or that an
array (strictly speaking, the address) is traditionally passed. As a convenience,
therefore, any parameter declarations which ““look like" arrays, e.g.

f(a)
char a[];
{ ...}

are treated by the compiler asif they were pointers, since that is what the function
will receive if an array is passed:

f(a)
char *a;
{ ...}

This conversion holds only within function formal parameter declarations, nowhere
else. If the conversion bothers you, avoid it; many people have concluded that the
confusion it causes outweighs the small advantage of having the declaration ""look
like" the call or the uses within the function.

See also question 6.21.

References: K&R1 Sec. 5.3 p. 95, Sec. A10.1 p. 205

K&R2 Sec. 5.3 p. 100, Sec. A8.6.3 p. 218, Sec. A10.1 p. 226
ANSI Sec. 3.5.4.3, Sec. 3.7.1, Sec. 3.9.6

SO Sec. 6.5.4.3, Sec. 6.7.1, Sec. 6.9.6

H&S Sec. 9.3 p. 271

CT&P Sec. 3.3 pp. 334

http://www.eskimo.com/~scs/C-fag/q6.4.html (1 of 2) [26/03/2003 11:43:22 p.m.]

Question 6.4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.4.html (2 of 2) [26/03/2003 11:43:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.1

Question 5.1

What is this infamous null pointer, anyway?

The language definition states that for each pointer type, there is a specia value--the
““null pointer"--which is distinguishable from all other pointer values and which is
“guaranteed to compare unequal to a pointer to any object or function.” That is, the
address-of operator & will never yield anull pointer, nor will a successful call to

mal | oc. (mal | oc doesreturn anull pointer when it fails, and thisis atypical use
of null pointers: asa "specia" pointer value with some other meaning, usually " not
allocated" or ""not pointing anywhere yet.")

A null pointer is conceptually different from an uninitialized pointer. A null pointer
is known not to point to any object or function; an uninitialized pointer might point
anywhere. See al'so questions 1.30, 7.1, and 7.31.

As mentioned above, thereisanull pointer for each pointer type, and the internal
values of null pointers for different types may be different. Although programmers
need not know the internal values, the compiler must always be informed which type
of null pointer isrequired, so that it can make the distinction if necessary (see
guestions 5.2, 5.5, and 5.6).

References. K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102

ANSI Sec. 3.2.2.3

SO Sec. 6.2.2.3

Rationale Sec. 3.2.2.3

H&S Sec. 5.3.2 pp. 121-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.1.html [26/03/2003 11:43:23 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

http://www.eskimo.com/~scs/C-fag/g5.2.html

Question 5.2

How do | get anull pointer in my programs?

According to the language definition, a constant O in a pointer context is converted
into anull pointer at compiletime. That is, in an initialization, assignment, or

comparison when one side is a variable or expression of pointer type, the compiler
can tell that a constant O on the other side requests anull pointer, and generate the
correctly-typed null pointer value. Therefore, the following fragments are perfectly

legal:
char *p = 0;
if(p !'= 0)
(See also question 5.3.)

However, an argument being passed to a function is not necessarily recognizable as a
pointer context, and the compiler may not be able to tell that an unadorned O
““means” anull pointer. To generate anull pointer in afunction call context, an
explicit cast may be required, to force the O to be recognized as a pointer. For
example, the Unix system call execl takesavariable-length, null-pointer-
terminated list of character pointer arguments, and is correctly called like this:

execl ("/bin/sh", "sh", "-c¢", "date", (char *)0);

If the(char *) cast on the last argument were omitted, the compiler would not
know to pass a null pointer, and would pass an integer O instead. (Note that many
Unix manuals get this example wrong .)

When function prototypes are in scope, argument passing becomes an "~ assignment
context," and most casts may safely be omitted, since the prototype tells the compiler
that a pointer is required, and of which type, enabling it to correctly convert an
unadorned 0. Function prototypes cannot provide the types for variable argumentsin
variable-length argument lists however, so explicit casts are still required for those
arguments. (See also question 15.3.) It is safest to properly cast al null pointer

constants in function calls: to guard against varargs functions or those without
prototypes, to allow interim use of non-ANSI compilers, and to demonstrate that you
know what you are doing. (Incidentally, it's also asimpler rule to remember.)

http://www.eskimo.com/~scs/C-fag/g5.2.html (1 of 2) [26/03/2003 11:43:24 p.m.]

http://www.eskimo.com/~scs/C-fag/g5.2.html

Summary:
Unador ned 0 okay: Explicit cast required:
initialization function call,
no prototype in scope
assi gnnent
vari abl e argunent in
conpari son varargs function cal

function call,
prototype in scope,
fi xed argunent

References: K&R1 Sec. A7.7 p. 190, Sec. A7.14 p. 192
K&R2 Sec. A7.10 p. 207, Sec. A7.17 p. 209
ANSI Sec. 3.2.2.3

1SO Sec. 6.2.2.3

H&S Sec. 4.6.3p. 95, Sec. 6.2.7 p. 171

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.2.html (2 of 2) [26/03/2003 11:43:24 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.5

Question 5.5

How should NULL be defined on a machine which uses a nonzero bit pattern as the
internal representation of a null pointer?

The same as on any other machine: as0 (or ((voi d *)0)).

Whenever a programmer requests a null pointer, either by writing ~"0" or “"NULL," it
Is the compiler's responsibility to generate whatever bit pattern the machine uses for
that null pointer. Therefore, #defining NULL as O on a machine for which internal
null pointers are nonzero is as valid as on any other: the compiler must always be
able to generate the machine's correct null pointersin response to unadorned 0's seen
in pointer contexts. See a'so questions 5.2, 5.10, and 5.17.

References: ANSI Sec. 4.1.5
SO Sec. 7.1.6
Rationale Sec. 4.1.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.5.html [26/03/2003 11:43:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.6

Question 5.6
If NULL were defined as follows:
#define NULL ((char *)O0)

wouldn't that make function calls which pass an uncast NULL work?

Not in general. The problem is that there are machines which use different interna
representations for pointersto different types of data. The suggested definition would
make uncast NULL arguments to functions expecting pointers to characters work
correctly, but pointer arguments of other types would still be problematical, and legal
constructions such as

FILE *fp = NULL;

could fail.

Nevertheless, ANSI C allows the alternate definition
#define NULL ((void *)O0)

for NULL. Besides potentially helping incorrect programs to work (but only on
machines with homogeneous pointers, thus questionably valid assistance), this
definition may catch programs which use NULL incorrectly (e.g. when the ASCI|I
NUL character was really intended; see question 5.9).

References: Rationale Sec. 4.1.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.6.html [26/03/2003 11:43:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.3

Question 5.3

|s the abbreviated pointer comparison i f (p) " to test for non-null pointers valid?
What if the internal representation for null pointersis nonzero?

When C requires the Boolean value of an expression (inthei f ,whi | e, f or,anddo

statements, and withthe &&, | | , !, and ?: operators), afalse valueisinferred when
the expression compares equal to zero, and atrue value otherwise. That is, whenever
one writes

I f(expr)

where “expr" is any expression at all, the compiler essentially actsasif it had been
written as

if((expr) !'=0)
Substituting the trivial pointer expression " "p" for ~"expr,” we have
1 f(p) s equivalent to if(p !'= 0)

and thisis a comparison context, so the compiler can tell that the (implicit) O is
actually anull pointer constant, and use the correct null pointer value. Thereis no
trickery involved here; compilers do work this way, and generate identical code for
both constructs. The internal representation of a null pointer does not matter.

The boolean negation operator, ! , can be described as follows:

L expr Is essentially equivalent to (expr)?0: 1
or to ((expr) == 0)

which leads to the conclusion that
if('p) is equivalent to i f(p == 0)

“"Abbreviations' such asi f (p) , though perfectly legal, are considered by some to be
bad style (and by othersto be good style; see question 17.10).

See also question 9.2.

http://www.eskimo.com/~scs/C-fag/q5.3.html (1 of 2) [26/03/2003 11:43:28 p.m.]

Question 5.3

References. K&R2 Sec. A7.4.7 p. 204

ANSI Sec. 3.3.3.3, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec.
3.6.5

SO Sec. 6.3.3.3, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec.
6.6.5

H&S Sec. 5.3.2 p. 122

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.3.html (2 of 2) [26/03/2003 11:43:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.3

Question 15.3
| had afrustrating problem which turned out to be caused by the line
printf("%", n);

where n was actually al ong i nt . | thought that ANSI function prototypes were
supposed to guard against argument type mismatches like this.

When afunction accepts a variable number of arguments, its prototype does not (and
cannot) provide any information about the number and types of those variable
arguments. Therefore, the usual protections do not apply in the variable-length part
of variable-length argument lists: the compiler cannot perform implicit conversions
or (in general) warn about mismatches.

See also questions 5.2, 11.3, 12.9, and 15.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.3.html [26/03/2003 11:43:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.10

Question 17.10

Some people say that got o'sare evil and that | should never use them. Isn't that a bit
extreme?

Programming style, like writing style, is somewhat of an art and cannot be codified
by inflexible rules, athough discussions about style often seem to center exclusively
around such rules.

In the case of the got o statement, it has long been observed that unfettered use of
got o's quickly leads to unmaintainable spaghetti code. However, asimple,
unthinking ban on the got o statement does not necessarily lead immediately to
beautiful programming: an unstructured programmer is just as capable of
constructing a Byzantine tangle without using any got o's (perhaps substituting
oddly-nested loops and Boolean control variables, instead).

Most observations or ~rules' about programming style usually work better as
guidelines than rules, and work much better if programmers understand what the
guidelines are trying to accomplish. Blindly avoiding certain constructs or following
rules without understanding them can lead to just as many problems as the rules were
supposed to avert.

Furthermore, many opinions on programming style are just that: opinions. It's usually
futile to get dragged into “"style wars," because on certain issues (such as those
referred to in questions 9.2, 5.3, 5.9, and 10.7), opponents can never seem to agree,

or agree to disagree, or stop arguing.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.10.html [26/03/2003 11:43:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.2

Question 9.2

Isn't #defining TRUE to be 1 dangerous, since any nonzero value is considered " true"
in C?What if abuilt-in logical or relational operator ~"returns' something other than
1?

It istrue (sic) that any nonzero value is considered truein C, but this applies only
“oninput”, i.e. where a Boolean value is expected. When aBoolean valueis
generated by a built-in operator, it is guaranteed to be 1 or 0. Therefore, the test

if((a == b) == TRUE)

would work as expected (aslong as TRUE is 1), but it is obvioudly silly. In generdl,
explicit tests against TRUE and FAL SE are inappropriate, because some library
functions (notably i supper ,i sal pha, etc.) return, on success, a nonzero value
which is not necessarily 1. (Besides, if you believethat i f ((a == b) ==
TRUE) "isanimprovement over i f (a == b) ", why stop there? Why not use
“if(((a == b) == TRUE) == TRUE) "?) A good rule of thumb isto use
TRUE and FALSE (or the like) only for assignment to a Boolean variable or function
parameter, or as the return value from a Boolean function, but never in a comparison.

The preprocessor macros TRUE and FALSE (and, of course, NULL) are used for code
readability, not because the underlying values might ever change. (See also questions
5.3 and 5.10.)

On the other hand, Boolean values and definitions can evidently be confusing, and
some programmers feel that TRUE and FAL SE macros only compound the
confusion. (See also question 5.9.)

References. K&R1 Sec. 2.6 p. 39, Sec. 2.7 p. 41

K&R2 Sec. 2.6 p. 42, Sec. 2.7 p. 44, Sec. A7.4.7 p. 204, Sec. A7.9 p. 206

ANSI Sec. 3.3.3.3, Sec. 3.3.8, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec.
3.6.4.1, Sec. 3.6.5

SO Sec. 6.3.3.3, Sec. 6.3.8, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec.
6.6.4.1, Sec. 6.6.5

H& S Sec. 7.5.4 pp. 196-7, Sec. 7.6.4 pp. 207-8, Sec. 7.6.5 pp. 208-9, Sec. 7.7 pp.
217-8, Sec. 7.8 pp. 218-9, Sec. 8.5 pp. 238-9, Sec. 8.6 pp. 241-4

“What the Tortoise Said to Achilles®

http://www.eskimo.com/~scs/C-fag/q9.2.html (1 of 2) [26/03/2003 11:43:31 p.m.]

Question 9.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q9.2.html (2 of 2) [26/03/2003 11:43:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.4

Question 5.4

What isNULL and how isit #def i ned?

As amatter of style, many programmers prefer not to have unadorned 0's scattered
through their programs. Therefore, the preprocessor macro NULL is#def i ned (by
<st di 0. h>or <st ddef . h>) withthevalue O, possibly castto (voi d *) (see
also question 5.6). A programmer who wishes to make explicit the distinction
between 0 the integer and O the null pointer constant can then use NULL whenever a
null pointer isrequired.

Using NULL isastylistic convention only; the preprocessor turns NULL back into O
which is then recognized by the compiler, in pointer contexts, as before. In
particular, a cast may still be necessary before NULL (as before 0) in afunction call
argument. The table under question 5.2 above applies for NULL aswell asO (an

unadorned NULL is equivalent to an unadorned 0).

NULL should only be used for pointers; see question 5.9.

References. K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102

ANS| Sec. 4.1.5, Sec. 3.2.2.3

SO Sec. 7.1.6, Sec. 6.2.2.3

Rationale Sec. 4.1.5

H&S Sec. 5.3.2 p. 122, Sec. 11.1 p. 292

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.4.html [26/03/2003 11:43:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.9

Question 5.9

If NULL and O are equivalent as null pointer constants, which should | use?

Many programmers believe that NULL should be used in all pointer contexts, asa
reminder that the value is to be thought of as a pointer. Others feel that the confusion
surrounding NULL and O is only compounded by hiding O behind a macro, and
prefer to use unadorned O instead. There is no one right answer. (See also questions
9.2 and 17.10.) C programmers must understand that NULL and O are
interchangeable in pointer contexts, and that an uncast O is perfectly acceptable. Any
usage of NULL (as opposed to 0) should be considered a gentle reminder that a
pointer isinvolved; programmers should not depend on it (either for their own
understanding or the compiler's) for distinguishing pointer 0's from integer 0's.

NULL should not be used when another kind of O isrequired, even though it might
work, because doing so sends the wrong stylistic message. (Furthermore, ANSI
allows the definition of NULL tobe ((voi d *) 0), which will not work at al in
non-pointer contexts.) In particular, do not use NULL when the ASCII null character
(NUL) isdesired. Provide your own definition

#define NUL '\ O
If you must.

References. K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q5.9.html [26/03/2003 11:43:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.10

Question 5.10

But wouldn't it be better to use NULL (rather than 0), in case the value of NULL
changes, perhaps on a machine with nonzero internal null pointers?

No. (Using NULL may be preferable, but not for this reason.) Although symbolic
constants are often used in place of numbers because the numbers might change, this
Is not the reason that NULL is used in place of 0. Once again, the language
guarantees that source-code 0's (in pointer contexts) generate null pointers. NULL is
used only as a stylistic convention. See questions 5.5 and 9.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.10.html [26/03/2003 11:43:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.17

Question 5.17

Serioudly, have any actual machines really used nonzero null pointers, or different
representations for pointersto different types?

The Prime 50 series used segment 07777, offset O for the null pointer, at least for
PL/I. Later models used segment O, offset O for null pointersin C, necessitating new
instructions such as TCNP (Test C Null Pointer), evidently as a sop to all the extant
poorly-written C code which made incorrect assumptions. Older, word-addressed
Prime machines were also notorious for requiring larger byte pointers (char *'s)
than word pointers (i nt *'s).

The Eclipse MV series from Data General has three architecturally supported pointer
formats (word, byte, and bit pointers), two of which are used by C compilers. byte
pointersfor char * andvoi d *, and word pointers for everything else.

Some Honeywel | - Bul I mainframes use the bit pattern 06000 for (internal) null
pointers.

The CDC Cyber 180 Series has 48-bit pointers consisting of aring, segment, and
offset. Most users (in ring 11) have null pointers of OxB00000000000. It was
common on old CDC ones-complement machines to use an all-one-bitsword as a
special flag for al kinds of data, including invalid addresses.

The old HP 3000 series uses a different addressing scheme for byte addresses than
for word addresses; like several of the machines above it therefore uses different
representationsfor char * andvoi d * pointersthan for other pointers.

The Symbolics Lisp Machine, atagged architecture, does not even have conventional
numeric pointers; it usesthe pair <NI L, 0> (basically a nonexistent <object,
offset> handle) as a C null pointer.

Depending on the ""memory model" in use, 8086-family processors (PC
compatibles) may use 16-bit data pointers and 32-bit function pointers, or vice versa.

Some 64-bit Cray machinesrepresent i nt * inthe lower 48 bits of aword; char
* additionally uses the upper 16 bits to indicate a byte address within aword.

References: K&R1 Sec. Al4.4 p. 211

http://www.eskimo.com/~scs/C-fag/q5.17.html (1 of 2) [26/03/2003 11:43:35 p.m.]

Question 5.17

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.17.html (2 of 2) [26/03/2003 11:43:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.12

Question 5.12
| use the preprocessor macro
#define Nullptr(type) (type *)O

to help me build null pointers of the correct type.

Thistrick, though popular and superficialy attractive, does not buy much. It is not
needed in assignments and comparisons; see question 5.2. It does not even save
keystrokes. Its use may suggest to the reader that the program's author is shaky on
the subject of null pointers, requiring that the #definition of the macro, its
invocations, and all other pointer usages be checked. See also questions 9.1 and 10.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.12.html [26/03/2003 11:43:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.1

Question 9.1

What is the right type to use for Boolean valuesin C? Why isn't it a standard type?
Should | use #def i nesor enumsfor the true and false values?

C does not provide a standard Boolean type, in part because picking oneinvolves a
space/time tradeoff which can best be decided by the programmer. (Usingani nt may be
faster, while using char may save data space. Smaller types may make the generated
code bigger or slower, though, if they require lots of conversionsto and fromi nt .)

The choice between #def i nes and enumeration constants for the true/false valuesis
arbitrary and not terribly interesting (see also questions 2.22 and 17.10). Use any of

#define TRUE 1 #define YES 1
#define FALSE O #define NO O

enum bool {false, true}; enum bool {no, yes};

or use raw 1 and 0, as long as you are consistent within one
program or project. (An enuneration may be preferable if
your debugger shows the nanmes of enuneration constants when
exam ni ng vari abl es.)

Some people prefer variants like

#define TRUE (1==1)
#define FALSE (! TRUE)

or define “"helper" macros such as
#define Istrue(e) ((e) '= 0)

These don't buy anything (see question 9.2; see also questions 5.12 and 10.2).

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q9.1.html (1 of 2) [26/03/2003 11:43:39 p.m.]

Question 9.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q9.1.html (2 of 2) [26/03/2003 11:43:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.2

Question 10.2

Here are some cute preprocessor macros:

#defi ne begin {
#defi ne end }

What do y'all think?

Bleah. See also section 17.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.2.html [26/03/2003 11:43:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.13

Question 5.13

Thisis strange. NULL is guaranteed to be O, but the null pointer is not?

When the term ““null” or “"NULL" is casually used, one of several things may be
meant:

1. 1. The conceptual null pointer, the abstract language concept defined in
question 5.1. It isimplemented with...

2. 2. Theinternal (or run-time) representation of a null pointer, which may or
may not be all-bits-0 and which may be different for different pointer types.
The actual values should be of concern only to compiler writers. Authors of C
programs never see them, since they use...

3. 3. The null pointer constant, which is a constant integer O (see question 5.2).
It is often hidden behind...

4. 4. The NULL macro, whichis#defi nedtobeOor ((void *)0) (see
question 5.4). Finally, asred herrings, we have...

5. 5. The ASCII null character (NUL), which does have all bits zero, but has no
necessary relation to the null pointer except in name; and...

6. 6. The "null string,” which is another name for the empty string ("). Using
the term ""null string” can be confusing in C, because an empty string
involvesanull (" \ 0") character, but not a null pointer, which brings us full
circle...

This article uses the phrase " "null pointer” (in lower case) for sense 1, the character
0" or the phrase ""null pointer constant” for sense 3, and the capitalized word
“NULL" for sense 4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.13.html [26/03/2003 11:43:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.14

Question 5.14

Why is there so much confusion surrounding null pointers? Why do these questions
come up so often?

C programmers traditionally like to know more than they need to about the
underlying machine implementation. The fact that null pointers are represented both
In source code, and internally to most machines, as zero invites unwarranted
assumptions. The use of a preprocessor macro (NULL) may seem to suggest that the
value could change some day, or on some weird machine. The construct i f (p ==
0) "iseasily misread as calling for conversion of p to an integral type, rather than O
to a pointer type, before the comparison. Finally, the distinction between the several
uses of theterm “"null” (listed in question 5.13) is often overlooked.

