
comp.lang.c Frequently Asked Questions

comp.lang.c Frequently Asked
Questions
This collection of hypertext pages is Copyright 1995 by Steve Summit. Content from
the book ``C Programming FAQs: Frequently Asked Questions'' (Addison-Wesley,
1995, ISBN 0-201-84519-9) is made available here by permission of the author and
the publisher as a service to the community. It is intended to complement the use of
the published text and is protected by international copyright laws. The content is
made available here and may be accessed freely for personal use but may not be
published or retransmitted without written permission.

This page is the top of an HTML version of the Usenet comp.lang.c Frequently
Asked Questions (FAQ) list. An FAQ list is a collection of questions commonly
asked on Usenet, together with presumably definitive answers, provided in an
attempt to keep repeated questions on the newsgroup down to a low background
drone so that discussion can move on to more interesting matters. Since they distill
knowledge gleaned from many sources and answer questions which are
demonstrably Frequent, FAQ lists serve as useful references outside of their
originating Usenet newsgroups. This list is, I dare to claim, no exception, and the
HTML version you're looking at now, as well as other versions referenced just
below, are intended to be useful to C programmers everywhere.

Several other versions of this FAQ list are available, including a book-length version
published by Addison-Wesley. (The book, though longer, also has a few more errors;
I've prepared an errata list.) See also question 20.40.

Like so many web pages, this is very much a ``work in progress.'' I would, of course,
like it if it were perfect, but it's been two years or so since I first started talking about
putting this thing on the web, and if I were to wait until all the glitches were worked
out, you might never see it. Each page includes a ``mail feedback'' button, so you can
help me debug it. (At first, you don't have to worry about reporting minor formatting
hiccups; many of these result from lingering imperfections in the programs that
generate these pages, or from the fact that I have not exhaustively researched how
various browsers implement the HTML tags I'm using, or from the fact that I haven't
gone the last yard in trying to rig up HTML that looks good in spite of the fact that
HTML doesn't have everything you need to make things look good.)

These pages are synchronized with the posted Usenet version and the Addison-
Wesley book version. Since not all questions appear in all versions, the question
numbers are not always contiguous.

http://www.eskimo.com/~scs/C-faq/top.html (1 of 3) [26/03/2003 11:39:58 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.aw.com/cseng/

comp.lang.c Frequently Asked Questions

[Note to web authors, catalogers, and bookmarkers: the URL
<http://www.eskimo.com/~scs/C-faq/top.html> is the right way to link to these
pages. All other URL's implementing this collection are subject to change.]

You can browse these pages in at least three ways. The table of contents below is of
the list's major sections; these links lead to sub-lists of the questions for those
sections. The ``all questions'' link leads to a list of all the questions; each question is
(obviously) linked to its answer. Finally, the ``read sequentially'' link leads to the
first question; you can then follow the ``next'' link at the bottom of each question's
page to read through all of the questions and answers sequentially.

Steve Summit
scs@eskimo.com

1. Declarations and Initializations

2. Structures, Unions, and Enumerations

3. Expressions

4. Pointers

5. Null Pointers

6. Arrays and Pointers

7. Memory Allocation

8. Characters and Strings

9. Boolean Expressions and Variables

10. C Preprocessor

11. ANSI/ISO Standard C

http://www.eskimo.com/~scs/C-faq/top.html (2 of 3) [26/03/2003 11:39:58 p.m.]

http://www.eskimo.com/~scs/
mailto:scs@eskimo.com

comp.lang.c Frequently Asked Questions

12. Stdio

13. Library Functions

14. Floating Point

15. Variable-Length Argument Lists

16. Strange Problems

17. Style

18. Tools and Resources

19. System Dependencies

20. Miscellaneous

Bibliography

Acknowledgements

All Questions

Read Sequentially

http://www.eskimo.com/~scs/C-faq/top.html (3 of 3) [26/03/2003 11:39:58 p.m.]

versions of comp.lang.c FAQ list

comp.lang.c FAQ list(s)
You probably just came from there, but there is a browsable, web-based HTML
version. (Beware: as of 1999, the web-based version is somewhat out-of-date with
respect to the plain-text versions below.) (Please don't ask me for a downloadable
archive of the HTML version, as I'm currently unable to provide one. Just browse it
here, or download one of the versions below.)

An expanded, book-length version, with even longer answers to even more questions,
has been published by Addison-Wesley (ISBN 0-201-84519-9). Printed books, alas,
tend to have a few errors; I've prepared an errata list for this one.

Here is a recent, compressed copy of the ASCII FAQ list, as posted to Usenet (~100k
compressed, ~260k when uncompressed). This is currently the most up-to-date
version. [This and the other compressed files ending in .Z referenced from this page
are compressed with the Unix "compress" utility and can be uncompressed with
"uncompress" or "gunzip", versions of which are, I believe, available for all popular
operating systems.]

Here is the abridged version (~26k compressed, ~55k when uncompressed).

Here are the differences from the previous version (compressed, sometimes quite
large; or maybe uncompressed, if they were minimal). Here is a collection of
incremental differences with respect to even older versions. NOTE: All of these diff
lists pertain to the versions posted to Usenet, which are not always synchronized with
the web/html version.

Here is a (considerably older) compressed, PostScript rendition (152k compressed).
BEWARE: the question numbers don't match current versions. (Rather than printing
it out, you could -- hint, hint -- get the book.)

There are several translations into other languages:

● to German, by Jochen Schoof et al. (If that link doesn't work, try this one.)
● to Japanese, by Kinichi Kitano. (I don't know of a URL, but it is or was posted

regularly to fj.comp.lang.c, and has been published by Toppan, ISBN 4-8101-
8097-2.)

● Seong-Kook Cin has completed a Korean translation, which is at
http://pcrc.hongik.ac.kr/~cinsk/cfaqs/.

http://www.eskimo.com/~scs/C-faq/versions.html (1 of 2) [26/03/2003 11:40:00 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.aw.com/cseng/
ftp://ftp.eskimo.com/u/s/scs/C-faq/faq.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/abridged.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/diff.Z
ftp://ftp.eskimo.com/u/s/scs/C-faq/diff
ftp://ftp.eskimo.com/u/s/scs/C-faq/diffs/
ftp://ftp.eskimo.com/u/s/scs/C-faq/diffs/
ftp://ftp.eskimo.com/u/s/scs/C-faq/faq.PS.Z
http://home.pages.de/~c-faq/
http://www-info2.informatik.uni-wuerzburg.de/staff/joscho
http://www-info2.informatik.uni-wuerzburg.de/dclc-faq/
http://pcrc.hongik.ac.kr/~cinsk/
http://pcrc.hongik.ac.kr/~cinsk/cfaqs/

versions of comp.lang.c FAQ list

● A French C FAQ list (not a direct translation of this one) is at http://www.isty-
info.uvsq.fr/~rumeau/fclc/.