One good way to wade out of the confusion is to imagine that C used a keyword
(perhaps ni | , like Pascal) as anull pointer constant. The compiler could either turn
ni | into the correct type of null pointer when it could determine the type from the
source code, or complain when it could not. Now in fact, in C the keyword for a null
pointer constant isnot ni | but O, which works almost as well, except that an uncast
0 inanon-pointer context generates an integer zero instead of an error message, and
iIf that uncast 0 was supposed to be a null pointer constant, the code may not work.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.14.html [26/03/2003 11:43:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.15

Question 5.15

I'm confused. | just can't understand all this null pointer stuff.

Follow these two simple rules:

1. When you want a null pointer constant in source code, use 0" or "NULL".
2. If theusage of 0" or "NULL" isan argument in afunction call, cast it to the
pointer type expected by the function being called.

The rest of the discussion has to do with other peopl€'s misunderstandings, with the
internal representation of null pointers (which you shouldn't need to know), and with
ANSI C refinements. Understand questions 5.1, 5.2, and 5.4, and consider 5.3, 5.9,

5.13, and 5.14, and you'll do fine.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.15.html [26/03/2003 11:43:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.16

Question 5.16

Given all the confusion surrounding null pointers, wouldn't it be easier simply to
require them to be represented internally by zeroes?

If for no other reason, doing so would be ill-advised because it would unnecessarily
constrain implementations which would otherwise naturally represent null pointers
by special, nonzero bit patterns, particularly when those values would trigger
automatic hardware traps for invalid accesses.

Besides, what would such arequirement really accomplish? Proper understanding of
null pointers does not require knowledge of the internal representation, whether zero
or nonzero. Assuming that null pointers are internally zero does not make any code

easier to write (except for a certain ill-advised usage of cal | oc; see question 7.31).

Known-zero internal pointers would not obviate castsin function calls, because the
size of the pointer might still be different from that of ani nt . (If “"nil" were used to
request null pointers, as mentioned in question 5.14, the urge to assume an internal

zero representation would not even arise.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.16.html [26/03/2003 11:43:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.20

Question 5.20

What does a run-time ""null pointer assignment” error mean? How do | track it
down?

This message, which typically occurs with MS-DOS compilers (see, therefore,
section 19) means that you've written, viaa null (perhaps because uninitialized)

pointer, to location 0. (See also question 16.8.)

A debugger may let you set a data breakpoint or watchpoint or something on location
0. Alternatively, you could write a bit of code to stash away a copy of 20 or so bytes
from location O, and periodically check that the memory at location O hasn't changed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g5.20.html [26/03/2003 11:43:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.8

Question 16.8

What do " Segmentation violation" and “"Bus error" mean?

These generally mean that your program tried to access memory it shouldn't have,
invariably as aresult of improper pointer use. Likely causes are inadvertent use of
null pointers (see also questions 5.2 and 5.20) or uninitialized, misaligned, or
otherwise improperly allocated pointers (see questions 7.1 and 7.2); corruption of the
mal | oc arena (see question 7.19); and mismatched function arguments, especially
involving pointers; two possibilitiesare scanf (seequestion 12.12) andf pri nt f
(make sureit receivesitsfirst FI LE * argument).

See also questions 16.3 and 16.4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q16.8.html [26/03/2003 11:43:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.3

Question 6.3

So what is meant by the " equivalence of pointers and arrays' in C?

Much of the confusion surrounding arrays and pointersin C can be traced to a
misunderstanding of this statement. Saying that arrays and pointers are " equivalent”
means neither that they are identical nor even interchangeable.

“Equivalence'’ refersto the following key definition:

An Ivalue of type array-of-T which appears in an expression decays
(with three exceptions) into a pointer to its first element; the type of
the resultant pointer is pointer-to-T.

(The exceptions are when the array isthe operand of asi zeof or & operator, or isa
string literal initializer for a character array.)

As a consequence of this definition, the compiler doesn't apply the array subscripting
operator [] that differently to arrays and pointers, after all. In an expression of the
forma[i], the array decaysinto a pointer, following the rule above, and is then
subscripted just as would be a pointer variable in the expression p[i] (although the
eventual memory accesses will be different, as explained in question 6.2). If you

were to assign the array's address to the pointer:
p = a;
then p[3] and a[3] would access the same el ement.

See also question 6.8.

References. K&R1 Sec. 5.3 pp. 93-6
K&R2 Sec. 5.3 p. 99

ANSI Sec. 3.2.2.1, Sec. 3.3.2.1, Sec. 3.3.6
SO Sec. 6.2.2.1, Sec. 6.3.2.1, Sec. 6.3.6
H&S Sec. 5.4.1p. 124

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q6.3.html (1 of 2) [26/03/2003 11:43:47 p.m.]

Question 6.3

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.3.html (2 of 2) [26/03/2003 11:43:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.21

Question 6.21

Why doesn't si zeof properly report the size of an array when the array isa
parameter to afunction?

The compiler pretends that the array parameter was declared as a pointer (see
guestion 6.4), and si zeof reportsthe size of the pointer.

References. H& S Sec. 7.5.2 p. 195

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.21.html [26/03/2003 11:43:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.7

Question 6.7

How can an array be an lvalue, if you can't assign to it?

The ANSI C Standard definesa ™ modifiable Ivalue," which an array is not.

References: ANSI Sec. 3.2.2.1
SO Sec. 6.2.2.1

Rationale Sec. 3.2.2.1

H&S Sec. 7.1 p. 179

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.7.html [26/03/2003 11:43:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.14

Question 6.14

How can | set an array's size at run time?
How can | avoid fixed-sized arrays?

The equivalence between arrays and pointers (see question 6.3) allows a pointer to
mal | oc'ed memory to simulate an array quite effectively. After executing

#i ncl ude <stdlib. h>
int *dynarray = (int *)malloc(10 * sizeof(int));

(and if the call to mal | oc succeeds), you can referencedynarray[i] (fori from
0to9) just asif dynar r ay were aconventional, statically-allocated array (i nt
a[10]). See aso question 6.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.14.html [26/03/2003 11:43:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.16

Question 6.16

How can | dynamically alocate a multidimensional array?

It isusually best to allocate an array of pointers, and then initialize each pointer to a dynamically-
allocated “"row." Here is atwo-dimensional example:

#i ncl ude <stdlib. h>

int **arrayl = (int **)malloc(nrows * sizeof(int *));
for(i =0; I < nrows; |++)
arrayl[i] = (int *)malloc(ncolums * sizeof(int));

(Inreal code, of course, al of mal | oc's return values would be checked.)

Y ou can keep the array's contents contiguous, while making later reallocation of individual rows
difficult, with abit of explicit pointer arithmetic:

int **array2 = (int **)malloc(nrows * sizeof(int *));
array2[0] = (int *)malloc(nrows * ncolums * sizeof (int));
for(i =1; i < nrows; |++)

array2[i] = array2[0] + i * ncolums;

In either case, the elements of the dynamic array can be accessed with normal-looking array
subscripts;arrayx[i][j] (forO<=i <NROA5sand 0<=j < NCOLUWS).

If the double indirection implied by the above schemes is for some reason unacceptable, you can
simulate atwo-dimensional array with a single, dynamically-allocated one-dimensional array:

int *array3 = (int *)malloc(nrows * ncolums * sizeof(int));

However, you must now perform subscript calculations manually, accessing thei ,j th element with
array3[i * ncolums + j]. (A macro could hidethe explicit calculation, but invoking it
would require parentheses and commas which wouldn't look exactly like multidimensional array
syntax, and the macro would need access to at |east one of the dimensions, as well. See also question
6.19)

Finally, you could use pointers to arrays:

int (*array4)[NCOLUWNS] =
(int (*)[NCOLUWS]) mal l oc(nrows * sizeof (*array4));

but the syntax starts getting horrific and at most one dimension may be specified at run time.

With all of these techniques, you may of course need to remember to free the arrays (which may take
several steps; see question 7.23) when they are no longer needed, and you cannot necessarily intermix

http://www.eskimo.com/~scs/C-fag/q6.16.html (1 of 2) [26/03/2003 11:43:58 p.m.]

Question 6.16

dynamically-allocated arrays with conventional, statically-allocated ones (see question 6.20, and also
guestion 6.18).

All of these techniques can also be extended to three or more dimensions.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.16.html (2 of 2) [26/03/2003 11:43:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.9

Question 6.9

Someone explained to me that arrays were really just constant pointers.

Thisisabit of an oversimplification. An array nameis "“constant” in that it cannot
be assigned to, but an array is not a pointer, as the discussion and pictures in question
6.2 should make clear. See also questions 6.3 and 6.8.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.9.html [26/03/2003 11:43:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.11

Question 6.11

| came across some ~joke" code containing the ““expression” 5["abcdef "] . How
can thisbe legal C?

Yes, Virginia, array subscripting is commutative in C. This curious fact follows from
the pointer definition of array subscripting, namely that a[e] isidentical to
*((a)+(e)),for any two expressionsa and e, aslong as one of them is a pointer
expression and one isintegral. This unsuspected commutativity is often mentioned in
C texts asif it were something to be proud of, but it finds no useful application
outside of the Obfuscated C Contest (see question 20.36).

References: Rationale Sec. 3.3.2.1
H&S Sec. 5.4.1 p. 124, Sec. 7.4.1 pp. 186-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.11.html [26/03/2003 11:44:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.12

Question 6.12

Since array references decay into pointers, if ar r isan array, what's the difference
betweenarr and &arr ?

The type.

In Standard C, &ar r yields a pointer, of type pointer-to-array-of-T, to the entire
array. (In pre-ANSI C, the & in &ar r generally elicited awarning, and was generally
ignored.) Under all C compilers, asimple reference (without an explicit &) to an
array yields a pointer, of type pointer-to-T, to the array'sfirst element. (See also
guestions 6.3, 6.13, and 6.18.)

References: ANSI Sec. 3.2.2.1, Sec. 3.3.3.2
SO Sec. 6.2.2.1, Sec. 6.3.3.2

Rationale Sec. 3.3.3.2

H&S Sec. 7.5.6 p. 198

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.12.html [26/03/2003 11:44:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.13

Question 6.13

How do | declare a pointer to an array?

Usually, you don't want to. When people speak casually of apointer to an array, they
usually mean a pointer to itsfirst element.

Instead of a pointer to an array, consider using a pointer to one of the array's
elements. Arrays of type T decay into pointersto type T (see question 6.3), which is
convenient; subscripting or incrementing the resultant pointer will access the
individual members of the array. True pointers to arrays, when subscripted or
incremented, step over entire arrays, and are generally useful only when operating on
arrays of arrays, if at all. (See question 6.18.)

If you really need to declare a pointer to an entire array, use something like i nt
(*ap) [N ; " where Nisthe size of the array. (See also question 1.21.) If the size of

the array is unknown, N can in principle be omitted, but the resulting type, ~ pointer
to array of unknown size," is useless.

See also question 6.12.

References: ANSI Sec. 3.2.2.1
SO Sec. 6.2.2.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.13.html [26/03/2003 11:44:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.18

Question 6.18

My compiler complained when | passed atwo-dimensional array to afunction expecting a
pointer to a pointer.

The rule (see question 6.3) by which arrays decay into pointers is not applied recursively. An

array of arrays (i.e. atwo-dimensional array in C) decaysinto a pointer to an array, not a pointer
to apointer. Pointers to arrays can be confusing, and must be treated carefully; see also question
6.13. (The confusion is heightened by the existence of incorrect compilers, including some old

versions of pcc and pcc-derived | i nt s, which improperly accept assignments of multi-
dimensional arraysto multi-level pointers.)

If you are passing atwo-dimensional array to afunction:

i nt array[NROAS] [NCOLUWNS] ;
f(array);

the function's declaration must match:

f(int a[][NCOLUWS])
{ ...}

or

f(int (*ap)[NCOLUWS]) /* ap is a pointer to an array */
{ ...}

In the first declaration, the compiler performs the usual implicit parameter rewriting of ~"array of
array" to " “pointer to array" (see questions 6.3 and 6.4); in the second form the pointer
declaration is explicit. Since the called function does not allocate space for the array, it does not
need to know the overall size, so the number of rows, NROAS, can be omitted. The "“shape" of
the array is still important, so the column dimension NCOLUMWNS (and, for three- or more
dimensional arrays, the intervening ones) must be retained.

If afunction is already declared as accepting a pointer to a pointer, it is probably meaningless to
pass atwo-dimensional array directly to it.

See aso questions 6.12 and 6.15.

References: K&R1 Sec. 5.10 p. 110
K&R2 Sec. 5.9 p. 113
H& S Sec. 5.4.3 p. 126

http://www.eskimo.com/~scs/C-fag/q6.18.html (1 of 2) [26/03/2003 11:44:04 p.m.]

Question 6.18

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.18.html (2 of 2) [26/03/2003 11:44:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.15

Question 6.15

How can | declare local arrays of a size matching a passed-in array?

You can't, in C. Array dimensions must be compile-time constants. (gcc provides
parameterized arrays as an extension.) You'll have to use mal | oc, and remember to
call f r ee before the function returns. See also questions 6.14, 6.16, 6.19, 7.22, and

maybe 7.32.

References: ANSI Sec. 3.4, Sec. 3.5.4.2
|SO Sec. 6.4, Sec. 6.5.4.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.15.html [26/03/2003 11:44:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.19

Question 6.19

How do | write functions which accept two-dimensional arrays when the ““width" is not known at
compile time?

It's not easy. One way isto passin apointer tothe[0] [0] element, along with the two dimensions,
and simulate array subscripting "~ by hand:"

f2(aryp, nrows, ncol ums)

int *aryp;
I nt nrows, ncol ums;
{ ... array[i][]j] iIs accessed as aryp[i * ncolums + j] ... }

This function could be called with the ar r ay from question 6.18 as
f2(&rray[0][0], NROA5, NCOLUWS);

It must be noted, however, that a program which performs multidimensional array subscripting " by
hand" in thisway is not in strict conformance with the ANSI C Standard; according to an official
interpretation, the behavior of accessing (&ar ray[0] [0]) [x] isnot defined for x >=

NCOL UWNS.

gcc alowslocal arraysto be declared having sizes which are specified by afunction's arguments, but
thisis a nonstandard extension.

When you want to be able to use a function on multidimensional arrays of various sizes, one solution is
to simulate al the arrays dynamically, asin question 6.16.

See also questions 6.18, 6.20, and 6.15.

References; ANSI Sec. 3.3.6
ISO Sec. 6.3.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.19.html [26/03/2003 11:44:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.22

Question 7.22

When | call mal | oc to allocate memory for alocal pointer, do | have to explicitly
freeit?

Y es. Remember that a pointer is different from what it pointsto. Local variables are
deallocated when the function returns, but in the case of a pointer variable, this
means that the pointer is deallocated, not what it points to. Memory allocated with
mal | oc always persists until you explicitly freeit. In general, for every call to

mal | oc, there should be a corresponding call tof r ee.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.22.html [26/03/2003 11:44:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.32

Question 7.32

What isal | oca and why isits use discouraged?

al | oca alocates memory which is automatically freed when the function which
called al | oca returns. That is, memory allocated withal | oca islocal to a
particular function's " "stack frame" or context.

al | oca cannot be written portably, and is difficult to implement on machines
without a conventional stack. Its useis problematical (and the obvious

implementation on a stack-based machine fails) when its return value is passed
directly to another function, asinf get s(al | oca(100), 100, stdin).

For these reasons, al | oca is not Standard and cannot be used in programs which
must be widely portable, no matter how useful it might be.

See also question 7.22.

References: Rationale Sec. 4.10.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.32.html [26/03/2003 11:44:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.23

Question 7.23

I'm allocating structures which contain pointers to other dynamically-allocated
objects. When | free a structure, do | have to free each subsidiary pointer first?

Yes. In general, you must arrange that each pointer returned from mal | oc be
individually passed to f r ee, exactly once (if it isfreed at al).

A good rule of thumb isthat for each call to mal | oc in aprogram, you should be
able to point at the call to f r ee which frees the memory alocated by that mal | oc
call.

See aso question 7.24.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.23.html [26/03/2003 11:44:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.20

Question 6.20

How can | use statically- and dynamically-allocated multidimensional arrays
Interchangeably when passing them to functions?

There is no single perfect method. Given the declarations

i nt array[NROAS] [NCOLUWNS] ;

int **arrayl, /* ragged */
int **array2; /* contiguous */
int *array3; [* "flattened" */

int (*array4)[NCOLUWS] ;

with the pointersinitialized as in the code fragments in question 6.16, and functions
declared as

f1(int a[][NCOLUWS], int nrows, int ncolums);
f2(int *aryp, int nrows, int ncolums);
f3(int **pp, int nrows, int ncolums);

wheref 1 accepts a conventional two-dimensional array, f 2 acceptsa ~ flattened” two-
dimensional array, and f 3 accepts a pointer-to-pointer, simulated array (see also
guestions 6.18 and 6.19), the following calls should work as expected:

fl1(array, NROA5, NCOLUWNS);
fl(array4, nrows, NCOLUWNS);
f2(&array[0][0], NROAS5, NCOLUWNS);
f2(*array, NROA5, NCOLUWS) ;
f2(*array2, nrows, ncolums);
f2(array3, nrows, ncolums);
f2(*array4, nrows, NCCLUWS);
f3(arrayl, nrows, ncolums);
f3(array2, nrows, ncolums);

The following two calls would probably work on most systems, but involve
questionable casts, and work only if the dynamic ncol umms matches the static
NCOLUMWNS:

f1((int (*)[NCOLUWNS]) (*array2), nrows, ncolums);
f1((int (*)[NCOLUWS])array3, nrows, ncolums);

http://www.eskimo.com/~scs/C-fag/q6.20.html (1 of 2) [26/03/2003 11:44:14 p.m.]

Question 6.20

It must again be noted that passing &ar r ay[O] [O] (or, equivalently, *ar r ay) to
f 2 isnot strictly conforming; see question 6.19.

If you can understand why all of the above calls work and are written as they are, and
If you understand why the combinations that are not listed would not work, then you
have a very good understanding of arrays and pointersin C.

Rather than worrying about all of this, one approach to using multidimensional arrays
of various sizesis to make them all dynamic, asin question 6.16. If there are no static
multidimensional arrays--if al arrays arealocated likearrayl orarray2 in
guestion 6.16--then all functions can be written like f 3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q6.20.html (2 of 2) [26/03/2003 11:44:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.17

Question 6.17

Here'saneat trick: if | write

int realarray[10];
int *array = &ealarray[-1];

| cantreat ar r ay asif it were a 1-based array.

Although this technique is attractive (and was used in old editions of the book
Numerical Recipesin C), it does not conform to the C standards. Pointer arithmetic
is defined only as long as the pointer points within the same allocated block of
memory, or to the imaginary " terminating” element one past it; otherwise, the
behavior is undefined, even if the pointer is not dereferenced. The code above could
fail if, while subtracting the offset, an illegal address were generated (perhaps
because the address tried to ~ wrap around" past the beginning of some memory

segment).

References. K&R2 Sec. 5.3 p. 100, Sec. 5.4 pp. 102-3, Sec. A7.7 pp. 205-6
ANSI Sec. 3.3.6

SO Sec. 6.3.6

Rationale Sec. 3.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/g6.17.html [26/03/2003 11:44:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.23

Question 12.23

Why does everyone say not to useget s() ?

Unlikef get s(), get s() cannot be told the size of the buffer it'sto read into, so it
cannot be prevented from overflowing that buffer. As ageneral rule, always use
f get s() . See question 7.1 for a code fragment illustrating the replacement of

gets() withfgets().

References: Rationale Sec. 4.9.7.2
H&S Sec. 15.7 p. 356

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.23.html [26/03/2003 11:44:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.2

Question 7.2

| can't get st r cat towork. | tried

char *s1 = "Hello, ";
char *s2 = "world!";
char *s3 = strcat(sl, s2);

but | got strange resullts.

Asin question 7.1, the main problem here is that space for the concatenated result is
not properly allocated. C does not provide an automatically-managed string type. C
compilers only allocate memory for objects explicitly mentioned in the source code
(in the case of ""strings,” thisincludes character arrays and string literals). The
programmer must arrange for sufficient space for the results of run-time operations
such as string concatenation, typically by declaring arrays, or by calling mal | oc.

st r cat performs no alocation; the second string is appended to the first one, in
place. Therefore, one fix would be to declare the first string as an array:

char s1[20] = "Hello, ";

Sincest r cat returnsthe value of itsfirst argument (s 1, in this case), the variable
s3 issuperfluous.

Theoriginal call tost r cat inthe question actually has two problems: the string
literal pointed to by s1, besides not being big enough for any concatenated text, is
not necessarily writable at al. See question 1.32.

References. CT&P Sec. 3.2 p. 32

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.2.html [26/03/2003 11:44:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.3

Question 7.3

But the man page for st r cat saysthat it takestwo char *'sasarguments. How
am | supposed to know to allocate things?

In general, when using pointers you always have to consider memory allocation, if
only to make sure that the compiler isdoing it for you. If alibrary function's
documentation does not explicitly mention allocation, it is usually the caller's
problem.

The Synopsis section at the top of a Unix-style man page or in the ANSI C standard
can be misleading. The code fragments presented there are closer to the function
definitions used by an implementor than the invocations used by the caller. In
particular, many functions which accept pointers (e.g. to structures or strings) are
usually called with the address of some object (a structure, or an array--see questions
6.3 and 6.4). Other common examplesaret i me (see question 13.12) and st at .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.3.html [26/03/2003 11:44:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.12

Question 13.12

How can | get the current date or time of day in a C program?

Just usetheti me, cti nme, and/or | ocal ti e functions. (These routines have
been around for years, and are in the ANSI standard.) Here is a simple example:

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

mai n()

{ .
time_t now,
ti me(&now);
printf("lIt's %24s.\n", ctine(&ow));
return O;

}

References. K& R2 Sec. B10 pp. 255-7

ANS| Sec. 4.12

SO Sec. 7.12

H&S Sec. 18

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.12.html [26/03/2003 11:44:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.5

Question 7.5

| have afunction that is supposed to return a string, but when it returns to its caller, the
returned string is garbage.

Make sure that the pointed-to memory is properly alocated. The returned pointer
should be to a statically-allocated buffer, or to a buffer passed in by the caller, or to
memory obtained with mal | oc, but not to alocal (automatic) array. In other words,
never do something like

char *itoa(int n)

{
char retbuf[20]; /* VWRONG */
sprintf(retbuf, "%", n);
return retbuf,; [* WWRONG */
}

Onefix (which isimperfect, especially if the function in question is called recursively,
or if several of itsreturn values are needed simultaneously) would be to declare the
return buffer as

static char retbuf[20];

See also questions 12.21 and 20.1.

References: ANSI Sec. 3.1.2.4
ISO Sec. 6.1.2.4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.5.html [26/03/2003 11:44:27 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.21

Question 12.21

How can | tell how much destination buffer space I'll need for an arbitrary spri nt f
call? How can | avoid overflowing the destination buffer with spri nt f ?

There are not (yet) any good answers to either of these excellent questions, and this
represents perhaps the biggest deficiency in the traditional stdio library.

When the format string being used with spri nt f isknown and relatively simple, you
can usually predict a buffer size in an ad-hoc way. If the format consists of one or two
s's, you can count the fixed charactersin the format string yourself (or let si zeof
count them for you) and add in the result of calling st r | en on the string(s) to be
inserted. Y ou can conservatively estimate the size that %@ will expand to with code like:

#include <limts. h>
char buf[(sizeof(int) * CHARBIT + 2) / 3 + 1 + 1];
sprintf(buf, "%l", n);

(This code computes the number of characters required for a base-8 representation of a
number; a base-10 expansion is guaranteed to take as much room or less.)

When the format string is more complicated, or is not even known until run time,
predicting the buffer size becomes as difficult as reimplementing spri nt f , and
correspondingly error-prone (and inadvisable). A last-ditch technique which is
sometimes suggested isto usef pri nt f to print the same text to a bit bucket or
temporary file, and thento look at f pri nt f 'sreturn value or the size of the file (but
see question 19.12).

If there's any chance that the buffer might not be big enough, you won't want to call
spri nt f without some guarantee that the buffer will not overflow and overwrite some
other part of memory. Several stdio's (including GNU and 4.4bsd) provide the obvious
snpri ntf function, which can be used like this:

snprintf(buf, bufsize, "You typed \"%\"", answer);

and we can hope that a future revision of the ANSI/ISO C Standard will include this
function.

http://www.eskimo.com/~scs/C-fag/q12.21.html (1 of 2) [26/03/2003 11:44:28 p.m.]

Question 12.21

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.21.html (2 of 2) [26/03/2003 11:44:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.6

Question 7.6

Why am | getting ~“warning: assignment of pointer from integer lacks a cast” for
calstomal | oc?

Haveyou #i ncl uded<st dl i b. h>, or otherwise arranged for mal | oc to be
declared properly?

References. H& S Sec. 4.7 p. 101

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.6.html [26/03/2003 11:44:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.7

Question 7.7

Why does some code carefully cast the values returned by nal | oc to the pointer
type being allocated?

Before ANSI/ISO Standard C introduced thevoi d * generic pointer type, these
casts were typically required to silence warnings (and perhaps induce conversions)
when assigning between incompatible pointer types. (Under ANSI/ISO Standard C,
these casts are no longer necessary.)

References. H& S Sec. 16.1 pp. 386-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.7.html [26/03/2003 11:44:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.8

Question 7.8

| see code like

char *p = malloc(strlen(s) + 1);
strcpy(p, S);

Shouldn't that bemal | oc((strlen(s) + 1) * sizeof(char))?

It's never necessary to multiply by si zeof (char), sincesi zeof (char) is, by
definition, exactly 1. (On the other hand, multiplying by si zeof (char) doesn't
hurt, and may help by introducing asi ze_t into the expression.) See also question
8.9.

References: ANSI Sec. 3.3.3.4
SO Sec. 6.3.3.4
H&S Sec. 7.5.2 p. 195

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.8.html [26/03/2003 11:44:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.9

Question 8.9

| think something's wrong with my compiler: | just noticed that si zeof (' a') is2,
not 1 (i.e. not si zeof (char)).

Perhaps surprisingly, character constantsin C are of typei nt ,sosi zeof (' a') is
si zeof (i nt) (thoughit'sdifferent in C++). See also question 7.8.

References: ANSI Sec. 3.1.3.4
SO Sec. 6.1.3.4
H&S Sec. 2.7.3p. 29

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q8.9.html [26/03/2003 11:44:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.14

Question 7.14

I've heard that some operating systems don't actually alocate mal | oc'ed memory
until the program triesto useit. Isthislegal?

It's hard to say. The Standard doesn't say that systems can act thisway, but it doesn't
explicitly say that they can't, either.

References: ANSI Sec. 4.10.3
SO Sec. 7.10.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.14.html [26/03/2003 11:44:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.16

Question 7.16
I'm allocating alarge array for some numeric work, using the line
double *array = malloc(256 * 256 * sizeof (double));

mal | oc isn't returning null, but the program is acting strangely, asif it's overwriting
memory, or mal | oc isn't alocating as much as | asked for, or something.

Notice that 256 x 256 is 65,536, which will not fit ina 16-biti nt , even before you
multiply it by si zeof (doubl e) . If you need to allocate this much memory, you'll
have to be careful. If si ze_t (thetype accepted by mal | oc) isa 32-bit type on your
machine, but i nt is 16 bits, you might be able to get away with writing 256 * (256
* sizeof (doubl e)) (seequestion 3.14). Otherwise, you'll have to break your data
structure up into smaller chunks, or use a 32-bit machine, or use some nonstandard
memory allocation routines. See also question 19.23.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.16.html [26/03/2003 11:44:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.23

Question 19.23

How can | alocate arrays or structures bigger than 64K?

A reasonable computer ought to give you transparent access to all available memory.
If you're not so lucky, you'll either have to rethink your program's use of memory, or
use various system-specific techniques.

64K is (still) apretty big chunk of memory. No matter how much memory your
computer has available, it's asking alot to be able to allocate huge amounts of it
contiguously. (The C Standard does not guarantee that a single object can be larger
than 32K.) Often it's a good idea to use data structures which don't require that all
memory be contiguous. For dynamically-allocated multidimensional arrays, you can
use pointersto pointers, asillustrated in question 6.16. Instead of alarge array of

structures, you can use alinked list, or an array of pointers to structures.

If you're using a PC-compatible (8086-based) system, and running up against a 640K
limit, consider using *"huge" memory model, or expanded or extended memory, or
malloc variants such ashal | oc or f ar mal | oc, or a32-bit "“flat" compiler (e.g.
digpp, see question 18.3), or some kind of a DOS extender, or another operating

system.

References: ANSI Sec. 2.2.4.1
SO Sec. 5.2.4.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.23.html [26/03/2003 11:44:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.17

Question 7.17

I've got 8 meg of memory in my PC. Why can | only seem to mal | oc 640K or so?

Under the segmented architecture of PC compatibles, it can be difficult to use more
than 640K with any degree of transparency. See also question 19.23.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.17.html [26/03/2003 11:44:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.19

Question 7.19

My program is crashing, apparently somewhere down inside mal | oc, but | can't see
anything wrong with it.

It isunfortunately very easy to corrupt mal | oc'sinternal data structures, and the
resulting problems can be stubborn. The most common source of problems iswriting
moreto amal | oc'ed region than it was allocated to hold; a particularly common
bugistomal | oc(strlen(s)) insteadof strl en(s) + 1. Other problems
may involve using pointersto freed storage, f r eeing pointerstwice, f r eeing
pointers not obtained from mal | oc, or tryingtor eal | oc anull pointer (see
guestion 7.30).

See also questions 7.26, 16.8, and 18.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.19.html [26/03/2003 11:44:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.30

Question 7.30

Isit legal to pass anull pointer asthe first argument tor eal | oc? Why would you
want to?

ANSI C sanctions thisusage (and therelated r eal | oc(..., 0), which frees),
although several earlier implementations do not support it, so it may not be fully
portable. Passing an initially-null pointer tor eal | oc can make it easier to write a
self-starting incremental allocation algorithm.

References: ANSI Sec. 4.10.3.4
|SO Sec. 7.10.3.4
H&S Sec. 16.3 p. 388

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.30.html [26/03/2003 11:44:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.26

Question 7.26

How doesf r ee know how many bytesto free?

The malloc/free implementation remembers the size of each block allocated and
returned, so it is not necessary to remind it of the size when freeing.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.26.html [26/03/2003 11:44:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.2

Question 18.2

How can | track down these pesky malloc problems?

A number of debugging packages exist to help track down mal | oc problems; one
popular one is Conor P. Cahill's ""dbmalloc," posted to comp.sources.misc in 1992,
volume 32. Others are “leak," available in volume 27 of the comp.sources.unix
archives; JMalloc.c and JMalloc.h in the * Snippets” collection; and MEMDEBUG
from ftp.crpht.lu in pub/sources/memdebug . See also question 18.16.

A number of commercial debugging tools exist, and can be invaluable in tracking
down mal | oc-related and other stubborn problems:

. Bounds-Checker for DOS, from Nu-Mega Technologies, P.O. Box 7780,
Nashua, NH 03060-7780, USA, 603-889-2386.

. CodeCenter (formerly Saber-C) from Centerline Software (formerly Saber),
10 Fawcett Street, Cambridge, MA 02138-1110, USA, 617-498-3000.

. Insight, from ParaSoft Corporation, 2500 E. Foothill Blvd., Pasadena, CA
91107, USA, 818-792-9941, insight@parasoft.com .

« Purify, from Pure Software, 1309 S. Mary Ave., Sunnyvale, CA 94087, USA,
800-224-7873, info-home@pure.com .

. SENTINEL, from AIB Software, 46030 Manekin Plaza, Dulles, VA 20166,
USA, 703-430-9247, 800-296-3000, info@aib.com .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.2.html [26/03/2003 11:44:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.20

Question 7.20

Y ou can't use dynamically-allocated memory after you free it, can you?

No. Some early documentation for mal | oc stated that the contents of freed memory
were " left undisturbed,” but thisill-advised guarantee was never universal and is not
required by the C Standard.

Few programmers would use the contents of freed memory deliberately, but it is easy
to do so accidentally. Consider the following (correct) code for freeing asingly-
linked list:

struct list *listp, *nextp;

for(listp = base; listp !'= NULL; listp = nextp) {
nextp = |istp->next;
free((void *)Ilistp);

}

and notice what would happen if the more-obvious loop iteration expression | i st p
= | i st p- >next were used, without the temporary next p pointer.

References. K&R2 Sec. 7.8.5 p. 167
ANSI Sec. 4.10.3

SO Sec. 7.10.3

Rationale Sec. 4.10.3.2

H& S Sec. 16.2 p. 387

CT&P Sec. 7.10 p. 95

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.20.html [26/03/2003 11:44:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.21

Question 7.21

Why isn't apointer null after calingf r ee?
How unsafeisit to use (assign, compare) a pointer value after it's been freed?

When you call f r ee, the memory pointed to by the passed pointer is freed, but the
value of the pointer in the caller remains unchanged, because C's pass-by-value
semantics mean that called functions never permanently change the values of their
arguments. (See also question 4.8.)

A pointer value which has been freed is, strictly speaking, invalid, and any use of it,
even if is not dereferenced can theoretically lead to trouble, though as a quality of
implementation issue, most implementations will probably not go out of their way to
generate exceptions for innocuous uses of invalid pointers.

References: ANSI Sec. 4.10.3
SO Sec. 7.10.3
Rationale Sec. 3.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.21.html [26/03/2003 11:44:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.24

Question 7.24

Must | free allocated memory before the program exits?

Y ou shouldn't have to. A real operating system definitively reclaims all memory
when a program exits. Nevertheless, some personal computers are said not to reliably
recover memory, and all that can be inferred from the ANSI/ISO C Standard is that
thisisa "quality of implementation issue."

References: ANSI Sec. 4.10.3.2
SO Sec. 7.10.3.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.24.html [26/03/2003 11:44:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.25

Question 7.25

| have aprogram which mal | ocsand later f r eesalot of memory, but memory
usage (as reported by ps) doesn't seem to go back down.

Most implementations of mal | oc/f r ee do not return f r eed memory to the
operating system (if thereis one), but merely make it available for future mal | oc
calls within the same program.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.25.html [26/03/2003 11:44:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.27

Question 7.27

So can | query the malloc package to find out how big an allocated block is?

Not portably.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q7.27.html [26/03/2003 11:44:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.1

Question 8.1

Why doesn't
strcat(string, '"!");
work?

Thereisavery real difference between characters and strings, and st r cat
concatenates strings.

Charactersin C are represented by small integers corresponding to their character set
values (see also question 8.6). Strings are represented by arrays of characters; you

usually manipulate a pointer to the first character of the array. It is never correct to
use one when the other is expected. To append a! to astring, use

strcat(string, "!'");

See also questions 1.32, 7.2, and 16.6.

References. CT& P Sec. 1.5 pp. 9-10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q8.1.html [26/03/2003 11:44:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.6

Question 8.6

How can | get the numeric (character set) value corresponding to a character, or vice
versa?

In C, characters are represented by small integers corresponding to their values (in
the machine's character set), so you don't need a conversion routine: if you have the
character, you have its value.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q8.6.html [26/03/2003 11:44:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.6

Question 16.6

Why does this code:

char *p = "hello, world!";
p[0] = "H;

crash?

String literals are not necessarily modifiable, except (in effect) when they are used as
array initializers. Try

char a[] = "hello, world!";

See aso question 1.32.

References: ANSI Sec. 3.1.4
1SO Sec. 6.1.4
H&S Sec. 2.7.4 pp. 31-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q16.6.html [26/03/2003 11:44:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.2

Question 8.2

I'm checking a string to seeif it matches a particular value. Why isn't this code
working?

char *string;

I f(string == "value") {
/* string matches "val ue" */

Stringsin C are represented as arrays of characters, and C never manipulates
(assigns, compares, etc.) arrays as awhole. The == operator in the code fragment
above compares two pointers--the value of the pointer variablest ri ng and a
pointer to the string literal " val ue" --to seeif they are equal, that is, if they point to
the same place. They probably don't, so the comparison never succeeds.

To compare two strings, you generally use the library function st r cnp:

I f(strcnp(string, "value") == 0) {
/* string matches "val ue" */

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q8.2.html [26/03/2003 11:44:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.3

Question 9.3

Isi f (p),wherep isapointer, avalid conditional ?

Y es. See question 5.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q9.3.html [26/03/2003 11:44:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.3

Question 10.3

How can | write a generic macro to swap two values?

There is no good answer to this question. If the values are integers, a well-known
trick using exclusive-OR could perhaps be used, but it will not work for floating-
point values or pointers, or if the two values are the same variable (and the
““obvious" supercompressed implementation for integral typesa®=b*=a”=b is
illegal due to multiple side-effects; see question 3.2). If the macro isintended to be
used on values of arbitrary type (the usual goal), it cannot use atemporary, since it
does not know what type of temporary it needs (and would have a hard time naming
itif it did), and standard C does not provide at ypeof operator.

The best al-around solution is probably to forget about using a macro, unless you're
willing to passin the type as a third argument.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.3.html [26/03/2003 11:44:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.4

Question 10.4

What's the best way to write a multi-statement macro?

The usual goal isto write a macro that can be invoked as if it were a statement
consisting of asingle function call. This means that the "caller" will be supplying
the final semicolon, so the macro body should not. The macro body cannot therefore
be a simple brace-enclosed compound statement, because syntax errors would result
If it were invoked (apparently as a single statement, but with a resultant extra
semicolon) as theif branch of an if/else statement with an explicit else clause.

The traditional solution, therefore, isto use

#defi ne MACRQ(argl, arg2) do { \
/| * decl arations */ \
stnt1, \
st 2; \
[* ... * \
} whil e(0) /* (no trailing ;) */

When the caller appends a semicolon, this expansion becomes a single statement
regardless of context. (An optimizing compiler will remove any " dead" tests or
branches on the constant condition 0, although | i nt may complain.)

If al of the statements in the intended macro are simple expressions, with no
declarations or loops, another technique is to write a single, parenthesized expression
using one or more comma operators. (For an example, see the first DEBUG) macro
in question 10.26.) This technique also allows avalue to be " returned.”

References. H& S Sec. 3.3.2 p. 45
CT&P Sec. 6.3 pp. 82-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.4.html [26/03/2003 11:44:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

http://www.eskimo.com/~scs/C-fag/q10.26.html

Question 10.26

How can | write a macro which takes a variable number of arguments?

One popular trick is to define and invoke the macro with a single, parenthesized
““argument” which in the macro expansion becomes the entire argument list, parentheses
and al, for afunction suchaspri nt f:

#define DEBUG args) (printf("DEBUG "), printf args)

if(n !=0) DEBUE ("n is %\n", n));

The obvious disadvantage is that the caller must always remember to use the extra
parentheses.

gcc has an extension which allows a function-like macro to accept a variable number of
arguments, but it's not standard. Other possible solutions are to use different macros
(DEBUGL, DEBUR2, €tc.) depending on the number of arguments, to play games with
commas:

#defi ne DEBUE args) (printf("DEBUG "), printf(args))
#define _

DEBUG("i = %" _ i)

It is often better to use a bona-fide function, which can take a variable number of
arguments in awell-defined way. See questions 15.4 and 15.5.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.26.html [26/03/2003 11:44:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.7

Question 10.7

Isit acceptable for one header fileto #i ncl ude another?

It's aquestion of style, and thus receives considerable debate. Many people believe
that “"nested #i ncl ude files" are to be avoided: the prestigious Indian Hill Style
Guide (see question 17.9) disparages them; they can make it harder to find relevant
definitions; they can lead to multiple-definition errorsif afileis#i ncl uded twice;
and they make manual Makefile maintenance very difficult. On the other hand, they
make it possible to use header filesin amodular way (a header file can #i ncl ude
what it needs itself, rather than requiring each #i ncl uder to do so); atool like

gr ep (or atagsfile) makesit easy to find definitions no matter where they are; a
popular trick along the lines of:

#i f ndef HFI LENAME USED
#def i ne HFI LENAME USED

... header file contents...
#endi f

(where a different bracketing macro name is used for each header file) makes a
header file "idempotent” so that it can safely be #i ncl uded multiple times; and
automated M akefile maintenance tools (which are a virtual necessity in large projects
anyway; see question 18.1) handle dependency generation in the face of nested

#i ncl ude fileseasily. See aso question 17.10.

References: Rationale Sec. 4.1.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.7.html [26/03/2003 11:44:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.1

Question 18.1

| need some C development tools.

Hereis acrude list of some which are available.

a C cross-reference generator
cflow, cxref, calls, cscope, xscope, or ixfw
a C beautifier/pretty-printer
cb, indent, GNU indent, or vgrind
arevision control or configuration management tool
RCS or SCCS
a C source obfuscator (shrouder)
obfus, shroud, or opgcp
a make" dependency generator
makedepend, or try cc - Morcpp -M
tools to compute code metrics
ccount, Metre, lcount, or csize, or see URL
http://www.gucis.queensu.ca: 1999/Software-Engineering/Cmetrics.html ; thereis
also a package sold by McCabe and Associates
a C lines-of-source counter
this can be done very crudely with the standard Unix utility we, and
considerably better withgrep -¢c "; "
a prototype generator
See question 11.31
atool to track down malloc problems
see gquestion 18.2
a selective" C preprocessor
See question 10.18
language trand ation tools
see questions 11.31 and 20.26
C verifiers (lint)
see gquestion 18.7
a C compiler!
See question 18.3

(Thislist of toolsis by no means complete; if you know of tools not mentioned,
you're welcome to contact thislist's maintainer.)

http://www.eskimo.com/~scs/C-fag/q18.1.html (1 of 2) [26/03/2003 11:44:57 p.m.]

http://www.qucis.queensu.ca:1999/Software-Engineering/Cmetrics.html

Question 18.1

Other lists of tools, and discussion about them, can be found in the Usenet
newsgroups comp.compilers and comp.software-eng .