Here is an, um, er, ``alternate version'' by Peter Seebach.

If you're interested in C++, Marshall Cline maintains a C++ FAQ list.

For web access to other Usenet FAQ lists, visit faqs.org.

scs

http://www.eskimo.com/~scs/C-faq/versions.html (2 of 2) [26/03/2003 11:40:00 p.m.]

http://www.isty-info.uvsq.fr/~rumeau/fclc/
http://www.isty-info.uvsq.fr/~rumeau/fclc/
http://www.plethora.net/~seebs/faqs/c-iaq.html
http://www.plethora.net/~seebs/
http://www.cerfnet.com/~mpcline/c++-faq-lite/
http://www.faqs.org/faqs/
http://www.eskimo.com/~scs/index.html

C Programming FAQs Errata

Errata list for "C Programming FAQs: Frequently Asked Questions",
by Steve Summit, Addison-Wesley, 1996, ISBN 0-201-84519-9
(first printing).

A possibly more up-to-date copy of this errata list may be
obtained at any time by anonymous ftp from ftp.eskimo.com
in the file ~scs/C-faq/book/Errata, or on the web at
http://www.eskimo.com/~scs/C-faq/book/Errata.html .
(If you read this years from now and those addresses don't
work, try ftp://ftp.aw.com/cseng/authors/summit/cfaq/ or
http://www.awl.com/cseng/titles/0-201-84519-9 .)

scs 2002-Oct-26

page question
---- --------

front cover The ladder has no rungs.

xxix "woundn't" should be "wouldn't"

2 1.1 The fourth bulleted guarantee (about the sizes
 following the "obvious progression") is
 improperly stated. What the C Standard actually
 talks about, as in the rest of this answer, is
 just the ranges of the standard types, not their
 sizes in bits. So the real guarantees (as
 summarized below) are that

 sizeof(char) is at least 8 bits
 sizeof(short) is at least 16 bits
 sizeof(int) is at least 16 bits
 sizeof(long) is at least 32 bits

 and, in C99,

 sizeof(long long) is at least 64 bits

3-4 1.3 In C99, the new <inttypes.h> header provides
 Standard names for exact-size types: int16_t,
 uint32_t, etc.

4 1.4 In C99, long long is defined as an integer type
 with, in effect, at least 64 bits.

6 1.7 There may be zero definitions of an external
 function or variable that is not referenced
 in any expression.
 [Thanks and $1 to James Stern]

7 1.7 "use include to bring" should be
 "use #include to bring"

11 1.14 In the second fix, at the bottom of the page,
 it could conceivably be necessary to precede

http://www.eskimo.com/~scs/C-faq/book/Errata.html (1 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 the line

 typedef struct node *NODEPTR;

 with the line

 struct node;

 for the reason mentioned on page 13, although
 in that case one of the two other fixes would
 clearly be preferable.
 [Thanks to James Stern]

13 1.15 In the alternate fix, at the bottom of the page,
 it could conceivably be necessary to precede
 the typedef declarations with the lines

 struct a;
 struct b;

 although again, putting those typedefs after the
 complete structure definitions would clearly be
 preferable in that case.
 [Thanks to James Stern]

18 1.22 The odd "return 0;" line is not really necessary.

20 1.24 Another possible arrangement is

 /* file1.h */
 #define ARRAYSZ 3
 extern int array[ARRAYSZ];

 /* file1.c */
 #include "file1.h"
 int array[ARRAYSZ];

 /* file2.c"
 #include "file1.h"

 [Thanks to Jon Jagger]

23 1.29 [2nd bullet] "everything else termed" should be
 "everything else, termed"

24 1.29 [Rule 3] "if the header" should be "if any header".
 [Thanks and $1 to James Stern]

24 1.29 [Rule 4] "(i.e., function names)" should be
 "(e.g., function names)".
 [Thanks and $1 to James Stern]

24 1.29 The text at the bottom of the page suggests that
 "future directions" name patterns such as str[a-z]*
 are reserved only if their corresponding headers
 (e.g. <stdlib.h>) are included. The reserved
 function names are unconditionally reserved;

http://www.eskimo.com/~scs/C-faq/book/Errata.html (2 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 it is only the macro names that are reserved only
 if the header is included.
 [Thanks and $1 to Mark Brader]

25 1.29 "if you don't include the header files" should be
 "if you don't include any header files".

32 2.4 Besides -> and sizeof, the . operator, as well as
 declarations of actual structures, also require
 the compiler to know more about the structure and
 so preclude incomplete or hidden definitions.
 [Thanks to James Stern]

33-36 2.6 In C99, a structure can contain a variable-length
 array (VLA) as its last member, providing a
 well-defined, Standard-compliant alternative.

38 2.10 C99 *does* have a way of generating anonymous
 structure values: "compound literals".

40 2.12 When trying to minimize wasted space in structures,
 array members should be ordered based on the size
 of their primitive types, not their overall size.
 [Thanks and $1 to James Stern]

43 2.20 "ANSI/SIO" should be "ANSI/ISO"

 In C99, the "designated initializer" mechanism
 allows any member of a union to be initialized.

50 3.3 Of course, another way to increment i is i += 1.
 [Thanks to James Stern]

51 3.4 "higher precedence than *):" should be
 "higher precedence than *:"

52 3.6 Delete the close parenthesis at the end of the answer.

57 3.12 In C++, the prefix form ++i is preferred.
 [Thanks to James Stern]

68 4.5 The reference to ANSI Sec. 3.3.4 should say
 "esp. footnote 44".
 [Thanks to Willis Gooch]

72-3 4.10 In C99, it is possible to use a "compound
 literal" to generate a pointer to an (unnamed)
 constant value.

73 4.11 The reference to K&R2 sec. 5.2 should be pp. 95-7.
 [Thanks and $1 to Nikos Triantafillis]

75 4.13 "can interconverted" should be "can be interconverted".
 [Thanks and $1 to Howard Ham]

84 5.8 Either the comma or the parentheses in the answer

http://www.eskimo.com/~scs/C-faq/book/Errata.html (3 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 should be changed.

95 6.2 The typography in the following line is inconsistent
 for the "x" of "x[3]".

104-5 6.15 C99 introduces variable-length arrays (VLA's) which,
 among other things, *do* allow declaration of a
 local array of size matching a passed-in array.

105-7 6.16 In C99, another solution is to use a
 variable-length array.

110 6.19 C99's variable-length arrays are also a nice
 solution to this problem.

115 7.1 The close parenthesis and period ")." at the bottom
 of the page are not part of the #define line.