See also questions 18.16 and 18.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.1.html (2 of 2) [26/03/2003 11:44:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.8

Question 10.8

Where are header (" #i ncl ude") files searched for?

The exact behavior isimplementation-defined (which meansthat it is supposed to be
documented; see question 11.33). Typically, headers named with <> syntax are

searched for in one or more standard places. Header filesnamed with" " syntax are
first searched for in the “"current directory,” then (if not found) in the same standard
places.

Traditionally (especially under Unix compilers), the current directory is taken to be
the directory containing the file containing the #i ncl ude directive. Under other
compilers, however, the current directory (if any) is the directory in which the
compiler was initially invoked. Check your compiler documentation.

References. K&R2 Sec. A12.4 p. 231
ANSI Sec. 3.8.2

SO Sec. 6.8.2

H&S Sec. 3.4 p. 55

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.8.html [26/03/2003 11:44:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.11

Question 10.11

| seem to be missing the system header file <sgt t y. h>. Can someone send me a
copy?

Standard headers exist in part so that definitions appropriate to your compiler,
operating system, and processor can be supplied. Y ou cannot just pick up a copy of
someone else's header file and expect it to work, unless that person is using exactly
the same environment. Ask your compiler vendor why the file was not provided (or
to send a replacement copy).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.11.html [26/03/2003 11:44:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.12

Question 10.12

How can | construct preprocessor #i f expressions which compare strings?

You can't do it directly; preprocessor #i f arithmetic uses only integers. Y ou can
#def i ne several manifest constants, however, and implement conditionals on
those.

See also question 20.17.

References. K&R2 Sec. 4.11.3p. 91
ANSI Sec. 3.8.1

SO Sec. 6.8.1

H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.12.html [26/03/2003 11:45:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.13

Question 10.13

Doesthesi zeof operator work in preprocessor #i f directives?

No. Preprocessing happens during an earlier phase of compilation, before type names
have been parsed. Instead of si zeof , consider using the predefined constants in
ANSI's<l i m ts. h>, if applicable, or perhapsa "configure" script. (Better yet, try
to write code which is inherently insensitive to type sizes.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 foothote 83
ISO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.13.html [26/03/2003 11:45:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.14

Question 10.14

Canl usean#i f def ina#def i ne line, to define something two different ways?

No. You can't " run the preprocessor on itself,” so to speak. What you can do is use
one of two completely separate #def i ne lines, depending on the #i f def setting.

References: ANSI Sec. 3.8.3, Sec. 3.8.34
SO Sec. 6.8.3, Sec. 6.8.3.4
H&S Sec. 3.2 pp. 40-1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.14.html [26/03/2003 11:45:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.15

Question 10.15

Isthere anything likean #i f def fort ypedef s?

Unfortunately, no. (See aso question 10.13.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83
SO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.15.html [26/03/2003 11:45:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.16

Question 10.16

How can | use a preprocessor #i f expression to tell if amachineis big-endian or
little-endian?

Y ou probably can't. (Preprocessor arithmetic usesonly | ong integers, and thereis
no concept of addressing.) Are you sure you need to know the machine's endianness
explicitly? Usualy it's better to write code which doesn't care). See also question
20.9.

References: ANSI Sec. 3.8.1
SO Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.16.html [26/03/2003 11:45:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.18

Question 10.18

| inherited some code which contains far too many #i f def 'sfor my taste. How can
| preprocess the code to leave only one conditional compilation set, without running
it through the preprocessor and expanding all of the#i ncl ude'sand #def i ne'sas
well?

There are programs floating around called uni f def ,rm f def , and scpp
(" "selective C preprocessor”) which do exactly this. See question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.18.html [26/03/2003 11:45:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.19

Question 10.19

How can | list all of the pre#def i ned identifiers?

There's no standard way, although it isa common need. If the compiler
documentation is unhelpful, the most expedient way is probably to extract printable
strings from the compiler or preprocessor executable with something like the Unix
st ri ngs utility. Beware that many traditional system-specific pre#def i ned
identifiers (e.g. “"uni x") are non-Standard (because they clash with the user's
namespace) and are being removed or renamed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.19.html [26/03/2003 11:45:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.20

Question 10.20

| have some old code that tries to construct identifiers with amacro like
#define Paste(a, b) a/**/b

but it doesn't work any more.

It was an undocumented feature of some early preprocessor implementations
(notably John Reiser's) that comments disappeared entirely and could therefore be
used for token pasting. ANSI affirms (as did K&R1) that comments are replaced
with white space. However, since the need for pasting tokens was demonstrated and
real, ANSI introduced a well-defined token-pasting operator, ##, which can be used
like this:

#defi ne Paste(a, b) a##b

See also question 11.17.

References: ANS| Sec. 3.8.3.3
SO Sec. 6.8.3.3

Rationale Sec. 3.8.3.3

H&S Sec. 3.3.9p. 52

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.20.html [26/03/2003 11:45:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.17

Question 11.17

I'm trying to use the ANSI "stringizing" preprocessing operator #' to insert the
value of a symbolic constant into a message, but it keeps stringizing the macro's
name rather than its value.

Y ou can use something like the following two-step procedure to force a macro to be
expanded as well as stringized:

#define Str(x) #x
#define Xstr(x) Str(x)
#define OP plus

char *opnane = Xstr(OP);

This code setsopnane to " pl us" rather than" OP" .

An equivalent circumlocution is necessary with the token-pasting operator ## when
the values (rather than the names) of two macros are to be concatenated.

References. ANSI Sec. 3.8.3.2, Sec. 3.8.3.5 example
SO Sec. 6.8.3.2, Sec. 6.8.3.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.17.html [26/03/2003 11:45:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.22

Question 10.22
Why isthe macro
#define TRACE(n) printf("TRACE %\n", n)

giving me the warning " “macro replacement within a string literal"? It seemsto be
expanding

TRACE(count) ;

printf("TRACE 9%\ count”, count);

See question 11.18.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.22.html [26/03/2003 11:45:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.18

Question 11.18

What does the message ~"warning: macro replacement within a string literal” mean?

Some pre-ANSI compilers/preprocessors interpreted macro definitions like

#define TRACE(var, fnt) printf("TRACE var = fm\n", var)
such that invocations like

TRACE(i, %) ;
were expanded as

printf("TRACE: i = %\n", i);

In other words, macro parameters were expanded even inside string literals and character
constants.

Macro expansion is not defined in thisway by K&R or by Standard C. When you do want to turn
macro arguments into strings, you can use the new # preprocessing operator, along with string
literal concatenation (another new ANSI feature):

#defi ne TRACE(var, fnt) \
printf("TRACE: " #var " =" #fnt "\n", var)

See dso question 11.17.

References: H& S Sec. 3.3.8 p. 51

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.18.html [26/03/2003 11:45:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.23

Question 10.23

How can | use amacro argument inside a string literal in the macro expansion?

See question 11.18.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.23.html [26/03/2003 11:45:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.25

Question 10.25

I've got this tricky preprocessing | want to do and | can't figure out away to do it.

C's preprocessor is not intended as a general-purpose tool. (Note also that it is not
guaranteed to be available as a separate program.) Rather than forcing it to do
something inappropriate, consider writing your own little special-purpose
preprocessing tool, instead. Y ou can easily get a utility like make(1) to run it for you
automatically.

If you are trying to preprocess something other than C, consider using a general-
purpose preprocessor. (One older one available on most Unix systemsisny.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q10.25.html [26/03/2003 11:45:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.4

Question 15.4

How can | write afunction that takes a variable number of arguments?

Use the facilities of the <st dar g. h> header.

Here is afunction which concatenates an arbitrary number of stringsinto mal | oc'ed memory:

#i ncl ude <stdlib. h> [* for malloc, NULL, size t */
#i ncl ude <stdarg. h> /* for va_ stuff */

#i ncl ude <string. h> /* for strcat et al. */

char *vstrcat(char *first, ...)

{

size t len;
char *retbuf;
va_list argp;
char *p;

I f(first == NULL)
return NULL;

len = strlen(first);
va_start(argp, first);

while((p = va_arg(argp, char *)) !'= NULL)
len += strlen(p);

va_end(argp);
retbuf = malloc(len + 1); [* +1 for trailing \0 */

i f(retbuf == NULL)
return NULL; /* error */

(void)strcpy(retbuf, first);
va_start(argp, first); /* restart for second scan */

while((p = va_arg(argp, char *)) !'= NULL)
(void)strcat(retbuf, p);

va_end(argp);

return retbuf;

}

Usage is something like

http://www.eskimo.com/~scs/C-fag/ql5.4.html (1 of 2) [26/03/2003 11:45:15 p.m.]

Question 15.4

char *str = vstrcat("Hello, ", "world!", (char *)NULL);

Note the cast on the last argument; see questions 5.2 and 15.3. (Also note that the caller must free the
returned, mal | oc'ed storage.)

See also question 15.7.

References. K&R2 Sec. 7.3 p. 155, Sec. B7 p. 254
ANS| Sec. 4.8

ISO Sec. 7.8

Rationale Sec. 4.8

H& S Sec. 11.4 pp. 296-9

CT&P Sec. A.3 pp. 139-141

PCS Sec. 11 pp. 184-5, Sec. 13 p. 242

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql5.4.html (2 of 2) [26/03/2003 11:45:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.5

Question 15.5

How can | write afunction that takes aformat string and a variable number of
arguments, like pri nt f , and passesthemto pri nt f to do most of the work?

Usevprintf,vfprintf,orvsprintf.

Hereisan er r or routine which prints an error message, preceded by the string
“error: " and terminated with a newline:

#1 ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

void error(char *fnt, ...)

{
va_|list argp;
fprintf(stderr, "error: ");
va_start(argp, fnt);
viprintf(stderr, fnt, argp);
va_end(argp);
fprintf(stderr, "\n");

}

See aso question 15.7.

References. K&R2 Sec. 8.3 p. 174, Sec. B1.2 p. 245
ANS| Secs. 4.9.6.7,4.9.6.8,4.9.6.9

SO Secs. 7.9.6.7,7.9.6.8,7.9.6.9

H& S Sec. 15.12 pp. 379-80

PCS Sec. 11 pp. 186-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.5.html [26/03/2003 11:45:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.1

Question 11.1

What isthe " ANSI C Standard?"

In 1983, the American National Standards Institute (ANSI) commissioned a
committee, X3J11, to standardize the C language. After along, arduous process,
including several widespread public reviews, the committee's work was finally
ratified as ANS X 3.159-1989 on December 14, 1989, and published in the spring of
1990. For the most part, ANSI C standardizes existing practice, with afew additions
from C++ (most notably function prototypes) and support for multinational character
sets (including the controversial trigraph sequences). The ANSI C standard also
formalizes the C run-time library support routines.

More recently, the Standard has been adopted as an international standard, |SO/IEC
9899:1990, and this SO Standard replaces the earlier X3.159 even within the United
States. Its sections are numbered differently (briefly, 1SO sections 5 through 7
correspond roughly to the old ANSI sections 2 through 4). Asan SO Standard, itis
subject to ongoing revision through the release of Technical Corrigenda and
Normative Addenda.

In 1994, Technical Corrigendum 1 amended the Standard in about 40 places, most of
them minor corrections or clarifications. More recently, Normative Addendum 1
added about 50 pages of new material, mostly specifying new library functions for
internationalization. The production of Technical Corrigenda is an ongoing process,
and a second one is expected in late 1995. In addition, both ANSI and I SO require
periodic review of their standards. This process is beginning in 1995, and will likely
result in acompletely revised standard (nicknamed *~C9X" on the assumption of
completion by 1999).

The original ANSI Standard included a "Rationale,” explaining many of its
decisions, and discussing a number of subtle points, including several of those
covered here. (The Rationale was " "not part of ANSI Standard X3.159-1989, but...
included for information only," and is not included with the SO Standard.)

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q11.1.html (1 of 2) [26/03/2003 11:45:18 p.m.]

Question 11.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql1.1.html (2 of 2) [26/03/2003 11:45:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.4

Question 11.4

Can you mix old-style and new-style function syntax?

Doing so is perfectly legal, aslong as you're careful (see especially question 11.3).
Note however that old-style syntax is marked as obsolescent, so official support for it
may be removed some day.

References: ANSI Sec. 3.7.1, Sec. 3.9.5
SO Sec. 6.7.1, Sec. 6.9.5
H& S Sec. 9.2.2 pp. 265-7, Sec. 9.2.5 pp. 269-70

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.4.html [26/03/2003 11:45:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.2

Question 15.2

How can % be used for both f | oat and doubl e argumentsinpri nt f ? Aren't
they different types?

In the variable-length part of a variable-length argument list, the ~ default argument
promotions’ apply: typeschar andshort i nt arepromotedtoi nt,andf | oat
is promoted to doubl e. (These are the same promotions that apply to function calls
without a prototype in scope, also known as ""old style" function calls; see question
11.3) Therefore, pri nt f 's% format always seesadoubl e. (Similarly, %€

awaysseesani nt , asdoes %d.) See also questions 12.9 and 12.13.

References: ANSI Sec. 3.3.2.2
SO Sec. 6.3.2.2
H&S Sec. 6.3.5p. 177, Sec. 9.4 pp. 272-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.2.html [26/03/2003 11:45:20 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.5

Question 11.5

Why does the declaration
extern f(struct x *p);

give me an obscure warning message about ~struct X introduced in prototype
scope”?

Inaquirk of C'snormal block scoping rules, a structure declared (or even
mentioned) for the first time within a prototype cannot be compatible with other
structures declared in the same source file (it goes out of scope at the end of the
prototype).

To resolve the problem, precede the prototype with the vacuous-looking declaration
struct x;

which places an (incomplete) declaration of st ruct x at file scope, so that all
following declarationsinvolving st r uct x can at least be sure they're referring to
thesamestruct x.

References: ANSI Sec. 3.1.2.1, Sec. 3.1.2.6, Sec. 3.5.2.3
SO Sec. 6.1.2.1, Sec. 6.1.2.6, Sec. 6.5.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.5.html [26/03/2003 11:45:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.8

Question 11.8

| don't understand why | can't use const valuesin initializers and array dimensions,
asin

const int n = 5;
int a[n];

Theconst qualifier really means " read-only;" an object so qualified is arun-time
object which cannot (normally) be assigned to. The value of aconst -qualified
object is therefore not a constant expression in the full sense of the term. (C isunlike
C++ inthisregard.) When you need a true compile-time constant, use a preprocessor
#def i ne.

References: ANSI Sec. 3.4
SO Sec. 6.4
H&S Secs. 7.11.2,7.11.3 pp. 226-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.8.html [26/03/2003 11:45:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.9

Question 11.9

What's the difference between const char *pandchar * const p?

const char *p declaresapointer to aconstant character (you can't change the
character); char * const p declaresaconstant pointer to a (variable) character
(i.e. you can't change the pointer).

Read these ""inside out" to understand them; see also question 1.21.

References. ANSI Sec. 3.5.4.1 examples
SO Sec. 6.5.4.1

Rationale Sec. 3.5.4.1

H&S Sec. 4.4.4p. 81

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.9.html [26/03/2003 11:45:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.10

Question 11.10

Why can't | passachar ** toafunction which expectsaconst char **?

Y ou can use a pointer-to-T (for any type T) where a pointer-to-const-T is expected.
However, the rule (an explicit exception) which permits slight mismatchesin
gualified pointer typesis not applied recursively, but only at the top level.

Y ou must use explicit casts (e.g. (const char **) inthiscase) when assigning
(or passing) pointers which have qualifier mismatches at other than the first level of
indirection.

References: ANSI Sec. 3.1.2.6, Sec. 3.3.16.1, Sec. 3.5.3
SO Sec. 6.1.2.6, Sec. 6.3.16.1, Sec. 6.5.3
H&S Sec. 7.9.1 pp. 221-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.10.html [26/03/2003 11:45:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.12

Question 11.12

Can | declarenai n asvoi d, to shut off these annoying ~“main returns no value"
messages?

No. mai n must be declared as returning ani nt , and as taking either zero or two
arguments, of the appropriate types. If you'recallingexi t () but still getting
warnings, you may haveto insert aredundant r et ur n statement (or use some kind
of ""not reached" directive, if available).

Declaring afunction asvoi d does not merely shut off or rearrange warnings: it may
also result in adifferent function call/return sequence, incompatible with what the
caller (in mai n's case, the C run-time startup code) expects.

(Note that this discussion of mai n pertains only to “"hosted" implementations; none
of it appliesto " freestanding" implementations, which may not even have nai n.
However, freestanding implementations are comparatively rare, and if you're using
one, you probably know it. If you've never heard of the distinction, you're probably
using a hosted implementation, and the above rules apply.)

References;: ANS| Sec. 2.1.2.2.1, Sec. F.5.1
1SO Sec. 5.1.2.2.1, Sec. G.5.1

H&S Sec. 20.1 p. 416

CT&P Sec. 3.10 pp. 50-51

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.12.html [26/03/2003 11:45:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.13

Question 11.13

But what about mai n'sthird argument, envp?

It's a non-standard (though common) extension. If you really need to access the
environment in ways beyind what the standard get env function provides, though,
the global variable envi r on is probably a better avenue (though it's equally non-
standard).

References: ANSI Sec. F.5.1
SO Sec. G.5.1
H& S Sec. 20.1 pp. 416-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.13.html [26/03/2003 11:45:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.14

Question 11.14

| believe that declaringvoi d mai n() can't fail, sincel'mcalling exi t instead of
returning, and anyway my operating system ignores a program's exit/return status.

It doesn't matter whether mai n returns or not, or whether anyone looks at the status,
the problem is that when mai n is misdeclared, its caller (the runtime startup code)
may not even be able to call it correctly (due to the potential clash of calling
conventions; see question 11.12). Y our operating system may ignore the exit status,

andvoi d mai n() may work for you, but it is not portable and not correct.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.14.html [26/03/2003 11:45:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.15

Question 11.15

The book I've been using, C Programing for the Compleat Idiot, always usesvoi d
mai n() .

Perhaps its author counts himself among the target audience. Many books
unaccountably usevoi d mai n() inexamples. They're wrong.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.15.html [26/03/2003 11:45:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.16

Question 11.16

Isexi t (st atus) truly equivalent to returning the same st at us from mai n?

Y es and no. The Standard says that they are equivalent. However, afew older,
nonconforming systems may have problems with one or the other form. Also, a

r et ur n from mai n cannot be expected to work if datalocal to mai n might be
needed during cleanup; see also question 16.4. (Finaly, the two forms are obviously

not equivalent in arecursive call to mai n.)

References. K& R2 Sec. 7.6 pp. 163-4
ANSI Sec. 2.1.2.2.3
SO Sec. 5.1.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.16.html [26/03/2003 11:45:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.19

Question 11.19

I'm getting strange syntax errorsinside lines I've #i f def fed out.

Under ANSI C, thetext inside a “turned off" #i f , #i f def , or #i f ndef must till
consist of valid preprocessing tokens." This means that there must be no newlines
inside quotes, and no unterminated comments or quotes (note particularly that an
apostrophe within a contracted word looks like the beginning of a character
constant). Therefore, natural-language comments and pseudocode should always be
written between the " official" comment delimiters/ * and */ . (But see question
20.20, and also 10.25.)

References: ANSI Sec. 2.1.1.2, Sec. 3.1
ISO Sec. 5.1.1.2, Sec. 6.1
H&S Sec. 3.2 p. 40

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.19.html [26/03/2003 11:45:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.21

Question 11.21

What does " #pr agma once" mean?| found it in some header files.

It is an extension implemented by some preprocessors to help make header files
idempotent; it is essentially equivalent to the #i f ndef trick mentioned in question
10.7.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.21.html [26/03/2003 11:45:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.22

Question 11.22

Ischar a[3] = "abc"; lega?What doesit mean?

Itislegal in ANSI C (and perhapsin afew pre-ANSI systems), though useful only in
rare circumstances. It declares an array of size three, initialized with the three
characters' a' ,' b' ,and' ¢' , without the usual terminating' \ 0' character. The
array istherefore not atrue C string and cannot be used with st r cpy, pri nt f %s,
efc.

Most of the time, you should let the compiler count the initializers when initializing
arrays (in the case of theinitializer " abc" , of course, the computed size will be 4).

References: ANSI Sec. 3.5.7
SO Sec. 6.5.7
H&S Sec. 4.6.4 p. 98

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.22.html [26/03/2003 11:45:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.24

Question 11.24

Why can't | perform arithmeticonavoi d * pointer?

The compiler doesn't know the size of the pointed-to objects. Before performing
arithmetic, convert the pointer either tochar * or to the pointer type you're trying
to manipulate (but see also question 4.5).