121 7.9 There is an extra semicolon at the end of the first
 line of mymalloc's definition.
 [Thanks and $1 to Todd Burruss]

126 7.10 Missing "it"; should be "even if it is not
 dereferenced".
 [Thanks and $1 to Clinton Sheppard]

132 7.30 It would be even safer to add a second test on
 nchmax:

 if(nchread >= nchmax) {
 nchmax += 20;
 if(nchread >= nchmax) {
 free(retbuf);
 return NULL;
 }
 newbuf = realloc(retbuf, nchmax + 1);

 The concern is that, while reading a *very* long line,
 nchmax might overflow, wrapping back around to 0.
 [Thanks to Mark Brader]

134 7.32 C99's variable-length arrays (VLA's) can be used
 to more cleanly accomplish most of the tasks
 which alloca used to be put to.

136 8.1 "Although string literal" should be
 "Although a string literal"

136 8.2 C can be tricked into seeming to assign an array
 as a whole if you hide the array inside a
 structure or union.
 [Thanks and $1 to James Stern]

143 9.2 The example variable isvegetable should perhaps
 be named is_vegetable to avoid naming conflicts
 (see question 1.29).

http://www.eskimo.com/~scs/C-faq/book/Errata.html (4 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 [Thanks and $1 to Jon Jagger]

151 10.4 Extra space in "/* (no trailing ;) */".

152 10.6 [paragraph below bullets] "bring the header wherever"
 should be "bring the header in wherever"

158 10.15 If you have to, you can obviously #define a companion
 macro name for each typedef, and use #ifdef with that.
 [Thanks to James Stern]

161 10.21 The suggested replacement macro should
 parenthesize c:

 #define CTRL(c) ((c) & 037)

 [Thanks and $1 to James Stern]

163-4 10.29 C99 introduces formal support for macros with
 variable numbers of arguments.

164-5 10.27 The file parameter of the dbginfo() function and
 the fmt parameter of the debug() function could
 be of type const char *.
 [Thanks to James Stern]

168 11.1 The story has gotten longer: A new revision of
 the C Standard, "C99", has been ratified,
 superseding the original ANSI C Standard.
 This Errata list has been updated to note those
 answers in the book which have become dated due
 to C99 changes.

169-70 11.2 C99 *is* available in electronic form, for $18
 from www.ansi.org .

174 11.10 As written, the "complicated series of assignments"
 of course includes some declarations and initializations.
 [Thanks to James Stern]

175 11.10 "e.g., (const char) ** in this case" should be
 "e.g., (const char **) in this case"

 "when the pointers which" should either be
 "when the pointers" or "with pointers which"

180 11.19 "questions 20.20" should be "question 20.20"

182 11.25 "The function offers" should be
 "The memmove function offers".
 [Thanks and $1 to Gordon Burditt]

183-4 11.27 In C99, external identifiers are required
 to be unique in the first 32 characters;
 C90's extremely Spartan limitation to six
 characters has been relaxed.

http://www.eskimo.com/~scs/C-faq/book/Errata.html (5 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

186 11.29 You may also need to rework calls to realloc
 that use NULL or 0 as first or second arguments
 (see question 7.30).

186 11.29 You may also need to rework conditional compilation
 involving #elif.
 See also the Rationale's list of "Quiet Changes"
 (see question 11.2).
 [Thanks to James Stern]

189 11.33 A fourth class of behavior is locale-specific.
 [Thanks and $1 to James Stern]

198 12.11 A semicolon is missing after "int i = 0".

 The } just before the line "*p = '\0'" is
 indented one tab too few.

 Two instances of "*--p" have the minus signs merged
 so as to appear as one.

201 12.16 [case 2] The variable line is not declared;
 it should probably be a char [], suitably
 initialized, e.g.:

 char line[] = "1 2.3 4.5e6 789e10";

 [Thanks and $1 to James Stern]

205 12.19 There's an extraneous double quote in what
 should be "intervening whitespace:".

207-8 12.21 The technique of writing to a file may give the
 wrong answer if the disk fills up.
 [Thanks and $1 to Mark Brader]

 The "hope that a future revision of the ANSI/ISO
 C Standard will include" the snprintf function
 has been fulfilled: C99 does specify it.
 As a bonus, the C99 snprintf can be used to predict
 the size required for an arbitrary sprintf call,
 too -- it can be called with a null pointer
 instead of a destination buffer (and 0 as the
 size of that nonexistent buffer) and it returns
 the number of characters it would have written.

212 12.28 The answer is in the wrong font.

213 12.30 Updating (overwriting) a text file in-place is
 not fully portable; the C Standard leaves it
 implementation-defined whether a write to a
 text file truncates it at that point.
 [Thanks and $1 to Tanmoy Bhattacharya]

224 13.4 "upper- or lowercase" should probably be

http://www.eskimo.com/~scs/C-faq/book/Errata.html (6 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 "upper or lower case".

225 13.6 Since the fragment calls printf, it must
 #include <stdio.h>.
 [Thanks and $1 to James Stern]

226 13.6 [last code fragment] A declaration and initialization

 char string[] = "this\thas\t\tmissing\tfield";

 similar to the one on p. 225 should appear.
 [Thanks and $1 to Doug Liu]

227 13.6 Also, since the input string is modified,
 it must be writable; see question 1.32.

234 13.14 "time_ts" should perhaps be "time_t's"

240 13.17 The code

 srand((unsigned int)time((time_t *)NULL));

 though popular and generally effective is, alas,
 not strictly conforming. It's theoretically
 possible that time_t could be defined as a
 floating-point type under some implementation,
 and that the time_t values returned by time()
 could therefore exceed the range of an unsigned
 int in such a way that a well-defined cast to
 (unsigned int) is not possible.

242-3 13.20 The attributions listed for methods 2 and 3 are
 scrambled. Method 2 is the one described in
 the 1958 Box and Muller paper (as well as by
 Abramowitz and Stegun, apparently). Method 3
 is originally due to Marsaglia.

244 13.21 If you're not familiar with the notation [0, 1),
 it means that drand48() returns a number x
 such that 0 <= x and x < 1.

250 14.5 The suggested expression should read

 fabs(a - b) <= epsilon * fabs(a)

 It performs poorly if a == 0.0 (which is another
 argument in favor of "mak[ing] the threshold
 a function of b, or of both a and b").

253 14.8 Of course, you can always compute pi using
 4*atan(1.0) or acos(-1.0).
 [Thanks to James Stern and Clinton Sheppard]

253 14.9 C99 specifies isnan() and several other
 classification routines.

254-5 14.11 C99 supports complex as a standard type.

http://www.eskimo.com/~scs/C-faq/book/Errata.html (7 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

260-1 15.4 The first argument to vstrcat() could be const char *,
 as could the fmt argument to miniprintf().
 [Thanks to James Stern]

264 15.5 The fmt argument to error() could be const char *.

269-71 15.12 The fmt arguments to faterror(), verror(), and
 error() could all be const char *.

274 16.4 [point 2] The problem could be caused by a setbuf
 or setvbuf buffer local to any function.
 [Thanks and $1 to James Stern]

276 16.7 Variable "s" isn't declared. It's pretty obvious
 what it should be, but to make it explicit, change
 the struct declaration to

 struct mystruct { ... } s;

 [Thanks to Peter Hryczanek]

287 18.1 The URL in the list of metrics tools is really
 "http://www.qucis.queensu.ca:1999/Software-
Engineering/Cmetrics.html".

294 18.13 The conventional spelling is "NetBSD".
 [Thanks and $1 to Peter Seebach]

294 18.14 Extra space in site which should be "sunsite.unc.edu".

296 18.16 Extra space in address which should be
 "archie@archie.cs.mcgill.ca".

308 19.11 Note that a test using fopen() *is* approximate;
 failure does not necessarily indicate nonexistence.

310 19.14 Updating (overwriting) a text file in-place is
 not fully portable; the C Standard leaves it
 implementation-defined whether a write to a
 text file truncates it at that point.
 [Thanks and $1 to Tanmoy Bhattacharya]

314 19.23 In C99, the guarantee on the possible size of a
 single object has been raised to 64K.

315 19.25 Use of the `volatile' qualifier is often
 appropriate when performing memory-mapped I/O.
 [Thanks to Lee Crawford]

317 19.27 The return value of system() is not guaranteed
 to be the command's exit status.
 [Thanks and $1 to Peter Seebach]

318 19.30 If you forget to call pclose, it's probably at
 least as likely that you'll run out of file

http://www.eskimo.com/~scs/C-faq/book/Errata.html (8 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 descriptors as processes.
 [Thanks and $1 to Jens Schweikhardt]

319 19.31 argv[0] may also be a null pointer.
 [Thanks and $1 to Tanmoy Bhattacharya]

324 19.42 "control characters, such as" should be
 "control characters such as"

339-40 The page break makes the code very hard to follow.

342-44 20.13 The tone of this question's answer can be read as
 suggesting that efficiency isn't important at all.
 That's not the case, of course -- efficiency can
 very important, and poorly-written programs can
 run abysmally inefficiently.

 The point is that there are good ways and bad
 ways of achieving an appropriate level of
 performance for a given program, and that (for
 example) picking a good algorithm tends to make a
 much bigger difference than does microoptimizing
 the coding details of a lesser algorithm.

346 20.17 Missing tab in line which should be

 #define CODE_NONE 0

350 20.21 The overbars are misaligned.

355 20.29 "and computes that number" should either be
 "computed" or "and is computed".

363 [aggregate] Unions are not aggregates.
 [Thanks and $1 to Kinichi Kitano]

368 [parameter] Extraneous semicolon at end of
 line which should be

 f(int i)

370-1 The glossary entry for "undefined" is misplaced.
 [Thanks and $1 to James Stern]

376 The two minus signs in the index entry for
 "-- operator" overlap and appear to be one.

379 The pairs of underscores in the index entry for
 "__FILE__ macro" overlap and might appear to be one.

382 The pairs of underscores in the index entry for
 "__LINE__ macro" overlap and might appear to be one.

back cover "on the Usenet/Internet on the C FAQ" is muddled
 and should say something else.

 "com.lang.c" should be "comp.lang.c".

http://www.eskimo.com/~scs/C-faq/book/Errata.html (9 of 10) [26/03/2003 11:40:03 p.m.]

C Programming FAQs Errata

 The ftp address for source code should be
 ftp://ftp.aw.com/cseng/authors/summit/cfaq .

more information about this book

on-line version of FAQ list

scs home page

http://www.eskimo.com/~scs/C-faq/book/Errata.html (10 of 10) [26/03/2003 11:40:03 p.m.]

http://www.awl.com/cseng/titles/0-201-84519-9
http://www.eskimo.com/~scs/C-faq.top.html
http://www.eskimo.com/~scs/

Question 20.40

Question 20.40

Where can I get extra copies of this list? What about back issues?

An up-to-date copy may be obtained from aw.com in directory xxx or ftp.eskimo.com
in directory u/s/scs/C-faq/. You can also just pull it off the net; it is normally posted
to comp.lang.c on the first of each month, with an Expires: line which should keep it
around all month. A parallel, abridged version is available (and posted), as is a list of
changes accompanying each significantly updated version.

The various versions of this list are also posted to the newsgroups comp.answers and
news.answers . Several sites archive news.answers postings and other FAQ lists,
including this one; two sites are rtfm.mit.edu (directories pub/usenet/news.answers/C-
faq/ and pub/usenet/comp.lang.c/) and ftp.uu.net (directory usenet/news.answers/C-
faq/). An archie server (see question 18.16) should help you find others; ask it to
``find C-faq''. If you don't have ftp access, a mailserver at rtfm.mit.edu can mail you
FAQ lists: send a message containing the single word help to mail-
server@rtfm.mit.edu . See the meta-FAQ list in news.answers for more information.

An extended version of this FAQ list is being published by Addison-Wesley as C
Programming FAQs: Frequently Asked Questions (ISBN 0-201-84519-9). It should
be available in November 1995.

This list is an evolving document of questions which have been Frequent since before
the Great Renaming, not just a collection of this month's interesting questions. Older
copies are obsolete and don't contain much, except the occasional typo, that the
current list doesn't.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.40.html [26/03/2003 11:40:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.16

Question 18.16

Where and how can I get copies of all these freely distributable programs?

As the number of available programs, the number of publicly accessible archive
sites, and the number of people trying to access them all grow, this question becomes
both easier and more difficult to answer.

There are a number of large, public-spirited archive sites out there, such as ftp.uu.net,
archive.umich.edu, oak.oakland.edu, sumex-aim.stanford.edu, and
wuarchive.wustl.edu, which have huge amounts of software and other information all
freely available. For the FSF's GNU project, the central distribution site is
prep.ai.mit.edu . These well-known sites tend to be extremely busy and hard to
reach, but there are also numerous ``mirror'' sites which try to spread the load
around.

On the connected Internet, the traditional way to retrieve files from an archive site is
with anonymous ftp. For those without ftp access, there are also several ftp-by-mail
servers in operation. More and more, the world-wide web (WWW) is being used to
announce, index, and even transfer large data files. There are probably yet newer
access methods, too.

Those are some of the easy parts of the question to answer. The hard part is in the
details--this article cannot begin to track or list all of the available archive sites or all
of the various ways of accessing them. If you have access to the net at all, you
probably have access to more up-to-date information about active sites and useful
access methods than this FAQ list does.

The other easy-and-hard aspect of the question, of course, is simply finding which
site has what you're looking for. There is a tremendous amount of work going on in
this area, and there are probably new indexing services springing up every day. One
of the first was ``archie'': for any program or resource available on the net, if you
know its name, an archie server can usually tell you which anonymous ftp sites have
it. Your system may have an archie command, or you can send the mail message
``help'' to archie@archie.cs.mcgill.ca for information.