References: ANSI Sec. 3.1.2.5, Sec. 3.3.6
SO Sec. 6.1.2.5, Sec. 6.3.6
H&S Sec. 7.6.2 p. 204

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.24.html [26/03/2003 11:45:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.25

Question 11.25

What's the difference between nencpy and nenmmove?

menmmov e offers guaranteed behavior if the source and destination arguments
overlap. mentpy makes no such guarantee, and may therefore be more efficiently
implementable. When in doubt, it's safer to use nenmove.

References. K&R2 Sec. B3 p. 250
ANSI Sec. 4.11.2.1, Sec. 4.11.2.2
ISO Sec. 7.11.2.1, Sec. 7.11.2.2
Rationale Sec. 4.11.2

H&S Sec. 14.3 pp. 341-2

PCS Sec. 11 pp. 165-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.25.html [26/03/2003 11:45:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.26

Question 11.26

What should nal | oc(0) do? Return anull pointer or a pointer to 0 bytes?

The ANSI/ISO Standard says that it may do either; the behavior is implementation-
defined (see question 11.33).

References: ANSI Sec. 4.10.3
SO Sec. 7.10.3
PCS Sec. 16.1 p. 386

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.26.html [26/03/2003 11:45:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.27

Question 11.27

Why does the ANSI Standard not guarantee more than six case-insensitive characters
of external identifier significance?

The problem is older linkers which are under the control of neither the ANSI/ISO
Standard nor the C compiler developers on the systems which have them. The
limitation is only that identifiers be significant in the first six characters, not that they
be restricted to six charactersin length. This limitation is annoying, but certainly not
unbearable, and is marked in the Standard as " obsolescent,” i.e. afuture revision will
likely relax it.

This concession to current, restrictive linkers really had to be made, no matter how
vehemently some people opposeit. (The Rationale notes that its retention was ~ most
painful.") If you disagree, or have thought of atrick by which a compiler burdened
with arestrictive linker could present the C programmer with the appearance of more
significance in external identifiers, read the excellently-worded section 3.1.2 in the
X3.159 Rationale (see question 11.1), which discusses severa such schemes and

explains why they could not be mandated.

References: ANSI Sec. 3.1.2, Sec. 3.9.1
SO Sec. 6.1.2, Sec. 6.9.1

Rationale Sec. 3.1.2

H&S Sec. 2.5 pp. 22-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.27.html [26/03/2003 11:45:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.30

Question 11.30

Why are some ANSI/ISO Standard library routines showing up as undefined, even
though I've got an ANSI compiler?

It's possible to have a compiler available which accepts ANSI syntax, but not to have
ANSI-compatible header files or run-time librariesinstalled. (In fact, this situation is
rather common when using a non-vendor-supplied compiler such asgcc.) Seealso
guestions 11.29, 13.25, and 13.26.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.30.html [26/03/2003 11:45:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.25

Question 13.25

| keep getting errors due to library functions being undefined, but I'm #including all
the right header files.

In some cases (especially if the functions are nonstandard) you may have to
explicitly ask for the correct libraries to be searched when you link the program. See
also questions 11.30, 13.26, and 14.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.25.html [26/03/2003 11:45:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.26

Question 13.26

I'm still getting errors due to library functions being undefined, even though I'm
explicitly requesting the right libraries while linking.

Many linkers make one pass over the list of object files and libraries you specify, and
extract from libraries only those modules which satisfy references which have so far
come up as undefined. Therefore, the order in which libraries are listed with respect
to object files (and each other) is significant; usually, you want to search the libraries
last. (For example, under Unix, put any - | options towards the end of the command
line.) See also question 13.28.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.26.html [26/03/2003 11:45:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.31

Question 11.31

Does anyone have atool for converting old-style C programsto ANSI C, or vice
versa, or for automatically generating prototypes?

Two programs, protoize and unprotoize, convert back and forth between prototyped
and “"old style" function definitions and declarations. (These programs do not handle
full-blown trandation between ""Classic" C and ANSI C.) These programs are part of
the FSF's GNU C compiler distribution; see question 18.3.

The unproto program (/pub/unix/unproto5.shar.Z on ftp.win.tue.nl) is afilter which
sits between the preprocessor and the next compiler pass, converting most of ANS|
C to traditional C on-the-fly.

The GNU GhostScript package comes with alittle program called ansi2knr.

Before converting ANSI C back to old-style, beware that such a conversion cannot
always be made both safely and automatically. ANSI C introduces new features and
complexities not found in K&R C. You'll especially need to be careful of prototyped
function calls; you'll probably need to insert explicit casts. See also questions 11.3

and 11.29.

Several prototype generators exist, many as modificationstol i nt . A program
called CPROTO was posted to comp.sources.misc in March, 1992. There is another
program called " cextract." Many vendors supply simple utilities like these with their
compilers. See also question 18.16. (But be careful when generating prototypes for

old functions with ““narrow" parameters; see question 11.3.)

Finally, are you sure you really need to convert lots of old codeto ANSI C? The old-
style function syntax is still acceptable, and a hasty conversion can easily introduce
bugs. (See question 11.3.)

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q11.31.html (1 of 2) [26/03/2003 11:45:56 p.m.]

Question 11.31

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.31.html (2 of 2) [26/03/2003 11:45:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.3

Question 18.3

What's afree or cheap C compiler | can use?

A popular and high-quality free C compiler isthe FSF's GNU C compiler, or gcc. It
is available by anonymous ftp from prep.ai.mit.edu in directory pub/gnu, or at
several other FSF archive sites. An MS-DOS port, djgpp, is aso available; it can be
found in the Simtel and Oakland archives and probably many others, usually in a
directory like pub/msdos/djgpp/ or simtel/msdos/djgpp/.

There is a shareware compiler called PCC, available as PCC12C.ZIP.

A very inexpensive MS-DOS compiler is Power C from Mix Software, 1132
Commerce Drive, Richardson, TX 75801, USA, 214-783-6001.

Another recently-developed compiler islcc, available for anonymous ftp from
ftp.cs.princeton.edu in pub/lcc.

Archives associated with comp.compilers contain a great deal of information about
available compilers, interpreters, grammars, etc. (for many languages). The
comp.compilers archives (including an FAQ list), maintained by the moderator, John
R. Levine, are at iecc.com . A list of available compilers and related resources,
maintained by Mark Hopkins, Steven Robenalt, and David Muir Sharnoff, is at
ftp.idiom.com in pub/compilers-list/. (See a so the comp.compilers directory in the
news.answers archives at rtfm.mit.edu and ftp.uu.net; see question 20.40.)

See also question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.3.html [26/03/2003 11:45:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.32

Question 11.32

Why won't the Frobozz Magic C Compiler, which claimsto be ANSI compliant,
accept this code? | know that the code is ANSI, because gcc acceptsiit.

Many compilers support a few non-Standard extensions, gcc more so than most.
Areyou sure that the code being rejected doesn't rely on such an extension? It is
usually abad ideato perform experiments with a particular compiler to determine
properties of alanguage; the applicable standard may permit variations, or the
compiler may be wrong. See also question 11.35.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.32.html [26/03/2003 11:45:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.34

Question 11.34

I'm appalled that the ANSI Standard |eaves so many issues undefined. Isn't a
Standard's whole job to standardize these things?

It has always been a characteristic of C that certain constructs behaved in whatever
way a particular compiler or a particular piece of hardware chose to implement them.
This deliberate imprecision often allows compilers to generate more efficient code
for common cases, without having to burden all programs with extra code to assure
well-defined behavior of cases deemed to be less reasonable. Therefore, the Standard
Issimply codifying existing practice.

A programming language standard can be thought of as atreaty between the
language user and the compiler implementor. Parts of that treaty consist of features
which the compiler implementor agrees to provide, and which the user may assume
will be available. Other parts, however, consist of rules which the user agreesto
follow and which the implementor may assume will be followed. Aslong as both
sides uphold their guarantees, programs have a fighting chance of working correctly.
If either side reneges on any of its commitments, nothing is guaranteed to work.

See also question 11.35.

References; Rationale Sec. 1.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q11.34.html [26/03/2003 11:45:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.2

Question 12.2

Why doesthecodewhi | e(!feof (infp)) { fgets(buf, MAXLINE,
I nfp); fputs(buf, outfp); } copythelastlinetwice?

In C, ECF isonly indicated after an input routine hastried to read, and has reached
end-of-file. (In other words, C's I/O is not like Pascal's.) Usually, you should just
check the return value of the input routine (f get s in this case); often, you don't
need to usef eof atall.

References. K&R2 Sec. 7.6 p. 164

ANSI Sec. 4.9.3, Sec. 4.9.7.1, Sec. 4.9.10.2
SO Sec. 7.9.3, Sec. 7.9.7.1, Sec. 7.9.10.2
H& S Sec. 15.14 p. 382

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.2.html [26/03/2003 11:45:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.4

Question 12.4

My program's prompts and intermediate output don't always show up on the screen,
especially when | pipe the output through another program.

It's best to use an explicitf f | ush(st dout) whenever output should definitely be
visible. Several mechanisms attempt to perform thef f | ush for you, at the “right
time," but they tend to apply only when st dout isan interactive terminal. (See also
guestion 12.24.)

References: ANSI Sec. 4.9.5.2
SO Sec. 7.95.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.4.html [26/03/2003 11:46:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.24

Question 12.24

Why doeser r no contain ENOTTY afteracal toprintf?

Many implementations of the stdio package adjust their behavior dlightly if st dout
isaterminal. To make the determination, these implementations perform some
operation which happensto fail (with ENOTTY) if st dout isnot aterminal.
Although the output operation goes on to complete successfully, er r no still
contains ENOTTY . (Notethat it is only meaningful for a program to inspect the
contents of er r no after an error has been reported.)

References: ANSI Sec. 4.1.3, Sec. 4.9.10.3
SO Sec. 7.1.4, Sec. 7.9.10.3

CT&P Sec. 54 p. 73

PCS Sec. 14 p. 254

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.24.html [26/03/2003 11:46:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.5

Question 12.5

How can | read one character at atime, without waiting for the RETURN key?

See question 19.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.5.html [26/03/2003 11:46:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.6

Question 12.6

How can | printa' % characterinapri ntf format string? | tried \ % but it didn't
work.

Simply double the percent sign: %8%.

\ %can't work, because the backslash \ isthe compiler's escape character, while here
our problem isthat the %ispr i nt f 's escape character.

See also question 19.17.

References. K&R1 Sec. 7.3 p. 147
K&R2 Sec. 7.2 p. 154

ANS| Sec. 4.9.6.1

SO Sec. 7.9.6.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.6.html [26/03/2003 11:46:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.17

Question 19.17
Why can't | open afile by its explicit path? The call
fopen("c:\newdir\file.dat", "r")

isfailing.

Thefile you actually requested--with the characters\ n and\ f in its name--probably
doesn't exist, and isn't what you thought you were trying to open.

In character constants and string literals, the backslash\ is an escape character,
giving special meaning to the character following it. In order for literal backslashes
in a pathname to be passed through to f open (or any other routine) correctly, they
have to be doubled, so that the first backslash in each pair quotes the second one:

fopen("c:\\newdir\\file.dat", "r");

Alternatively, under MS-DOS, it turns out that forward slashes are also accepted as
directory separators, so you could use

fopen("c:/newdir/file.dat", "r");
(Note, by the way, that header file names mentioned in preprocessor #i ncl ude

directives are not string literals, so you may not have to worry about backslashes
there.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.17.html [26/03/2003 11:46:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.9

Question 12.9

Someone told meit waswrongtouse % f withpri ntf.Howcanprintf use%
for typedoubl e, if scanf requires% f ?

It'struethat pri nt f's% specifier workswith bothf | oat and doubl e
arguments. Due to the " default argument promotions” (which apply in variable-
length argument lists such aspr i nt f 's, whether or not prototypes are in scope),
values of typef | oat are promoted to doubl e, and pri nt f therefore seesonly
doubl es. Seedso questions 12.13 and 15.2.

References: K&R1 Sec. 7.3 pp. 145-47, Sec. 7.4 pp. 147-50
K&R2 Sec. 7.2 pp. 153-44, Sec. 7.4 pp. 157-59

ANSI Sec. 4.9.6.1, Sec. 4.9.6.2

1SO Sec. 7.9.6.1, Sec. 7.9.6.2

H& S Sec. 15.8 pp. 357-64, Sec. 15.11 pp. 366-78

CT&P Sec. A.1 pp. 121-33

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.9.html [26/03/2003 11:46:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.13

Question 12.13
Why doesn't this code:

doubl e d;
scanf ("% ", &d);

work?

Unlikepri ntf,scanf uses% f for values of typedoubl e, and % for f | oat .
See aso question 12.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.13.html [26/03/2003 11:46:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.10

Question 12.10

How can | implement avariable field width with pri nt f ? That is, instead of ¥%8d, |
want the width to be specified at run time.

printf("%d", w dth, n) will dojust what youwant. See also question
12.15.

References: K& R1 Sec. 7.3
K&R2 Sec. 7.2

ANSI Sec. 4.9.6.1

SO Sec. 7.9.6.1

H&S Sec. 15.11.6
CT&PSec. Al

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.10.html [26/03/2003 11:46:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.15

Question 12.15

How can | specify avariable widthinascanf format string?

You can't; an asterisk inascanf format string means to suppress assignment. Y ou
may be able to use ANSI stringizing and string concatenation to accomplish about
the same thing, or to construct ascanf format string on-the-fly.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.15.html [26/03/2003 11:46:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.11

Question 12.11

How can | print numbers with commas separating the thousands?
What about currency formatted numbers?

Theroutinesin <l ocal e. h> begin to provide some support for these operations,
but there is no standard routine for doing either task. (The only thing pri nt f does
In response to a custom locale setting is to change its decimal-point character.)

References: ANSI Sec. 4.4
SO Sec. 7.4
H&S Sec. 11.6 pp. 301-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.11.html [26/03/2003 11:46:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.12

Question 12.12

Why doesn't thecall scanf (" %", 1) work?

The arguments you passto scanf must always be pointers. To fix the fragment
above, changeittoscanf (" %", &) .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.12.html [26/03/2003 11:46:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.17

Question 12.17

When | read numbers from the keyboard with scanf " %@\ n" , it seemsto hang
until | type one extraline of input.

Perhaps surprisingly, \ n inascanf format string does not mean to expect a
newline, but rather to read and discard characters as long as each is a whitespace
character. See also question 12.20.

References. K& R2 Sec. B1.3 pp. 245-6
ANSI Sec. 4.9.6.2

SO Sec. 7.9.6.2

H& S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.17.html [26/03/2003 11:46:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.20

Question 12.20

Why does everyone say not to use scanf ? What should | use instead?

scanf hasanumber of problems--see questions 12.17, 12.18, and 12.19. Also, its
% format has the same problem that get s() has (see question 12.23)--it's hard to
guarantee that the receiving buffer won't overflow.

More generally, scanf isdesigned for relatively structured, formatted input (its
name isin fact derived from " scan formatted"). If you pay attention, it will tell you
whether it succeeded or failed, but it can tell you only approximately where it failed,
and not at all how or why. It's nearly impossible to do decent error recovery with
scanf ; usualy it'sfar easier to read entire lines (with f get s or the like), then
interpret them, either using sscanf or some other techniques. (Routines like
strtol,strtok,andat oi areoften useful; see also question 13.6.) If you do use
sscanf , don't forget to check the return value to make sure that the expected
number of items were found.

References. K&R2 Sec. 7.4 p. 159

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.20.html [26/03/2003 11:46:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.18

Question 12.18

I'm reading a number with scanf % and then astring with get s() , but the
compiler seemsto be skipping the call toget s() !

scanf % won't consume atrailing newline. If the input number isimmediately
followed by a newline, that newline will immediately satisfy theget s() .

Asagenera rule, you shouldn't try to interlace callsto scanf with calsto get s()
(or any other input routines); scanf 's peculiar treatment of newlines almost aways
leads to trouble. Either use scanf to read everything or nothing.

See also questions 12.20 and 12.23.

References: ANSI Sec. 4.9.6.2
SO Sec. 7.9.6.2
H& S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.18.html [26/03/2003 11:46:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.19

Question 12.19

| figured | could use scanf more safely if | checked its return value to make sure
that the user typed the numeric values | expect, but sometimes it seemsto go into an
infinite loop.

When scanf isattempting to convert numbers, any non-numeric characters it
encounters terminate the conversion and are left on the input stream. Therefore,
unless some other steps are taken, unexpected non-numeric input ~“jams' scanf
again and again: scanf never gets past the bad character(s) to encounter later, valid
data. If the user types a character like "x" in response to anumeric scanf format
such as % or % , code that smply re-prompts and retries the same scanf call will
immediately reencounter the same "x'.

See also question 12.20.

References: ANSI Sec. 4.9.6.2
SO Sec. 7.9.6.2
H& S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.19.html [26/03/2003 11:46:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.6

Question 13.6

How can | split up a string into whitespace-separated fields?
How can | duplicate the process by which mai n() ishanded ar gc and ar gv?

The only Standard routine available for thiskind of “tokenizing" isst r t ok,
although it can be tricky to use and it may not do everything you want it to. (For
instance, it does not handle quoting.)

References. K&R2 Sec. B3 p. 250
ANSI Sec. 4.11.5.8

SO Sec. 7.11.5.8

H& S Sec. 13.7 pp. 333-4

PCSp. 178

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.6.html [26/03/2003 11:46:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.12

Question 19.12

How can | find out the size of afile, prior to reading it in?

If the "size of afile" isthe number of characters you'll be ableto read fromitin C, it
isdifficult or impossible to determine this number exactly).

Under Unix, the st at call will give you an exact answer. Several other systems
supply aUnix-like st at which will give an approximate answer. You canf seek
to theend and then usef t el | , but these tend to have the same problems: f st at is
not portable, and generally tells you the same thing st at tellsyou; ft el | isnot
guaranteed to return a byte count except for binary files. Some systems provide
routinescalledfi | esi ze orfil el engt h, but these are not portable, either.

Areyou sure you have to determine the file's size in advance? Since the most
accurate way of determining the size of afile asa C program will seeit isto open the
file and read it, perhaps you can rearrange the code to learn the size as it reads.

References: ANS| Sec. 4.9.94
ISO Sec. 7.9.9.4

H&S Sec. 15.5.1

PCS Sec. 12 p. 213

POSIX Sec. 5.6.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.12.html [26/03/2003 11:46:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.25

Question 12.25

What's the difference between f get pos/f set pos andftel | /f seek?
What aref get pos and f set pos good for?

f get pos andf set pos use aspecia typedef, f pos_t, for representing offsets
(positions) in afile. The type behind this typedef, if chosen appropriately, can
represent arbitrarily large offsets, allowing f get pos andf set pos to be used with
arbitrarily hugefiles.ft el | andf seek, on the other hand, usel ong i nt, and
are therefore limited to offsets which can be representedinal ong i nt. Seeaso
guestion 1.4.

References. K&R2 Sec. B1.6 p. 248
ANSI Sec. 4.9.1, Secs. 4.9.9.1,4.9.9.3
SO Sec. 7.9.1, Secs. 7.9.9.1,7.9.9.3
H&S Sec. 15.5 p. 252

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.25.html [26/03/2003 11:46:20 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.26

Question 12.26

How can | flush pending input so that a user's typeahead isn't read at the next
prompt? Will f f | ush(st di n) work?

f f 1 ush isdefined only for output streams. Since its definition of ~“flush" isto
complete the writing of buffered characters (not to discard them), discarding unread
input would not be an analogous meaning for f f | ush on input streams.

Thereisno standard way to discard unread characters from a stdio input stream, nor
would such away be sufficient unread characters can also accumulate in other, OS-
level input buffers.

References: ANSI Sec. 4.9.5.2
SO Sec. 7.95.2
H&S Sec. 15.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.26.html [26/03/2003 11:46:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.30

Question 12.30

I'm trying to update afilein place, by using f open mode" r +" , reading a certain
string, and writing back a modified string, but it's not working.

Besureto call f seek before you write, both to seek back to the beginning of the
string you're trying to overwrite, and because an f seek or f f | ush isaways
required between reading and writing in the read/write " +" modes. Also, remember
that you can only overwrite characters with the same number of replacement
characters; see also question 19.14.

References: ANSI Sec. 4.9.5.3
SO Sec. 7.9.5.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.30.html [26/03/2003 11:46:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.14

Question 19.14

How can | insert or delete aline (or record) in the middle of afile?

Short of rewriting the file, you probably can't. The usual solution issimply to rewrite
the file. (Instead of deleting records, you might consider simply marking them as
deleted, to avoid rewriting.) See aso questions 12.30 and 19.13.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.14.html [26/03/2003 11:46:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.33

Question 12.33

How can | redirect st di n or st dout to afile from within a program?

Usef r eopen (but see question 12.34).