If you have access to Usenet, see the regular postings in the comp.sources.unix and
comp.sources.misc newsgroups, which describe the archiving policies for those
groups and how to access their archives. The comp.archives newsgroup contains
numerous announcements of anonymous ftp availability of various items. Finally,

http://www.eskimo.com/~scs/C-faq/q18.16.html (1 of 2) [26/03/2003 11:40:06 p.m.]

Question 18.16

the newsgroup comp.sources.wanted is generally a more appropriate place to post
queries for source availability, but check its FAQ list, ``How to find sources,'' before
posting there.

See also question 14.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.16.html (2 of 2) [26/03/2003 11:40:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.12

Question 14.12

I'm looking for some code to do:

Fast Fourier Transforms (FFT's)
matrix arithmetic (multiplication, inversion, etc.)
complex arithmetic

Ajay Shah maintains an index of free numerical software; it is posted periodically,
and available where this FAQ list is archived (see question 20.40). See also question
18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.12.html [26/03/2003 11:40:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.15a

Question 18.15a

Does anyone have a C compiler test suite I can use?

Plum Hall (formerly in Cardiff, NJ; now in Hawaii) sells one; another package is
Ronald Guilmette's RoadTest(tm) Compiler Test Suites (ftp to netcom.com,
pub/rfg/roadtest/announce.txt for information). The FSF's GNU C (gcc) distribution
includes a c-torture-test which checks a number of common problems with
compilers. Kahan's paranoia test, found in netlib/paranoia on netlib.att.com,
strenuously tests a C implementation's floating point capabilities.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.15a.html [26/03/2003 11:40:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.1

Question 19.1

How can I read a single character from the keyboard without waiting for the
RETURN key? How can I stop characters from being echoed on the screen as they're
typed?

Alas, there is no standard or portable way to do these things in C. Concepts such as
screens and keyboards are not even mentioned in the Standard, which deals only with
simple I/O ``streams'' of characters.

At some level, interactive keyboard input is usually collected and presented to the
requesting program a line at a time. This gives the operating system a chance to
support input line editing (backspace/delete/rubout, etc.) in a consistent way, without
requiring that it be built into every program. Only when the user is satisfied and
presses the RETURN key (or equivalent) is the line made available to the calling
program. Even if the calling program appears to be reading input a character at a time
(with getchar or the like), the first call blocks until the user has typed an entire
line, at which point potentially many characters become available and many character
requests (e.g. getchar calls) are satisfied in quick succession.

When a program wants to read each character immediately as it arrives, its course of
action will depend on where in the input stream the line collection is happening and
how it can be disabled. Under some systems (e.g. MS-DOS, VMS in some modes), a
program can use a different or modified set of OS-level input calls to bypass line-at-a-
time input processing. Under other systems (e.g. Unix, VMS in other modes), the part
of the operating system responsible for serial input (often called the ``terminal
driver'') must be placed in a mode which turns off line-at-a-time processing, after
which all calls to the usual input routines (e.g. read, getchar, etc.) will return
characters immediately. Finally, a few systems (particularly older, batch-oriented
mainframes) perform input processing in peripheral processors which cannot be told
to do anything other than line-at-a-time input.

Therefore, when you need to do character-at-a-time input (or disable keyboard echo,
which is an analogous problem), you will have to use a technique specific to the
system you're using, assuming it provides one. Since comp.lang.c is oriented towards
topics that C does deal with, you will usually get better answers to these questions by
referring to a system-specific newsgroup such as comp.unix.questions or
comp.os.msdos.programmer, and to the FAQ lists for these groups. Note that the
answers are often not unique even across different variants of a system; bear in mind
when answering system-specific questions that the answer that applies to your system

http://www.eskimo.com/~scs/C-faq/q19.1.html (1 of 3) [26/03/2003 11:40:10 p.m.]

Question 19.1

may not apply to everyone else's.

However, since these questions are frequently asked here, here are brief answers for
some common situations.

Some versions of curses have functions called cbreak, noecho, and getch which
do what you want. If you're specifically trying to read a short password without echo,
you might try getpass. Under Unix, you can use ioctl to play with the terminal
driver modes (CBREAK or RAW under ``classic'' versions; ICANON, c_cc[VMIN]
and c_cc[VTIME] under System V or POSIX systems; ECHO under all versions), or
in a pinch, system and the stty command. (For more information, see
<sgtty.h> and tty(4) under classic versions, <termio.h> and termio(4) under
System V, or <termios.h> and termios(4) under POSIX.) Under MS-DOS, use
getch or getche, or the corresponding BIOS interrupts. Under VMS, try the
Screen Management (SMG$) routines, or curses, or issue low-level $QIO's with the
IO$_READVBLK function code (and perhaps IO$M_NOECHO, and others) to ask
for one character at a time. (It's also possible to set character-at-a-time or ``pass
through'' modes in the VMS terminal driver.) Under other operating systems, you're
on your own.

(As an aside, note that simply using setbuf or setvbuf to set stdin to
unbuffered will not generally serve to allow character-at-a-time input.)

If you're trying to write a portable program, a good approach is to define your own
suite of three functions to (1) set the terminal driver or input system into character-at-
a-time mode (if necessary), (2) get characters, and (3) return the terminal driver to its
initial state when the program is finished. (Ideally, such a set of functions might be
part of the C Standard, some day.) The extended versions of this FAQ list (see
question 20.40) contain examples of such functions for several popular systems.

See also question 19.2.

References: PCS Sec. 10 pp. 128-9, Sec. 10.1 pp. 130-1
POSIX Sec. 7

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q19.1.html (2 of 3) [26/03/2003 11:40:10 p.m.]

Question 19.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.1.html (3 of 3) [26/03/2003 11:40:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Tools and Resources

18. Tools and Resources
18.1 I'm looking for C development tools (cross-reference generators, code
beautifiers, etc.).

18.2 How can I track down these pesky malloc problems?

18.3 What's a free or cheap C compiler I can use?

18.4 I just typed in this program, and it's acting strangely. Can you see anything
wrong with it?

18.5 How can I shut off the ``warning: possible pointer alignment problem'' message
which lint gives me for each call to malloc?

18.7 Where can I get an ANSI-compatible lint?

18.8 Don't ANSI function prototypes render lint obsolete?

18.9 Are there any C tutorials or other resources on the net?

18.10 What's a good book for learning C?

18.13 Where can I find the sources of the standard C libraries?

18.14 I need code to parse and evaluate expressions.

18.15 Where can I get a BNF or YACC grammar for C?

18.15a Does anyone have a C compiler test suite I can use?

18.16 Where and how can I get copies of all these freely distributable programs?

top

http://www.eskimo.com/~scs/C-faq/s18.html [26/03/2003 11:40:11 p.m.]

Copyright

This collection of hypertext pages is Copyright 1995 by Steve Summit. Content from
the book "C Programming FAQs: Frequently Asked Questions" (Addison-Wesley,
1995, ISBN 0-201-84519-9) is made available here by permission of the author and
the publisher as a service to the community. It is intended to complement the use of
the published text and is protected by international copyright laws. The content is
made available here and may be accessed freely for personal use but may not be
published or retransmitted without written permission.

http://www.eskimo.com/~scs/C-faq/copyright.html [26/03/2003 11:40:14 p.m.]

Question 20.39

Question 20.39

How do you pronounce ``char''?

You can pronounce the C keyword ``char'' in at least three ways: like the English
words ``char,'' ``care,'' or ``car;'' the choice is arbitrary.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.39.html [26/03/2003 11:40:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.38

Question 20.38

Where does the name ``C'' come from, anyway?

C was derived from Ken Thompson's experimental language B, which was inspired
by Martin Richards's BCPL (Basic Combined Programming Language), which was a
simplification of CPL (Cambridge Programming Language). For a while, there was
speculation that C's successor might be named P (the third letter in BCPL) instead of
D, but of course the most visible descendant language today is C++.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.38.html [26/03/2003 11:40:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Miscellaneous

20. Miscellaneous
20.1 How can I return multiple values from a function?

20.3 How do I access command-line arguments?

20.5 How can I write data files which can be read on other machines with different
data formats?

20.6 How can I call a function, given its name as a string?

20.8 How can I implement sets or arrays of bits?

20.9 How can I determine whether a machine's byte order is big-endian or little-
endian?

20.10 How can I convert integers to binary or hexadecimal?

20.11 Can I use base-2 constants (something like 0b101010)?
Is there a printf format for binary?

20.12 What is the most efficient way to count the number of bits which are set in a
value?

20.13 How can I make my code more efficient?

20.14 Are pointers really faster than arrays? How much do function calls slow things
down?

20.17 Is there a way to switch on strings?

20.18 Is there a way to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

20.19 Are the outer parentheses in return statements really optional?

20.20 Why don't C comments nest? Are they legal inside quoted strings?

http://www.eskimo.com/~scs/C-faq/s20.html (1 of 2) [26/03/2003 11:40:25 p.m.]

Miscellaneous

20.24 Why doesn't C have nested functions?

20.25 How can I call FORTRAN (C++, BASIC, Pascal, Ada, LISP) functions from
C?

20.26 Does anyone know of a program for converting Pascal or FORTRAN to C?

20.27 Can I use a C++ compiler to compile C code?

20.28 I need to compare two strings for close, but not necessarily exact, equality.

20.29 What is hashing?

20.31 How can I find the day of the week given the date?

20.32 Will 2000 be a leap year?

20.34 How do you write a program which produces its own source code as its
output?

20.35 What is ``Duff's Device''?

20.36 When will the next Obfuscated C Code Contest be held? How can I get a copy
of previous winning entries?

20.37 What was the entry keyword mentioned in K&R1?

20.38 Where does the name ``C'' come from, anyway?

20.39 How do you pronounce ``char''?

20.40 Where can I get extra copies of this list?

top

http://www.eskimo.com/~scs/C-faq/s20.html (2 of 2) [26/03/2003 11:40:25 p.m.]

Bibliography

Bibliography
American National Standards Institute, American National Standard for Information
Systems--Programming Language--C, ANSI X3.159-1989 (see question 11.2).
[ANSI]

American National Standards Institute, Rationale for American National Standard
for Information Systems--Programming Language--C (see question 11.2). [Rationale]

Jon Bentley, Writing Efficient Programs, Prentice-Hall, 1982, ISBN 0-13-970244-X.

G.E.P. Box and Mervin E. Muller, ``A Note on the Generation of Random Normal
Deviates,'' Annals of Mathematical Statistics, Vol. 29 #2, June, 1958, pp. 610-611.

David Burki, ``Date Conversions,'' The C Users Journal, February 1993, pp. 29-34.

Ian F. Darwin, Checking C Programs with lint, O'Reilly, 1988, ISBN 0-937175-30-7.

David Goldberg, ``What Every Computer Scientist Should Know about Floating-
Point Arithmetic,'' ACM Computing Surveys, Vol. 23 #1, March, 1991, pp. 5-48.

Samuel P. Harbison and Guy L. Steele, Jr., C: A Reference Manual, Fourth Edition,
Prentice-Hall, 1995, ISBN 0-13-326224-3. [H&S]

Mark R. Horton, Portable C Software, Prentice Hall, 1990, ISBN 0-13-868050-7.
[PCS]

Institute of Electrical and Electronics Engineers, Portable Operating System
Interface (POSIX)--Part 1: System Application Program Interface (API) [C
Language, IEEE Std. 1003.1, ISO/IEC 9945-1.

International Organization for Standardization, ISO 9899:1990 (see question 11.2).
[ISO]

Brian W. Kernighan and P.J. Plauger, The Elements of Programming Style, Second
Edition, McGraw-Hill, 1978, ISBN 0-07-034207-5.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-
Hall, 1978, ISBN 0-13-110163-3. [K&R1]

http://www.eskimo.com/~scs/C-faq/sx1.html (1 of 3) [26/03/2003 11:40:29 p.m.]

Bibliography

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second
Edition, Prentice Hall, 1988, ISBN 0-13-110362-8, 0-13-110370-9. [K&R2]

Donald E. Knuth, The Art of Computer Programming. Volume 1: Fundamental
Algorithms, Second Edition, Addison-Wesley, 1973, ISBN 0-201-03809-9. Volume
2: Seminumerical Algorithms, Second Edition, Addison-Wesley, 1981, ISBN 0-201-
03822-6. Volume 3: Sorting and Searching, Addison-Wesley, 1973, ISBN 0-201-
03803-X. [Knuth]

Andrew Koenig, C Traps and Pitfalls, Addison-Wesley, 1989, ISBN 0-201-17928-8.
[CT&P]

Stephen K. Park and Keith W. Miller, ``Random Number Generators: Good Ones are
Hard to Find,'' Communications of the ACM, Vol. 31 #10, October, 1988, pp. 1192-
1201 (also technical correspondence August, 1989, pp. 1020-1024, and July, 1993,
pp. 108-110).

P.J. Plauger, The Standard C Library, Prentice Hall, 1992, ISBN 0-13-131509-9.

Thomas Plum, C Programming Guidelines, Second Edition, Plum Hall, 1989, ISBN
0-911537-07-4.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
Numerical Recipes in C, Second Edition, Cambridge University Press, 1992, ISBN 0-
521-43108-5.

Dale Schumacher, Ed., Software Solutions in C, AP Professional, 1994, ISBN 0-12-
632360-7.