References: ANSI Sec. 4.9.5.4
SO Sec. 7.95.4
H&S Sec. 15.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.33.html [26/03/2003 11:46:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.34

Question 12.34

Oncel'veused f r eopen, how can | get theoriginal st dout (or st di n) back?

Thereisn't agood way. If you need to switch back, the best solution is not to have
used f r eopen inthefirst place. Try using your own explicit output (or input)
stream variable, which you can reassign at will, while leaving the original st dout
(or st di n) undisturbed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q12.34.html [26/03/2003 11:46:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.1

Question 13.1

How can | convert numbersto strings (the opposite of at oi)?Isthereani t oa
function?

Just usespri nt f.(Dontworry that spri nt f may be overkill, potentially wasting
run time or code space; it works well in practice.) See the examplesin the answer to
guestion 7.5; see also question 12.21.

You can obviously usespri nt f toconvert| ong or floating-point numbers to
stringsaswell (using % d or %) .

References. K&R1 Sec. 3.6 p. 60
K&R2 Sec. 3.6 p. 64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.1.html [26/03/2003 11:46:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.2

Question 13.2

Why does st r ncpy not awaysplacea' \ 0' terminator in the destination string?

st r ncpy wasfirst designed to handle a now-obsolete data structure, the fixed-
length, not-necessarily-\ O-terminated ""string." (A related quirk of st r ncpy'sis
that it pads short strings with multiple\ 0's, out to the specified length.) st r ncpy is
admittedly a bit cumbersome to use in other contexts, since you must often append a
"\ 0" to the destination string by hand. Y ou can get around the problem by using

st rncat instead of st r ncpy: if the destination string starts out empty, st r ncat
does what you probably wanted st r ncpy to do. Another possibility is
sprintf(dest, "%*s", n, source) .

When arbitrary bytes (as opposed to strings) are being copied, nencpy isusualy a
more appropriate routine to use than st r ncpy.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.2.html [26/03/2003 11:46:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.5

Question 13.5

Why do some versions of t oupper act strangely if given an upper-case letter?
Why does some codecall i sl ower beforet oupper ?

Older versions of t oupper andt ol ower did not always work correctly on
arguments which did not need converting (i.e. on digits or punctuation or letters
already of the desired case). In ANSI/ISO Standard C, these functions are guaranteed
to work appropriately on all character arguments.

References: ANSI Sec. 4.3.2
SO Sec. 7.3.2

H&S Sec. 12.9 pp. 320-1
PCSp. 182

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.5.html [26/03/2003 11:46:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.7

Question 13.7

| need some code to do regular expression and wildcard matching.

Make sure you recognize the difference between classic regular expressions (variants
of which are used in such Unix utilitiesas ed and gr ep), and filename wildcards
(variants of which are used by most operating systems).

There are a number of packages available for matching regular expressions. Most
packages use a pair of functions, one for ““compiling" the regular expression, and one
for “executing” it (i.e. matching strings against it). Look for header files named

<r egex. h>or <r egexp. h>, and functionscalled r egcnp/r egex,

regconp/r egexec,orre_conp/re_exec. (Thesefunctions may existin a
separate regexp library.) A popular, freely-redistributable regexp package by Henry
Spencer is available from ftp.cs.toronto.edu in pub/regexp.shar.Z or in several other
archives. The GNU project has a package called rx. See a'so question 18.16.

Filename wildcard matching (sometimes called "globbing") is donein avariety of
ways on different systems. On Unix, wildcards are automatically expanded by the
shell before a processisinvoked, so programs rarely have to worry about them
explicitly. Under MS-DOS compilers, there is often a specia object file which can
be linked in to a program to expand wildcards while ar gv is being built. Severa
systems (including MS-DOS and VMYS) provide system services for listing or
opening files specified by wildcards. Check your compiler/library documentation.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.7.html [26/03/2003 11:46:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.8

Question 13.8

I'm trying to sort an array of stringswith qsort , using st r cnp asthe comparison function,
but it's not working.

By array of strings' you probably mean "array of pointersto char ." The argumentsto
gsort 'scomparison function are pointers to the objects being sorted, in this case, pointers to
pointersto char . st r cnp, however, accepts simple pointersto char . Therefore, st r cnp
can't be used directly. Write an intermediate comparison function like this:

/* conpare strings via pointers */
i nt pstrcnp(const void *pl, const void *p2)
{

}

return strcnmp(*(char * const *)pl, *(char * const *)p2);

The comparison function's arguments are expressed as ~ generic pointers,” const voi d *.
They are converted back to what they “‘really are" (char **) and dereferenced, yielding
char *'swhich can be passed to st r cnp. (Under apre-ANSI compiler, declare the pointer
parametersaschar * instead of voi d *, and drop theconst s.)

(Don't be misled by the discussion in K& R2 Sec. 5.11 pp. 119-20, which is not discussing the
Standard library'sqsor t).

References: ANSI Sec. 4.10.5.2
|SO Sec. 7.105.2
H&S Sec. 20.5p. 419

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.8.html [26/03/2003 11:46:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.9

Question 13.9

Now I'm trying to sort an array of structureswith gsor t . My comparison function
takes pointers to structures, but the compiler complains that the function is of the wrong
typefor gsort . How can | cast the function pointer to shut off the warning?

The conversions must be in the comparison function, which must be declared as
accepting " generic pointers' (const voi d *) asdiscussed in question 13.8 above.

The comparison function might look like

I nt nystructcnp(const void *pl, const void *p2)
{
const struct nystruct *spl = pl;
const struct nystruct *sp2 = p2;
/* now conpare spl->whatever and sp2-> ... */

(The conversions from generic pointersto st ruct mystruct pointers happeninthe
initializationsspl = plandsp2 = p2;thecompiler performs the conversions
implicitly sincepl and p2 arevoi d pointers. Explicit casts, and char * pointers,
would be required under a pre-ANSI compiler. See also question 7.7.)

If, on the other hand, you're sorting pointers to structures, you'll need indirection, asin
guestion 13.8: spl = *(struct nystruct **)pl.

In general, it isabad ideato insert casts just to "~ shut the compiler up." Compiler
warnings are usually trying to tell you something, and unless you really know what
you're doing, you ignore or muzzle them at your peril. See also question 4.9.

References: ANSI Sec. 4.10.5.2
SO Sec. 7.10.5.2
H&S Sec. 20.5 p. 419

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.9.html [26/03/2003 11:46:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.10

Question 13.10

How can | sort alinked list?

Sometimesiit's easier to keep thelist in order asyou build it (or perhapsto use atree
instead). Algorithms like insertion sort and merge sort lend themselves ideally to use
with linked lists. If you want to use a standard library function, you can allocate a
temporary array of pointers, fill it in with pointersto all your list nodes, call gsort
and finally rebuild the list pointers based on the sorted array.

References: Knuth Sec. 5.2.1 pp. 80-102, Sec. 5.2.4 pp. 159-168
Sedgewick Sec. 8 pp. 98-100, Sec. 12 pp. 163-175

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.10.html [26/03/2003 11:46:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.11

Question 13.11

How can | sort more data than will fit in memory?

Y ou want an "“external sort," which you can read about in Knuth, Volume 3. The
basic ideaisto sort the datain chunks (as much as will fit in memory at one time),
write each sorted chunk to atemporary file, and then merge the files. Y our operating
system may provide a general-purpose sort utility, and if so, you can try invoking it
from within your program: see questions 19.27 and 19.30.

References. Knuth Sec. 5.4 pp. 247-378
Sedgewick Sec. 13 pp. 177-187

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.11.html [26/03/2003 11:46:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.27

Question 19.27

How can | invoke another program (a standal one executable, or an operating system
command) from within a C program?

Usethelibrary function sy st em which does exactly that. Note that syst enis
return value is the command's exit status, and usually has nothing to do with the
output of the command. Note also that sy st emaccepts a single string representing
the command to be invoked; if you need to build up a complex command line, you
canusespri nt f . Seealso question 19.30.

References. K&R1 Sec. 7.9 p. 157
K&R2 Sec. 7.8.4 p. 167, Sec. B6 p. 253
ANSI Sec. 4.10.4.5

SO Sec. 7.10.4.5

H& S Sec. 19.2 p. 407

PCS Sec. 11 p. 179

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.27.html [26/03/2003 11:46:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.30

Question 19.30

How can | invoke another program or command and trap its output?

Unix and some other systems provide apopen routine, which sets up a stdio stream
on a pipe connected to the process running a command, so that the output can be read
(or the input supplied). (Also, remember to call pcl ose.)

If you can't use popen, you may be ableto use syst em with the output going to a
file which you then open and read.

If you're using Unix and popen isn't sufficient, you can learn about pi pe, dup,
fork,andexec.

(One thing that probably would not work, by the way, would beto usef r eopen.)

References. PCS Sec. 11 p. 169

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.30.html [26/03/2003 11:46:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.13

Question 13.13

| know that the library routinel ocal ti me will convertati nme_t into abroken-
downstruct tmandthatcti nme will convertati ne_t to aprintable string.
How can | perform the inverse operations of convertingast r uct t mor astring
intoatinme t?

ANSI C specifiesalibrary routine, nkt i me, which convertsastruct tmtoa
tinme_t.

Converting astringtoat i me_t isharder, because of the wide variety of date and
time formats which might be encountered. Some systems provideast r pti ne
function, which isbasically theinverse of st r f t i me. Other popular routines are
parti me (widely distributed with the RCS package) and get dat e (and afew
others, from the C news distribution). See question 18.16.

References: K&R2 Sec. B10 p. 256
ANSI Sec. 4.12.2.3

SO Sec. 7.12.2.3

H& S Sec. 18.4 pp. 401-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.13.html [26/03/2003 11:46:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.14

Question 13.14

How can | add n days to adate? How can | find the difference between two dates?

The ANSI/ISO Standard C nkt i me and di f f t i me functions provide some
support for both problems. nkt i e accepts non-normalized dates, so it is
straightforward to take afilled-in st r uct t m add or subtract from thet m _nday
field, and call nkt i me to normalize the year, month, and day fields (and incidentally
converttoati ne_t vaue).di f fti me computesthe difference, in seconds,
betweentwot i me_t values, nkt i nme can be used to computeti nme_t valuesfor
two dates to be subtracted.

These solutions are only guaranteed to work correctly for dates in the range which
can berepresented asti ne_t's. Thet m nday fieldisani nt, so day offsets of

more than 32,736 or so may cause overflow. Note also that at daylight saving time
changeovers, local days are not 24 hours long.

Another approach to both problemsisto use " Julian day" numbers. Implementations
of Julian day routines can be found in the file JULCAL10.ZIP from the
Simtel/Oakland archives (see question 18.16) and the ""Date conversions' article

mentioned in the References.

See also questions 13.13, 20.31, and 20.32.

References. K& R2 Sec. B10 p. 256
ANSI Secs. 4.12.2.2,4.12.2.3

SO Secs. 7.12.2.2,7.12.2.3

H& S Secs. 18.4,18.5 pp. 401-2
David Burki, ~"Date Conversions"

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.14.html [26/03/2003 11:46:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.15

Question 13.15

| need arandom number generator.

The Standard C library has one: r and. The implementation on your system may not
be perfect, but writing a better one isn't necessarily easy, either.

If you do find yourself needing to implement your own random number generator,
thereis plenty of literature out there; see the References. There are also any number
of packages on the net: look for r250, RANLIB, and FSULTRA (see question 18.16).

References. K&R2 Sec. 2.7 p. 46, Sec. 7.8.7 p. 168

ANSI Sec. 4.10.2.1

SO Sec. 7.10.2.1

H&S Sec. 17.7 p. 393

PCSSec. 11 p. 172

Knuth VVol. 2 Chap. 3 pp. 1-177

Park and Miller, "Random Number Generators: Good Ones are hard to Find"

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.15.html [26/03/2003 11:46:49 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.16

Question 13.16

How can | get random integersin a certain range?

The obvious way,
rand() % N [* POOR */

(which tries to return numbersfrom 0 to N- 1) is poor, because the low-order bits of
many random number generators are distressingly non-random. (See question 13.18.)

A better method is something like

(int)((double)rand() / ((double) RAND MAX + 1) * N)
If you're worried about using floating point, you could use

rand() / (RAND MAX / N + 1)

Both methods obviously require knowing RAND _MAX (which ANSI #def i nesin
<stdl i b. h>), and assume that N is much less than RAND MAX.

(Note, by the way, that RAND MAX is a constant telling you what the fixed range of
the C library r and function is. Y ou cannot set RAND MAX to some other value, and
there is no way of requesting that r and return numbers in some other range.)

If you're starting with arandom number generator which returns floating-point values
between 0 and 1, all you have to do to get integersfrom 0 to N- 1 is multiply the
output of that generator by N.

References. K&R2 Sec. 7.8.7 p. 168
PCSSec. 11 p. 172

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.16.html [26/03/2003 11:46:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.18

Question 13.18

| need arandom true/false value, so I'mjust takingr and() % 2, but it's alternating
0,1,0,1,0..

Poor pseudorandom number generators (such as the ones unfortunately supplied with
some systems) are not very random in the low-order bits. Try using the higher-order
bits: see question 13.16.

References. Knuth Sec. 3.2.1.1 pp. 12-14

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.18.html [26/03/2003 11:46:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.17

Question 13.17

Each time | run my program, | get the same sequence of numbers back from
rand() .

You can call sr and to seed the pseudo-random number generator with atruly
random initial value. Popular seed values are the time of day, or the elapsed time
before the user presses a key (although keypress times are hard to determine
portably; see question 19.37). (Note also that it'srarely useful to call sr and more

than once during arun of a program; in particular, don't try calling sr and before
each call tor and, in an attempt to get " "really random" numbers.)

References. K& R2 Sec. 7.8.7 p. 168
ANS| Sec. 4.10.2.2

SO Sec. 7.10.2.2

H&S Sec. 17.7 p. 393

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.17.html [26/03/2003 11:46:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.37

Question 19.37

How can | implement adelay, or time a user's response, with sub-second resolution?

Unfortunately, there is no portable way. V7 Unix, and derived systems, provided a
fairly useful f t i me routine with resolution up to a millisecond, but it has
disappeared from System V and POSIX. Other routines you might look for on your
systemincludecl ock, del ay, get t i neof day, nsl eep, nap, napns,
setitimer,sleep,tines,andusl eep. (A routine called wai t , however, isat
least under Unix not what you want.) Thesel ect and pol | calls(if available) can
be pressed into service to implement simple delays. On MS-DOS machines, it is
possible to reprogram the system timer and timer interrupts.

Of these, only cl ock ispart of the ANSI Standard. The difference between two
callsto cl ock gives elapsed execution time, and if CLOCKS PER_SEC is greater
than 1, the difference will have subsecond resolution. However, cl ock gives

el apsed processor time used by the current program, which on a multitasking system
may differ considerably from real time.

If you're trying to implement a delay and all you have available is a time-reporting
function, you can implement a CPU-intensive busy-wait, but thisis only an option on
asingle-user, single-tasking machine asit isterribly antisocial to any other

processes. Under a multitasking operating system, be sure to use a call which puts
your process to sleep for the duration, such assl eep or sel ect, or pause in
conjunction withal ar mor seti ti ner.

For really brief delays, it's tempting to use a do-nothing loop like

long int i;
for(i = 0; i < 1000000; i++)

but resist thistemptation if at all possible! For one thing, your carefully-cal cul ated
delay loops will stop working next month when a faster processor comes out.

Perhaps worse, a clever compiler may notice that the loop does nothing and optimize
it away completely.

References. H& S Sec. 18.1 pp. 398-9
PCS Sec. 12 pp. 197-8,215-6

http://www.eskimo.com/~scs/C-fag/q19.37.html (1 of 2) [26/03/2003 11:46:54 p.m.]

Question 19.37

POSIX Sec. 4.5.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.37.html (2 of 2) [26/03/2003 11:46:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.20

Question 13.20

How can | generate random numbers with a normal or Gaussian distribution?

Here is one method, by Box and Muller, and recommended by Knuth:

#i ncl ude <stdlib. h>
#i ncl ude <nmat h. h>

doubl e gaussrand()

{
static double V1, V2, S
static int phase = 0;
doubl e X;
I f (phase == 0) {
do {
doubl e Ul = (double)rand() / RAND_MAX;
doubl e U2 = (double)rand() / RAND_MAX;
vi=2* Ul - 1;
V2 =2 * W2 - 1;
S=V1l* V1l + V2 * V2
} while(S>=1]| S ==0);
X =Vl * sqrt(-2 * log(S) / 9);
} else
X =V2 * sqrt(-2 * log(S) / 9);
phase = 1 - phase;
return X
}

See the extended versions of thislist (see question 20.40) for other ideas.

References: Knuth Sec. 3.4.1 p. 117
Box and Muller, ~“A Note on the Generation of Random Normal Deviates"
Presset al., Numerical Recipesin C Sec. 7.2 pp. 288-290

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q13.20.html (1 of 2) [26/03/2003 11:46:55 p.m.]

Question 13.20

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.20.html (2 of 2) [26/03/2003 11:46:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.24

Question 13.24

I'm trying to port this old program. Why do | get ““undefined externa" errors for
some library functions?

Some old or semistandard functions have been renamed or replaced over the years;
If you need:/you should instead:

I ndex
usestrchr.
ri ndex
usestrrchr.
bcopy
use menmove, after interchanging the first and second arguments (see also
guestion 11.25).
bcnp
use mencnp.
bzero
use menset , with a second argument of 0.

Contrariwise, if you're using an older system which is missing the functionsin the
second column, you may be able to implement them in terms of, or substitute, the
functionsin the first.

References: PCS Sec. 11

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.24.html [26/03/2003 11:46:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.3

Question 14.3

I'm trying to do some ssimpletrig, and | am #including <mat h. h>, but | keep
getting “undefined: sin" compilation errors.

Make sure you're actually linking with the math library. For instance, under Unix,
you usually need to use the - | moption, at the end of the command line, when
compiling/linking. See also questions 13.25 and 13.26.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.3.html [26/03/2003 11:46:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.28

Question 13.28

What does it mean when the linker saysthat _end is undefined?

That message isaquirk of the old Unix linkers. You get an error about _end being
undefined only when other things are undefined, too--fix the others, and the error
about _end will disappear. (See aso questions 13.25 and 13.26.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q13.28.html [26/03/2003 11:46:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.1

Question 14.1

When | set af | oat variableto, say, 3.1, why ispri nt f printing it as 3.09999997?

Most computers use base 2 for floating-point numbers as well asfor integers. In base
2, 1/1010 (that is, 1/10 decimal) is an infinitel y-repeating fraction: its binary
representation is 0.0001100110011... . Depending on how carefully your compiler's
binary/decimal conversion routines (such as those used by pri nt f) have been
written, you may see discrepancies when numbers (especially low-precision

f | oat s) not exactly representable in base 2 are assigned or read in and then printed
(i.e. converted from base 10 to base 2 and back again). See also question 14.6.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.1.html [26/03/2003 11:46:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.6

Question 14.6

How do | round numbers?

The simplest and most straightforward way is with code like
(int)(x + 0.5)

This technique won't work properly for negative numbers, though.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.6.html [26/03/2003 11:47:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.2

Question 14.2

I'm trying to take some square roots, but I'm getting crazy numbers.

Make sure that you have #included <mat h. h>, and correctly declared other
functions returning doubl e. (Another library routine to be careful withisat of ,
whichisdeclared in<st dl i b. h>.) See also question 14.3.

References. CT& P Sec. 4.5 pp. 65-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.2.html [26/03/2003 11:47:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.4

Question 14.4

My floating-point calculations are acting strangely and giving me different answers
on different machines,

First, see question 14.2.

If the problem isn't that simple, recall that digital computers usually use floating-
point formats which provide a close but by no means exact simulation of real number
arithmetic. Underflow, cumulative precision loss, and other anomalies are often
troublesome.

Don't assume that floating-point results will be exact, and especially don't assume
that floating-point values can be compared for equality. (Don't throw haphazard
“fuzz factors' in, either; see question 14.5.)

These problems are no worse for C than they are for any other computer language.
Certain aspects of floating-point are usually defined as " however the processor does
them" (see also question 11.34), otherwise a compiler for a machine without the

“right" model would have to do prohibitively expensive emulations.

This article cannot begin to list the pitfalls associated with, and workarounds
appropriate for, floating-point work. A good numerical programming text should
cover the basics; see also the references below.

References. Kernighan and Plauger, The Elements of Programming Style Sec. 6 pp.
115-8

Knuth, Volume 2 chapter 4

David Goldberg, "What Every Computer Scientist Should Know about Floating-
Point Arithmetic"

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.4.html [26/03/2003 11:47:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.5

Question 14.5

What's a good way to check for “"close enough" floating-point equality?

Since the absolute accuracy of floating point values varies, by definition, with their
magnitude, the best way of comparing two floating point valuesis to use an accuracy
threshold which is relative to the magnitude of the numbers being compared. Rather
than

doubl e a, b;

if(a == b) /* VNRONG */
use something like

#i ncl ude <mat h. h>

| f(fabs(a - b) <= epsilon * fabs(a))

for some suitably-chosen epsi | on.