Robert Sedgewick, Algorithms in C, Addison-Wesley, 1990, ISBN 0-201-51425-7.

Charles Simonyi and Martin Heller, ``The Hungarian Revolution,'' Byte, August,
1991, pp.131-138.

David Straker, C Style: Standards and Guidelines, Prentice Hall, ISBN 0-13-116898-
3.

Steve Summit, C Programming FAQs: Frequently Asked Questions, Addison-
Wesley, 1995, ISBN 0-201-84519-9. [The book version of this FAQ list.]

Sun Wu and Udi Manber, ``AGREP--A Fast Approximate Pattern-Matching Tool,''

http://www.eskimo.com/~scs/C-faq/sx1.html (2 of 3) [26/03/2003 11:40:29 p.m.]

Bibliography

USENIX Conference Proceedings, Winter, 1992, pp. 153-162.

There is another bibliography in the revised Indian Hill style guide (see question
17.9). See also question 18.10.

top

http://www.eskimo.com/~scs/C-faq/sx1.html (3 of 3) [26/03/2003 11:40:29 p.m.]

Question 11.2

Question 11.2

How can I get a copy of the Standard?

[Late-breaking news: I've been told that copies of the new C99 can be obtained
directly from www.ansi.org; the price for an electronic document is only US $18.00.]

Copies are available in the United States from

American National Standards Institute
11 W. 42nd St., 13th floor
New York, NY 10036 USA
(+1) 212 642 4900

and

Global Engineering Documents
15 Inverness Way E
Englewood, CO 80112 USA
(+1) 303 397 2715
(800) 854 7179 (U.S. & Canada)

In other countries, contact the appropriate national standards body, or ISO in Geneva
at:

ISO Sales
Case Postale 56
CH-1211 Geneve 20
Switzerland

(or see URL http://www.iso.ch or check the comp.std.internat FAQ list,
Standards.Faq).

At the time of this writing, the cost is $130.00 from ANSI or $410.00 from Global.
Copies of the original X3.159 (including the Rationale) may still be available at
$205.00 from ANSI or $162.50 from Global. Note that ANSI derives revenues to
support its operations from the sale of printed standards, so electronic copies are not
available.

http://www.eskimo.com/~scs/C-faq/q11.2.html (1 of 2) [26/03/2003 11:40:31 p.m.]

http://www.ansi.org/
http://www.iso.ch/

Question 11.2

In the U.S., it may be possible to get a copy of the original ANSI X3.159 (including
the Rationale) as ``FIPS PUB 160'' from

 National Technical Information Service (NTIS)
 U.S. Department of Commerce
 Springfield, VA 22161
 703 487 4650

The mistitled Annotated ANSI C Standard, with annotations by Herbert Schildt,
contains most of the text of ISO 9899; it is published by Osborne/McGraw-Hill,
ISBN 0-07-881952-0, and sells in the U.S. for approximately $40. It has been
suggested that the price differential between this work and the official standard
reflects the value of the annotations: they are plagued by numerous errors and
omissions, and a few pages of the Standard itself are missing. Many people on the
net recommend ignoring the annotations entirely. A review of the annotations
(``annotated annotations'') by Clive Feather can be found on the web at
http://www.lysator.liu.se/c/schildt.html .

The text of the Rationale (not the full Standard) can be obtained by anonymous ftp
from ftp.uu.net (see question 18.16) in directory doc/standards/ansi/X3.159-1989,
and is also available on the web at http://www.lysator.liu.se/c/rat/title.html . The
Rationale has also been printed by Silicon Press, ISBN 0-929306-07-4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.2.html (2 of 2) [26/03/2003 11:40:31 p.m.]

http://www.lysator.liu.se/c/schildt.html
http://www.lysator.liu.se/c/rat/title.html
http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.9

Question 17.9

Where can I get the ``Indian Hill Style Guide'' and other coding standards?

Various documents are available for anonymous ftp from:

 Site: File or directory:

 cs.washington.edu pub/cstyle.tar.Z
 (the updated Indian Hill guide)

 ftp.cs.toronto.edu doc/programming
 (including Henry Spencer's
 ``10 Commandments for C Programmers'')
 ftp.cs.umd.edu pub/style-guide

You may also be interested in the books The Elements of Programming Style, Plum Hall Programming
Guidelines, and C Style: Standards and Guidelines; see the Bibliography. (The Standards and
Guidelines book is not in fact a style guide, but a set of guidelines on selecting and creating style
guides.)

See also question 18.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.9.html [26/03/2003 11:40:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.10

Question 18.10

What's a good book for learning C?

There are far too many books on C to list here; it's impossible to rate them all. Many
people believe that the best one was also the first: The C Programming Language, by
Kernighan and Ritchie (``K&R,'' now in its second edition). Opinions vary on K&R's
suitability as an initial programming text: many of us did learn C from it, and learned
it well; some, however, feel that it is a bit too clinical as a first tutorial for those
without much programming background.

An excellent reference manual is C: A Reference Manual, by Samuel P. Harbison
and Guy L. Steele, now in its fourth edition.

Though not suitable for learning C from scratch, this FAQ list has been published in
book form; see the Bibliography.

Mitch Wright maintains an annotated bibliography of C and Unix books; it is
available for anonymous ftp from ftp.rahul.net in directory pub/mitch/YABL/.

This FAQ list's editor maintains a collection of previous answers to this question,
which is available upon request. See also question 18.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.10.html [26/03/2003 11:40:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.1

Question 20.1

How can I return multiple values from a function?

Either pass pointers to several locations which the function can fill in, or have the
function return a structure containing the desired values, or (in a pinch) consider
global variables. See also questions 2.7, 4.8, and 7.5.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.1.html [26/03/2003 11:40:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.3

Question 20.3

How do I access command-line arguments?

They are pointed to by the argv array with which main() is called.

References: K&R1 Sec. 5.11 pp. 110-114
K&R2 Sec. 5.10 pp. 114-118
ANSI Sec. 2.1.2.2.1
ISO Sec. 5.1.2.2.1
H&S Sec. 20.1 p. 416
PCS Sec. 5.6 pp. 81-2, Sec. 11 p. 159, pp. 339-40 Appendix F
Schumacher, ed., Software Solutions in C Sec. 4 pp. 75-85

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.3.html [26/03/2003 11:40:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.5

Question 20.5

How can I write data files which can be read on other machines with different word
size, byte order, or floating point formats?

The most portable solution is to use text files (usually ASCII), written with
fprintf and read with fscanf or the like. (Similar advice also applies to network
protocols.) Be skeptical of arguments which imply that text files are too big, or that
reading and writing them is too slow. Not only is their efficiency frequently
acceptable in practice, but the advantages of being able to interchange them easily
between machines, and manipulate them with standard tools, can be overwhelming.