References: Knuth Sec. 4.2.2 pp. 217-8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.5.html [26/03/2003 11:47:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.7

Question 14.7

Why doesn't C have an exponentiation operator?

Because few processors have an exponentiation instruction. C has a pow function,
declared in <mat h. h>, athough explicit multiplication is often better for small
positive integral exponents.

References: ANSI Sec. 45.5.1
SO Sec. 7.5.5.1
H&S Sec. 17.6 p. 393

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.7.html [26/03/2003 11:47:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.8

Question 14.8

The pre-#def i ned constant M Pl seems to be missing from my machine's copy of
<mat h. h>.

That constant (which is apparently supposed to be the value of pi, accurate to the
machine's precision), is not standard. If you need pi, you'll haveto #def i ne it
yourself.

References. PCS Sec. 13 p. 237

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.8.html [26/03/2003 11:47:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.9

Question 14.9

How do | test for IEEE NaN and other special values?

Many systems with high-quality 1EEE floating-point implementations provide
facilities (e.g. predefined constants, and functionslikei snan() , either as
nonstandard extensionsin <mat h. h> or perhapsin <i eee. h> or <nan. h>) to
deal with these values cleanly, and work is being done to formally standardize such
facilities. A crude but usually effective test for NaN is exemplified by

#define isnan(x) ((x) !'= (x))
although non-1EEE-aware compilers may optimize the test away.

Another possibility isto format the value in question using spr i nt f : on many
systemsit generates strings like" NaN' and " | nf " which you could compare for in
apinch.

See also question 19.39.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.9.html [26/03/2003 11:47:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.39

Question 19.39

How can | handle floating-point exceptions gracefully?

On many systems, you can define aroutine mat her r which will be called when
there are certain floating-point errors, such as errorsin the math routinesin
<mat h. h>. You may aso be ableto usesi gnal (see question 19.38) to catch

SIGFPE. See also question 14.9.

References; Rationale Sec. 4.5.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.39.html [26/03/2003 11:47:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.13

Question 14.13

I'm having trouble with a Turbo C program which crashes and says something like
““floating point formats not linked."

Some compilers for small machines, including Borland's (and Ritchie's original PDP-
11 compiler), leave out certain floating point support if it looks like it will not be
needed. In particular, the non-floating-point versionsof pri nt f and scanf save
space by not including code to handle %, % , and %g. It happens that Borland's
heuristics for determining whether the program uses floating point are insufficient,
and the programmer must sometimes insert an extra, explicit call to a floating-point
library routine to force loading of floating-point support. (See the
comp.os.msdos.programmer FAQ list for more information.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q14.13.html [26/03/2003 11:47:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.7

Question 15.7

| have apre-ANSI compiler, without <st dar g. h>. What can | do?

There's an older header, <var ar gs. h>, which offers about the same functionality.

References. H& S Sec. 11.4 pp. 296-9
CT&P Sec. A.2 pp. 134-139
PCS Sec. 11 pp. 184-5, Sec. 13 p. 250

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.7.html [26/03/2003 11:47:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.6

Question 15.6

How can | write afunction analogous to scanf , that callsscanf to do most of the
work?

Unfortunately, vscanf and the like are not standard. Y ou're on your own.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.6.html [26/03/2003 11:47:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.8

Question 15.8

How can | discover how many arguments a function was actually called with?

Thisinformation is not available to a portable program. Some old systems provided a
nonstandard nar gs function, but its use was always questionable, sinceit typically
returned the number of words passed, not the number of arguments. (Structures,

| ong i nt s, and floating point values are usually passed as several words.)

Any function which takes a variable number of arguments must be able to determine
from the arguments themselves how many of them there are. pr i nt f -like functions
do this by looking for formatting specifiers (% and the like) in the format string
(which iswhy these functions fail badly if the format string does not match the
argument list). Another common technique, applicable when the arguments are all of
the same type, isto use a sentinel value (often O, -1, or an appropriately-cast null
pointer) at the end of thelist (seetheexecl andvst rcat examplesin questions
5.2 and 15.4). Finally, if their types are predictable, you can pass an explicit count of

the number of variable arguments (although it's usually a nuisance for the caller to
generate).

References. PCS Sec. 11 pp. 167-8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.8.html [26/03/2003 11:47:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.9

Question 15.9
My compiler isn't letting me declare a function

int f(...)
{
}

I.e. with no fixed arguments.

Standard C requires at least one fixed argument, in part so that you can hand it to
va_start.

References: ANSI Sec. 3.5.4, Sec. 3.5.4.3, Sec. 4.8.1.1
SO Sec. 6.5.4, Sec. 6.5.4.3, Sec. 7.8.1.1
H&S Sec. 9.2 p. 263

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.9.html [26/03/2003 11:47:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.10

Question 15.10
| have avarargs function which acceptsaf | oat parameter. Why isn't
va_arg(argp, float)

working?

In the variable-length part of variable-length argument lists, the old ~ default
argument promotions” apply: arguments of typef | oat are always promoted
(widened) to typedoubl e, andtypeschar andshort i nt arepromotedtoi nt .
Therefore, it isnever correct toinvokeva_ar g(argp, fl oat) ;insteadyou
should alwaysuseva_ar g(ar gp, doubl e).Smilarly,useva_ar g(ar gp,

| nt) to retrieve arguments which were originally char , short, ori nt . Seealso
guestions 11.3 and 15.2.

References: ANSI Sec. 3.3.2.2
SO Sec. 6.3.2.2

Rationale Sec. 4.8.1.2

H&S Sec. 11.4 p. 297

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.10.html [26/03/2003 11:47:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.11

Question 15.11

| can't get va_ar g to pull in an argument of type pointer-to-function.

The type-rewriting games which theva_ar g macro typically plays are stymied by
overly-complicated types such as pointer-to-function. If you useat ypedef for the
function pointer type, however, all will be well. See a'so question 1.21.

References: ANSI Sec. 4.8.1.2
SO Sec. 7.8.1.2
Rationale Sec. 4.8.1.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.11.html [26/03/2003 11:47:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.12

Question 15.12

How can | write afunction which takes a variable number of arguments and passes
them to some other function (which takes a variable number of arguments)?

In general, you cannot. Ideally, you should provide a version of that other function
which acceptsava_| i st pointer (analogousto vf pri nt f ; see question 15.5). If
the arguments must be passed directly as actual arguments, or if you do not have the
option of rewriting the second function to accept ava_| i st (in other words, if the
second, called function must accept a variable number of arguments, not a

va_| i st), no portable solution is possible. (The problem could perhaps be solved
by resorting to machine-specific assembly language; see also question 15.13.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.12.html [26/03/2003 11:47:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.13

Question 15.13

How can | call afunction with an argument list built up at run time?

There is no guaranteed or portable way to do this. If you're curious, however, this
list's editor has a few wacky ideas you could try...

Instead of an actual argument list, you might consider passing an array of generic
(voi d *) pointers. The called function can then step through the array, much like
mai n() might step through ar gv. (Obviously thisworks only if you have control
over al the called functions.)

(See dso question 19.36.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q15.13.html [26/03/2003 11:47:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

"wacky ideas" (on the "inverse varargs problem")

Somehow |'ve never gotten around to writing the definitive essay on those "wacky
ideas’. Here are several messages |'ve written at various times on the subject of what
| call the "inverse varargs problem"; they summarize most of the ideas, and should at
least get you started. (There is some overlap, because some of the later ones were
written when | didn't have copies of the earlier ones handy.)

article posted to comp.unix.wizards and comp.lang.c 1989-06-04

article posted to comp.lang.c 1992-07-14

mail message sent 1993-03-07 to someone asking about the "wacky ideas’
more recent ideas (1997-06-28)

most recent ideas (2001-05-27)

http://www.eskimo.com/~scs/C-fag/varargs/wackyideas.html [26/03/2003 11:47:20 p.m.]

http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19890604.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19920714.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19930307.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19970628.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.20010527.html

Question 19.36

Question 19.36

How can | read in an object file and jump to routinesin it?

Y ou want adynamic linker or loader. It may be possible to mal | oc some space and
read in object files, but you have to know an awful ot about object file formats,
relocation, etc. Under BSD Unix, you could usesyst emand| d - Ato do the
linking for you. Many versions of SunOS and System V have the -Idl library which
allows object files to be dynamically loaded. Under VMS, use
LIB$FIND_IMAGE_SYMBOL. GNU has a package called ""did". See also question
15.13.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.36.html [26/03/2003 11:47:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.3

Question 16.3

This program crashes before it even runs! (When single-stepping with a debugger, it
dies before the first statement in mai n.)

Y ou probably have one or more very large (kilobyte or more) local arrays. Many
systems have fixed-size stacks, and those which perform dynamic stack allocation
automatically (e.g. Unix) can be confused when the stack tries to grow by a huge
chunk all at once. It is often better to declare large arrayswith st at i ¢ duration
(unless of course you need a fresh set with each recursive call, in which case you
could dynamically allocate them with mal | oc; see also question 1.31).

(Seedso questions 11.12, 16.4, 16.5, and 18.4.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q16.3.html [26/03/2003 11:47:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.5

Question 16.5

This program runs perfectly on one machine, but | get weird results on another.
Stranger still, adding or removing debugging printouts changes the symptoms...

Lots of things could be going wrong; here are afew of the more common things to
check:

. uninitialized local variables (see also question 7.1)

. integer overflow, especialy on 16-bit machines, especially of an intermediate
result when doing thingslikea * b / c¢ (seealso question 3.14)

. undefined evaluation order (see questions 3.1 through 3.4)

. omitted declaration of external functions, especially those which return
something other thani nt (see questions 1.25 and 14.2)

. dereferenced null pointers (see section 5)

. improper mal | oc/f r ee use: assuming nal | oced memory contains 0,
assuming f r eed storage persists, f r eeing something twice (see aso
guestions 7.20 and 7.19)

. pointer problemsin general (see also question 16.8)

. mismatch between pri nt f format and arguments, especially trying to print
| ong i nt susing %@ (see question 12.9)

. tryingtomal | oc(256 * 256 * sizeof (doubl e)), especialy on
machines with limited memory (see also questions 7.16 and 19.23)

. array bounds problems, especially of small, temporary buffers, perhaps used
for constructing stringswith spri nt f (seeaso questions 7.1 and 12.21)

. invalid assumptions about the mapping of t ypedef s, especially si ze t

. floating point problems (see questions 14.1 and 14.4)

. anything you thought was a clever exploitation of the way you believe code is
generated for your specific system

Proper use of function prototypes can catch several of these problems; | i nt would
catch several more. See al'so questions 16.3, 16.4, and 18.4.

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-fag/q16.5.html (1 of 2) [26/03/2003 11:47:23 p.m.]

Question 16.5

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q16.5.html (2 of 2) [26/03/2003 11:47:23 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.4

Question 18.4

| just typed in this program, and it's acting strangely. Can you see anything wrong
with it?

Seeif youcanrunl i nt first (perhapswiththe- a, - c, - h, - p or other options).
Many C compilers are really only half-compilers, electing not to diagnose numerous
source code difficulties which would not actively preclude code generation.

See also questions 16.5 and 16.8.

References. lan Darwin, Checking C Programs with lint

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.4.html [26/03/2003 11:47:24 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.1

Question 17.1

What's the best style for code layout in C?

K&R, while providing the example most often copied, also supply a good excuse for
disregarding it:

The position of bracesis lessimportant, although people hold
passionate beliefs. We have chosen one of several popular styles. Pick
a style that suits you, then use it consistently.

It is more important that the layout chosen be consistent (with itself, and with nearby
or common code) than that it be *perfect.” If your coding environment (i.e. local
custom or company policy) does not suggest a style, and you don't feel like inventing
your own, just copy K& R. (The tradeoffs between various indenting and brace
placement options can be exhaustively and minutely examined, but don't warrant
repetition here. See also the Indian Hill Style Guide.)

The elusive quality of “"good style" involves much more than mere code layout
details; don't spend time on formatting to the exclusion of more substantive code
quality issues.

See aso question 10.6.

References. K&R1 Sec. 1.2 p. 10
K&R2 Sec. 1.2 p. 10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.1.html [26/03/2003 11:47:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.3

Question 17.3
Here'saneat trick for checking whether two strings are equal:
I f(!'strcnmp(sl, s2))

Isthis good style?

It is not particularly good style, although it is a popular idiom. The test succeeds if
the two strings are equal, but the use of ! (" not") suggests that it tests for inequality.

A better option isto use a macro:
#define Streq(sl, s2) (strcnmp((sl), (s2)) == 0)

Opinions on code style, like those on religion, can be debated endlessly. Though
good styleis aworthy goal, and can usually be recognized, it cannot be rigorously
codified. See also question 17.10.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.3.html [26/03/2003 11:47:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.4

Question 17.4

Why do some peoplewritei f (0 == x) insteadof i f (x == 0)?

It'satrick to guard against the common error of writing
i f(x = 0)

If you'rein the habit of writing the constant before the ==, the compiler will
complain if you accidentally type

if(0 = x)

Evidently it can be easier to remember to reverse the test than it isto remember to
type the doubled = sign.

References. H& S Sec. 7.6.5 pp. 209-10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/ql17.4.html [26/03/2003 11:47:27 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.5

Question 17.5

| came across some code that putsa(voi d) cast beforeeach call topri ntf.
Why?

pri ntf doesreturn avalue, though few programs bother to check the return values
from each call. Since some compilers (and | i nt) will warn about discarded return
values, an explicit cast to (voi d) isaway of saying "Yes, I've decided to ignore
the return value from this call, but please continue to warn me about other (perhaps
Inadvertently) ignored return values." It's also common to use voi d castson callsto
strcpy and st r cat, sincethereturn value is never surprising.

References. K& R2 Sec. A6.7 p. 199
Rationale Sec. 3.3.4
H&S Sec. 6.2.9 p. 172, Sec. 7.13 pp. 229-30

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.5.html [26/03/2003 11:47:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.8

Question 17.8

What is Hungarian Notation"? Isit worthwhile?

Hungarian Notation is a naming convention, invented by Charles Simonyi, which
encodes things about a variable's type (and perhaps its intended use) initsname. It is
well-loved in some circles and roundly castigated in others. Its chief advantageis
that it makes avariabl€e's type or intended use obvious from its name; its chief
disadvantage is that type information is not necessarily a worthwhile thing to carry
around in the name of avariable.

References. Simonyi and Heller, " The Hungarian Revolution™

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q17.8.html [26/03/2003 11:47:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.9

Question 18.9

Arethere any C tutorials or other resources on the net?

There are severa of them:

“"Notes for C programmers,” by Christopher Sawtell, are available from ftp.funet.fi
in pub/languages/Cltutorials/sawtell C.tar.gz.

Tim Love's "C for Programmers” is at
http://www.eng.cam.ac.uk/hel p/tpl/languages/C/teaching C/teaching C.html .

The Coronado Enterprises C tutorials are available on Simtel mirrorsin pub/msdos/c/
or on the web at http://www.swcp.com/~dodrill/controlled/cdoc/cmain.html.

Rick Rowe has atutorial which is available from ftp.netcom.com as
pub/rowe/tutorde.zip or ftp.wustl.edu as
pub/MSDOS_UPL OADS/programming/c_language/ctutorde.zip .

Thereis evidently aweb-based course at
http://www.strath.ac.uk/I T/Docs/Ccourse/ccourse.html .

Finally, on some Unix machines you can try typing | ear n c at the shell prompt.

[Disclaimer: | have not reviewed these tutorials; | have heard that at |east one of
them contains a number of errors. Also, this sort of information rapidly becomes out-
of-date; these addresses may not work by the time you read this and try them.]

Severa of these tutorials, plus a great deal of other information about C, are
accessible viathe web at http://www.lysator.liu.se/c/index.html .

Vinit Carpenter maintains alist of resources for learning C and C++; it is posted to
comp.lang.c and comp.lang.c++, and archived where this FAQ list is (see question
20.40), or on the web at http://www.cyberdiem.com/vin/learn.html .

See also question 18.10.

http://www.eskimo.com/~scs/C-fag/q18.9.html (1 of 2) [26/03/2003 11:47:30 p.m.]

ftp://ftp.funet.fi/pub/languages/C/tutorials/sawtell_C.tar.gz
ftp://ftp.funet.fi/pub/languages/C/tutorials/sawtell_C.tar.gz
http://www.eng.cam.ac.uk/help/tpl/languages/C/teaching_C/teaching_C.html
http://www.swcp.com/~dodrill/controlled/cdoc/cmain.html
http://www.strath.ac.uk/IT/Docs/Ccourse/ccourse.html
http://www.lysator.liu.se/c/index.html
http://www.cyberdiem.com/vin/learn.html

Question 18.9

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.9.html (2 of 2) [26/03/2003 11:47:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.7

Question 18.7

Where can | get an ANSI-compatiblel i nt ?

Products called PC-Lint and FlexeLint (in = shrouded source form," for compilation
on 'most any system) are available from

G npel Software

3207 Hogarth Lane

Col l egeville, PA 19426 USA
(+1) 610 584 4261

gi npel @et axs. com

The Unix System V release 4| i nt is ANSI-compatible, and is available separately
(bundled with other C tools) from UNIX Support Labs or from System V resellers.

Another ANSI-compatible! i nt (which can aso perform higher-level formal
verification) is LCLint, available via anonymous ftp from larch.lcs.mit.edu in
pub/Larch/Iclint/.

In the absence of | i nt , many modern compilers do attempt to diagnose almost as
many problemsas| i nt does.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.7.html [26/03/2003 11:47:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.5

Question 18.5

How can | shut off the ““warning: possible pointer alignment problem” message
which | i nt givesmefor each call tomal | oc?

The problem isthat traditional versionsof | i nt do not know, and cannot be told,
that mal | oc "returns a pointer to space suitably aligned for storage of any type of
object." It is possible to provide a pseudoimplementation of mal | oc, using a

#def i neinsdeof #i f def |1 nt, which effectively shuts this warning off, but a
simpleminded definition will also suppress meaningful messages about truly
Incorrect invocations. It may be easier ssimply to ignore the message, perhapsin an
automated way with gr ep - v. (But don't get in the habit of ignoring too many

| i nt messages, otherwise one day you'll overlook a significant one.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.5.html [26/03/2003 11:47:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.13

Question 18.13

Where can | find the sources of the standard C libraries?

One source (though not public domain) is The Siandard C Library, by P.J. Plauger
(see the Bibliography). Implementations of all or part of the C library have been
written and are readily available as part of the netBSD and GNU (also Linux)
projects. See also question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.13.html [26/03/2003 11:47:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.14

Question 18.14

| need code to parse and evaluate expressions.

Two available packages are " “defunc,” posted to comp.sources.misc in December,
1993 (V41132,33), to at.sources in January, 1994, and available from
sunsite.unc.edu in pub/packages/devel opment/libraries/defunc-1.3.tar.Z, and * parse,”
at lamont.ldgo.columbia.edu. Other options include the S-Lang interpreter, available
via anonymous ftp from amy.tch.harvard.edu in pub/slang, and the shareware Cmm
(""C-minus-minus" or ~"C minus the hard stuff"). See also question 18.16.

There is also some parsing/eval uation code in Software Solutions in C (chapter 12,
pp. 235-55).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.14.html [26/03/2003 11:47:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.15

Question 18.15

Where can | get aBNF or YACC grammar for C?

The definitive grammar is of course the onein the ANSI standard; see question 11.2.
Another grammar (along with one for C++) by Jim Roskind isin
pub/c++grammarl.l.tar.Z at ics.uci.edu . A fleshed-out, working instance of the
ANSI grammar (due to Jeff Lee) ison ftp.uu.net (see question 18.16) in
usenet/net.sources/ansi.c.grammar.Z (including a companion lexer). The FSF's GNU
C compiler contains a grammar, as does the appendix to K& R2.

The comp.compilers archives contain more information about grammars; see
guestion 18.3.

References. K&R1 Sec. A18 pp. 214-219
K&R2 Sec. A13 pp. 234-239

ANSI Sec. A.2

ISO Sec. B.2

H& S pp. 423-435 Appendix B

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q18.15.html [26/03/2003 11:47:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.2

Question 19.2

How can | find out if there are characters available for reading (and if so, how
many)? Alternatively, how can | do aread that will not block if there are no
characters available?

These, t0o, are entirely operating-system-specific. Some versions of curses have a
nodel ay function. Depending on your system, you may also be able to use
““nonblocking I/0O", or asystem call named sel ect or pol | , or the FIONREAD
ioctl, c_cc[VTI ME] , or kbhi t, orrdchk, or theO_NDELAY option to open or
fcntl . Seealso question 19.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.2.html [26/03/2003 11:47:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.3

Question 19.3

How can | display a percentage-done indication that updates itself in place, or show
one of those ""twirling baton" progress indicators?

These simple things, at least, you can do fairly portably. Printing the character ' \ r*
will usually give you a carriage return without a line feed, so that you can overwrite
the current line. The character ' \ b' isabackspace, and will usualy move the
cursor one position to the | eft.

References: ANSI Sec. 2.2.2
SO Sec. 5.2.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.3.html [26/03/2003 11:47:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.4

Question 19.4

How can | clear the screen?
How can | print thingsin inverse video?
How can | move the cursor to a specific x, y position?

Such things depend on the terminal type (or display) you're using. Y ou will have to
use alibrary such as termcap, terminfo, or curses, or some system-specific routines,
to perform these operations.

For clearing the screen, a halfway portable solution isto print aform-feed character
(' \f'), whichwill cause some displays to clear. Even more portable would be to
print enough newlines to scroll everything away. As alast resort, you could use
syst em(see question 19.27) to invoke an operating system clear-screen command.

References. PCS Sec. 5.1.4 pp. 54-60, Sec. 5.1.5 pp. 60-62

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.4.html [26/03/2003 11:47:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.5

Question 19.5

How do | read the arrow keys? What about function keys?

Terminfo, some versions of termcap, and some versions of curses have support for
these non-ASCI| keys. Typically, a specia key sends a multicharacter sequence
(usually beginning with ESC, ' \ 033"); parsing these can be tricky. (curses will do
the parsing for you, if you call keypad first.)

Under MS-DOS, if you receive a character with value O (not' 0' !) while reading the
keyboard, it's aflag indicating that the next character read will be a code indicating a
special key. See any DOS programming guide for lists of keyboard codes. (Very
briefly: the up, left, right, and down arrow keys are 72, 75, 77, and 80, and the
function keys are 59 through 68.)

References. PCS Sec. 5.1.4 pp. 56-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.5.html [26/03/2003 11:47:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.6

Question 19.6

How do | read the mouse?

Consult your system documentation, or ask on an appropriate system-specific
newsgroup (but check its FAQ list first). Mouse handling is completely different
under the X window system, MS-DOS, the Macintosh, and probably every other
system.

References. PCS Sec. 5.5 pp. 78-80

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.6.html [26/03/2003 11:47:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.7

Question 19.7

How can | do serial (""comm") port 1/0?

It's system-dependent. Under Unix, you typically open, read, and write adevicefile
in/ dev, and use the facilities of the terminal driver to adjust its characteristics. (See
also questions 19.1 and 19.2.) Under MS-DOS, you can use the predefined stream

st daux, or aspecidl filelike COM1, or some primitive BIOS interrupts, or (if you
require decent performance) any number of interrupt-driven serial 1/O packages.
Several netters recommend the book C Programmer's Guide to Serial
Communications, by Joe Campbell.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.7.html [26/03/2003 11:47:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.8

Question 19.8

How can | direct output to the printer?

Under Unix, either use popen (see question 19.30) to writeto thel p or | pr

program, or perhaps open aspecid filelike/ dev/ | p. Under MS-DOS, write to the
(nonstandard) predefined stdio stream st dpr n, or open the special files PRN or
LPT1.

References. PCS Sec. 5.3 pp. 72-74

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.8.html [26/03/2003 11:47:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.9

Question 19.9

How do | send escape sequences to control aterminal or other device?

If you can figure out how to send charactersto the device at all (see question 19.8),
it's easy enough to send escape sequences. In ASCII, the ESC code is 033 (27

decimal), so code like

fprintf(ofd, "\033[J");

sendsthe sequenceESC [J .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.9.html [26/03/2003 11:47:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.10

Question 19.10

How can | do graphics?

Once upon atime, Unix had afairly nice little set of device-independent plot routines
described in plot(3) and plot(5), but they've largely fallen into disuse.

If you're programming for MS-DOS, you'll probably want to use libraries
conforming to the VESA or BGI standards.

If you're trying to talk to a particular plotter, making it draw is usually a matter of
sending it the appropriate escape sequences, see also question 19.9. The vendor may
supply a C-callable library, or you may be able to find one on the net.

If you're programming for a particular window system (Macintosh, X windows,
Microsoft Windows), you will useits facilities; see the relevant documentation or
newsgroup or FAQ list.

References. PCS Sec. 5.4 pp. 75-77

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.10.html [26/03/2003 11:47:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.11

Question 19.11

How can | check whether afile exists? | want to warn the user if arequested input
fileis missing.

It's surprisingly difficult to make this determination reliably and portably. Any test
you make can beinvalidated if the fileis created or deleted (i.e. by some other
process) between the time you make the test and the time you try to open thefile.

Three possible test routinesare st at , access, and f open. (To make an
approximate test for file existence with f open, just open for reading and close
immediately.) Of these, only f open iswidely portable, and access, whereit
exists, must be used carefully if the program uses the Unix set-UID feature.

Rather than trying to predict in advance whether an operation such as opening afile
will succeed, it's often better to try it, check the return value, and complain if it fails.
(Obviousdly, this approach won't work if you're trying to avoid overwriting an
existing file, unless you've got something like the O_EXCL file opening option
available, which does just what you want in this case.)

References. PCS Sec. 12 pp. 189,213
POSIX Sec. 5.3.1, Sec. 5.6.2, Sec. 5.6.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.11.html [26/03/2003 11:47:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.13

Question 19.13

How can afile be shortened in-place without completely clearing or rewriting it?

BSD systemsprovidef t r uncat e, several others supply chsi ze, and afew may
provide a (possibly undocumented) f cnt | option F_FREESP. Under MS-DOS, you
can sometimesusew ite(fd, "", 0).However, thereisno portable solution,
nor away to delete blocks at the beginning. See al'so question 19.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.13.html [26/03/2003 11:47:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.15

Question 19.15

How can | recover the file name given an open stream or file descriptor?

This problemis, in general, insoluble. Under Unix, for instance, a scan of the entire
disk (perhaps involving special permissions) would theoretically be required, and
would fail if the descriptor were connected to a pipe or referred to a deleted file (and
could give amisleading answer for afile with multiple links). It is best to remember
the names of files yourself when you open them (perhaps with awrapper function
around f open).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.15.html [26/03/2003 11:47:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.16

Question 19.16

How can | delete afile?

The Standard C Library functionisr enove. (Thisistherefore one of the few
questions in this section for which the answer is not " It's system-dependent.”) On
older, pre:ANSI Unix systems, r enove may not exist, in which case you can try
unl i nk.

References. K&R2 Sec. B1.1 p. 242
ANS| Sec.494.1

1SO Sec. 7.9.4.1

H& S Sec. 15.15 p. 382

PCS Sec. 12 pp. 208,220-221
POSIX Sec. 5.5.1, Sec. 8.24

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.16.html [26/03/2003 11:47:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.18

Question 19.18

I'm getting an error, " Too many open files'. How can | increase the allowable
number of simultaneously open files?

There are actually at least two resource limitations on the number of simultaneously
open files: the number of low-level ““file descriptors' or *file handles" availablein
the operating system, and the number of FI LE structures available in the stdio
library. Both must be sufficient. Under MS-DOS systems, you can control the
number of operating system file handles with alinein CONFIG.SY S. Some
compilers come with instructions (and perhaps a source file or two) for increasing
the number of stdio FI LE structures.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.18.html [26/03/2003 11:47:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.20

Question 19.20

How can | read adirectory in a C program?

Seeif you can usetheopendi r andr eaddi r routines, which are part of the
POSIX standard and are available on most Unix variants. Implementations also exist
for MS-DOS, VMS, and other systems. (MS-DOS aso has FINDFIRST and
FINDNEXT routines which do essentially the same thing.) r eaddi r only returns
file names; if you need more information about thefile, try calling st at . To match
filenames to some wildcard pattern, see question 13.7.

References. K& R2 Sec. 8.6 pp. 179-184

PCS Sec. 13 pp. 230-1

POSIX Sec. 5.1

Schumacher, ed., Software Solutionsin C Sec. 8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.20.html [26/03/2003 11:47:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.22

Question 19.22

How can | find out how much memory is available?

Y our operating system may provide a routine which returns this information, but it's
guite system-dependent.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.22.html [26/03/2003 11:47:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.24

Question 19.24

What does the error message "DGROUP data allocation exceeds 64K" mean, and
what can | do about it? | thought that using large model meant that | could use more
than 64K of datal

Even in large memory models, MS-DOS compilers apparently toss certain data
(strings, some initialized global or st at i ¢ variables) into a default data segment,
and it's this segment that is overflowing. Either use less global data, or, if you're
aready limiting yourself to reasonable amounts (and if the problem is due to
something like the number of strings), you may be able to coax the compiler into not
using the default data segment for so much. Some compilers place only " small” data
objects in the default data segment, and give you away (e.g. the/ G option under
Microsoft compilers) to configure the threshold for ~“small."

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.24.html [26/03/2003 11:47:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.25

Question 19.25

How can | access memory (a memory-mapped device, or graphics memory) located at a
certain address?

Set a pointer, of the appropriate type, to the right number (using an explicit cast to assure
the compiler that you really do intend this nonportable conversion):

unsi gned int *magicloc = (unsigned int *)0x12345678;

Then, * magi cl oc refersto the location you want. (Under MS-DOS, you may find a
macro like MK_FP() handy for working with segments and offsets.)

References: K&R1 Sec. A14.4 p. 210
K&R2 Sec. A6.6 p. 199

ANSI Sec. 3.34

SO Sec. 6.3.4

Rationale Sec. 3.3.4

H& S Sec. 6.2.7 pp. 171-2

Read sequentialy: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.25.html [26/03/2003 11:48:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.31

Question 19.31

How can my program discover the complete pathname to the executable from which
it was invoked?

ar gv[0] may contain al or part of the pathname, or it may contain nothing. Y ou
may be able to duplicate the command language interpreter's search path logic to
locate the executable if the nameinar gv[0] is present but incomplete. However,
there is no guaranteed solution.

References. K&R1 Sec. 5.11 p. 111
K&R2 Sec. 5.10 p. 115

ANSI Sec. 2.1.2.2.1

ISO Sec. 5.1.2.2.1

H&S Sec. 20.1 p. 416

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.31.html [26/03/2003 11:48:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.32

Question 19.32

How can | automatically locate a program's configuration files in the same directory
as the executable?

It's hard; see also question 19.31. Even if you can figure out aworkable way to do it,
you might want to consider making the program's auxiliary (library) directory
configurable, perhaps with an environment variable. (It's especially important to
allow variable placement of a program's configuration files when the program will be
used by several people, e.g. on a multiuser system.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.32.html [26/03/2003 11:48:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.33

Question 19.33

How can a process change an environment variable in its caller?

It may or may not be possible to do so at all. Different operating systems implement
global name/value functionality similar to the Unix environment in different ways.
Whether the " environment” can be usefully altered by a running program, and if so,
how, is system-dependent.

Under Unix, a process can modify its own environment (some systems provide
set env or put env functions for the purpose), and the modified environment is
generally passed on to child processes, but it is not propagated back to the parent
process.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.33.html [26/03/2003 11:48:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.38

Question 19.38

How can | trap or ignore keyboard interrupts like control-C?

Thebasic stepisto cal si gnal , either as

#i ncl ude <signal . h>
signal (SIGA NT, SIGIGN);

to ignore the interrupt signal, or as

extern void func(int);
signal (SI G NT, func);

to cause control to transfer to function f unc on receipt of an interrupt signal.

On amulti-tasking system such as Unix, it's best to use a dightly more involved
technique:

extern void func(int);
if(signal (SIGANT, SIGIGN) = SIG |IGN)
si gnal (SI G NT, func);

The test and extra call ensure that a keyboard interrupt typed in the foreground won't
inadvertently interrupt a program running in the background (and it doesn't hurt to
code calsto si gnal thisway on any system).

On some systems, keyboard interrupt handling is also a function of the mode of the
terminal-input subsystem; see question 19.1. On some systems, checking for
keyboard interruptsis only performed when the program is reading input, and
keyboard interrupt handling may therefore depend on which input routines are being
called (and whether any input routines are active at all). On MS-DOS systems,
setcbrk orctrl brk functions may also be involved.

References: ANSI Secs. 4.7,4.7.1
SO Secs. 7.7,7.7.1

H& S Sec. 19.6 pp. 411-3

PCS Sec. 12 pp. 210-2

POSIX Secs. 3.3.1,3.34

http://www.eskimo.com/~scs/C-fag/q19.38.html (1 of 2) [26/03/2003 11:48:04 p.m.]

Question 19.38

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.38.html (2 of 2) [26/03/2003 11:48:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.40

Question 19.40

How do I... Use sockets? Do networking? Write client/server applications?

All of these questions are outside of the scope of this list and have much more to do
with the networking facilities which you have available than they do with C. Good
books on the subject are Douglas Comer's three-volume I nter networking with
TCP/IP and W. R. Stevens's UNIX Network Programming. (There is also plenty of
information out on the net itself.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.40.html [26/03/2003 11:48:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.40b

Question 19.40b

How do | use BIOS calls? How can | write ISR's? How can | create TSR's?

These are very particular to specific systems (PC compatibles running MS-DOS,
most likely). You'll get much better information in a specific newsgroup such as
comp.os.msdos.programmer or its FAQ list; another excellent resource is Ralf
Brown'sinterrupt list.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.40b.html [26/03/2003 11:48:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.41

Question 19.41

But | can't use all these nonstandard, system-dependent functions, because my
program hasto be ANSI compatible!

You're out of luck. Either you misunderstood your requirement, or it's an impossible
one to meet. ANSI/ISO Standard C simply does not define ways of doing these
things. (POSIX definesafew.) It is possible, and desirable, for most of a program to
be ANSI-compatible, deferring the system-dependent functionality to afew routines
in afew fileswhich are rewritten for each system ported to.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-fag/q19.41.html [26/03/2003 11:48:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

	eskimo.com
	comp.lang.c Frequently Asked Questions
	versions of comp.lang.c FAQ list
	C Programming FAQs Errata
	Question 20.40
	Question 18.16
	Question 14.12
	Question 18.15a
	Question 19.1
	Tools and Resources
	Copyright
	Question 20.39
	Question 20.38
	Miscellaneous
	Bibliography
	Question 11.2
	Question 17.9
	Question 18.10
	Question 20.1
	Question 20.3
	Question 20.5
	Question 20.6
	Question 20.8
	Question 20.9
	Question 20.10
	Question 20.11
	Question 20.12
	Question 20.13
	Question 20.14
	Question 20.17
	Question 20.18
	Question 20.19
	Question 20.20
	Question 20.24
	Question 20.25
	Question 20.26
	Question 20.27
	Question 20.28
	Question 20.29
	Question 20.31
	Question 20.32
	Question 20.34
	Question 20.35
	Question 20.36
	Question 20.37
	Declarations and Initializations
	Structures, Unions, and Enumerations
	Expressions
	Pointers
	Null Pointers
	Arrays and Pointers
	Memory Allocation
	Characters and Strings
	Boolean Expressions and Variables
	C Preprocessor
	ANSI/ISO Standard C
	Stdio
	Library Functions
	Floating Point
	Variable-Length Argument Lists
	Strange Problems
	Style
	System Dependencies
	Acknowledgements
	Questions
	Question 1.1
	Question 12.1
	Question 1.4
	Question 1.7
	Question 10.6
	Question 18.8
	Question 1.11
	Question 1.12
	Question 1.14
	Question 2.1
	Question 1.21
	Question 1.22
	Question 1.25
	Question 11.3
	Question 15.1
	Question 1.30
	Question 7.31
	Question 1.31
	Question 1.32
	Question 11.29
	Question 6.1
	Question 6.2
	Question 6.8
	Question 1.34
	Question 4.12
	Question 2.2
	Question 2.3
	Question 2.4
	Question 2.6
	Question 2.7
	Footnote 1
	Question 2.8
	Question 2.12
	Question 2.9
	Question 2.10
	Question 14.11
	Question 4.10
	Question 2.11
	Question 12.38
	Question 11.20
	Question 2.13
	Question 2.14
	Question 2.15
	Question 2.18
	Question 10.9
	Question 16.4
	Question 2.20
	Question 2.22
	Question 2.24
	Question 3.1
	Question 11.33
	Question 3.2
	Question 3.8
	Question 3.3
	Question 3.9
	Question 3.12
	Question 3.4
	Question 3.5
	Question 11.35
	Question 3.14
	Question 3.16
	Question 4.2
	Question 7.1
	Question 8.3
	Question 4.3
	Question 4.5
	Question 4.8
	Question 4.9
	Question 4.11
	Question 6.4
	Question 5.1
	http://www.eskimo.com/~scs/C-faq/q5.2.html
	Question 5.5
	Question 5.6
	Question 5.3
	Question 15.3
	Question 17.10
	Question 9.2
	Question 5.4
	Question 5.9
	Question 5.10
	Question 5.17
	Question 5.12
	Question 9.1
	Question 10.2
	Question 5.13
	Question 5.14
	Question 5.15
	Question 5.16
	Question 5.20
	Question 16.8
	Question 6.3
	Question 6.21
	Question 6.7
	Question 6.14
	Question 6.16
	Question 6.9
	Question 6.11
	Question 6.12
	Question 6.13
	Question 6.18
	Question 6.15
	Question 6.19
	Question 7.22
	Question 7.32
	Question 7.23
	Question 6.20
	Question 6.17
	Question 12.23
	Question 7.2
	Question 7.3
	Question 13.12
	Question 7.5
	Question 12.21
	Question 7.6
	Question 7.7
	Question 7.8
	Question 8.9
	Question 7.14
	Question 7.16
	Question 19.23
	Question 7.17
	Question 7.19
	Question 7.30
	Question 7.26
	Question 18.2
	Question 7.20
	Question 7.21
	Question 7.24
	Question 7.25
	Question 7.27
	Question 8.1
	Question 8.6
	Question 16.6
	Question 8.2
	Question 9.3
	Question 10.3
	Question 10.4
	http://www.eskimo.com/~scs/C-faq/q10.26.html
	Question 10.7
	Question 18.1
	Question 10.8
	Question 10.11
	Question 10.12
	Question 10.13
	Question 10.14
	Question 10.15
	Question 10.16
	Question 10.18
	Question 10.19
	Question 10.20
	Question 11.17
	Question 10.22
	Question 11.18
	Question 10.23
	Question 10.25
	Question 15.4
	Question 15.5
	Question 11.1
	Question 11.4
	Question 15.2
	Question 11.5
	Question 11.8
	Question 11.9
	Question 11.10
	Question 11.12
	Question 11.13
	Question 11.14
	Question 11.15
	Question 11.16
	Question 11.19
	Question 11.21
	Question 11.22
	Question 11.24
	Question 11.25
	Question 11.26
	Question 11.27
	Question 11.30
	Question 13.25
	Question 13.26
	Question 11.31
	Question 18.3
	Question 11.32
	Question 11.34
	Question 12.2
	Question 12.4
	Question 12.24
	Question 12.5
	Question 12.6
	Question 19.17
	Question 12.9
	Question 12.13
	Question 12.10
	Question 12.15
	Question 12.11
	Question 12.12
	Question 12.17
	Question 12.20
	Question 12.18
	Question 12.19
	Question 13.6
	Question 19.12
	Question 12.25
	Question 12.26
	Question 12.30
	Question 19.14
	Question 12.33
	Question 12.34
	Question 13.1
	Question 13.2
	Question 13.5
	Question 13.7
	Question 13.8
	Question 13.9
	Question 13.10
	Question 13.11
	Question 19.27
	Question 19.30
	Question 13.13
	Question 13.14
	Question 13.15
	Question 13.16
	Question 13.18
	Question 13.17
	Question 19.37
	Question 13.20
	Question 13.24
	Question 14.3
	Question 13.28
	Question 14.1
	Question 14.6
	Question 14.2
	Question 14.4
	Question 14.5
	Question 14.7
	Question 14.8
	Question 14.9
	Question 19.39
	Question 14.13
	Question 15.7
	Question 15.6
	Question 15.8
	Question 15.9
	Question 15.10
	Question 15.11
	Question 15.12
	Question 15.13
	"wacky ideas" (on the "inverse varargs problem")
	Question 19.36
	Question 16.3
	Question 16.5
	Question 18.4
	Question 17.1
	Question 17.3
	Question 17.4
	Question 17.5
	Question 17.8
	Question 18.9
	Question 18.7
	Question 18.5
	Question 18.13
	Question 18.14
	Question 18.15
	Question 19.2
	Question 19.3
	Question 19.4
	Question 19.5
	Question 19.6
	Question 19.7
	Question 19.8
	Question 19.9
	Question 19.10
	Question 19.11
	Question 19.13
	Question 19.15
	Question 19.16
	Question 19.18
	Question 19.20
	Question 19.22
	Question 19.24
	Question 19.25
	Question 19.31
	Question 19.32
	Question 19.33
	Question 19.38
	Question 19.40
	Question 19.40b
	Question 19.41