If you must use a binary format, you can improve portability, and perhaps take
advantage of prewritten I/O libraries, by making use of standardized formats such as
Sun's XDR (RFC 1014), OSI's ASN.1 (referenced in CCITT X.409 and ISO 8825
``Basic Encoding Rules''), CDF, netCDF, or HDF. See also questions 2.12 and 12.38.

References: PCS Sec. 6 pp. 86,88

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.5.html [26/03/2003 11:40:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.6

Question 20.6

If I have a char * variable pointing to the name of a function, how can I call that
function?

The most straightforward thing to do is to maintain a correspondence table of names
and function pointers:

int func(), anotherfunc();

struct { char *name; int (*funcptr)(); } symtab[] = {
 "func", func,
 "anotherfunc", anotherfunc,
};

Then, search the table for the name, and call via the associated function pointer. See
also questions 2.15 and 19.36.

References: PCS Sec. 11 p. 168

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.6.html [26/03/2003 11:40:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.8

Question 20.8

How can I implement sets or arrays of bits?

Use arrays of char or int, with a few macros to access the desired bit at the proper
index. Here are some simple macros to use with arrays of char:

#include <limits.h> /* for CHAR_BIT */

#define BITMASK(b) (1 << ((b) % CHAR_BIT))
#define BITSLOT(b) ((b) / CHAR_BIT)
#define BITSET(a, b) ((a)[BITSLOT(b)] |= BITMASK(b))
#define BITTEST(a, b) ((a)[BITSLOT(b)] & BITMASK(b))

(If you don't have <limits.h>, try using 8 for CHAR_BIT.)

References: H&S Sec. 7.6.7 pp. 211-216

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.8.html [26/03/2003 11:40:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.9

Question 20.9

How can I determine whether a machine's byte order is big-endian or little-endian?

One way is to use a pointer:

 int x = 1;
 if(*(char *)&x == 1)
 printf("little-endian\n");
 else printf("big-endian\n");

It's also possible to use a union.

See also question 10.16.

References: H&S Sec. 6.1.2 pp. 163-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.9.html [26/03/2003 11:40:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.10

Question 20.10

How can I convert integers to binary or hexadecimal?

Make sure you really know what you're asking. Integers are stored internally in
binary, although for most purposes it is not incorrect to think of them as being in
octal, decimal, or hexadecimal, whichever is convenient. The base in which a
number is expressed matters only when that number is read in from or written out to
the outside world.

In source code, a non-decimal base is indicated by a leading 0 or 0x (for octal or
hexadecimal, respectively). During I/O, the base of a formatted number is controlled
in the printf and scanf family of functions by the choice of format specifier
(%d, %o, %x, etc.) and in the strtol and strtoul functions by the third
argument. During binary I/O, however, the base again becomes immaterial.

For more information about ``binary'' I/O, see question 2.11. See also questions 8.6
and 13.1.

References: ANSI Secs. 4.10.1.5,4.10.1.6
ISO Secs. 7.10.1.5,7.10.1.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.10.html [26/03/2003 11:40:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.11

Question 20.11

Can I use base-2 constants (something like 0b101010)?
Is there a printf format for binary?

No, on both counts. You can convert base-2 string representations to integers with
strtol.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.11.html [26/03/2003 11:40:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.12

Question 20.12

What is the most efficient way to count the number of bits which are set in a value?

Many ``bit-fiddling'' problems like this one can be sped up and streamlined using
lookup tables (but see question 20.13).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.12.html [26/03/2003 11:40:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.13

Question 20.13

How can I make my code more efficient?

Efficiency, though a favorite comp.lang.c topic, is not important nearly as often as
people tend to think it is. Most of the code in most programs is not time-critical.
When code is not time-critical, it is far more important that it be written clearly and
portably than that it be written maximally efficiently. (Remember that computers are
very, very fast, and that even ``inefficient'' code can run without apparent delay.)

It is notoriously difficult to predict what the ``hot spots'' in a program will be. When
efficiency is a concern, it is important to use profiling software to determine which
parts of the program deserve attention. Often, actual computation time is swamped
by peripheral tasks such as I/O and memory allocation, which can be sped up by
using buffering and caching techniques.

Even for code that is time-critical, it is not as important to ``microoptimize'' the
coding details. Many of the ``efficient coding tricks'' which are frequently suggested
(e.g. substituting shift operators for multiplication by powers of two) are performed
automatically by even simpleminded compilers. Heavyhanded optimization attempts
can make code so bulky that performance is actually degraded, and are rarely
portable (i.e. they may speed things up on one machine but slow them down on
another). In any case, tweaking the coding usually results in at best linear
performance improvements; the big payoffs are in better algorithms.

For more discussion of efficiency tradeoffs, as well as good advice on how to
improve efficiency when it is important, see chapter 7 of Kernighan and Plauger's
The Elements of Programming Style, and Jon Bentley's Writing Efficient Programs.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.13.html [26/03/2003 11:40:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.14

Question 20.14

Are pointers really faster than arrays? How much do function calls slow things
down? Is ++i faster than i = i + 1?

Precise answers to these and many similar questions depend of course on the
processor and compiler in use. If you simply must know, you'll have to time test
programs carefully. (Often the differences are so slight that hundreds of thousands of
iterations are required even to see them. Check the compiler's assembly language
output, if available, to see if two purported alternatives aren't compiled identically.)

It is ``usually'' faster to march through large arrays with pointers rather than array
subscripts, but for some processors the reverse is true.

Function calls, though obviously incrementally slower than in-line code, contribute
so much to modularity and code clarity that there is rarely good reason to avoid
them.

Before rearranging expressions such as i = i + 1, remember that you are dealing
with a compiler, not a keystroke-programmable calculator. Any decent compiler will
generate identical code for ++i, i += 1, and i = i + 1. The reasons for using
++i or i += 1 over i = i + 1 have to do with style, not efficiency. (See also
question 3.12.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.14.html [26/03/2003 11:40:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.17

Question 20.17

Is there a way to switch on strings?

Not directly. Sometimes, it's appropriate to use a separate function to map strings to
integer codes, and then switch on those. Otherwise, of course, you can fall back on
strcmp and a conventional if/else chain. See also questions 10.12, 20.18, and
20.29.

References: K&R1 Sec. 3.4 p. 55
K&R2 Sec. 3.4 p. 58
ANSI Sec. 3.6.4.2
ISO Sec. 6.6.4.2
H&S Sec. 8.7 p. 248

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.17.html [26/03/2003 11:40:49 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.18

Question 20.18

Is there a way to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

No. The switch statement was originally designed to be quite simple for the
compiler to translate, therefore case labels are limited to single, constant, integral
expressions. You can attach several case labels to the same statement, which will let
you cover a small range if you don't mind listing all cases explicitly.

If you want to select on arbitrary ranges or non-constant expressions, you'll have to
use an if/else chain.

See also questions question 20.17.

References: K&R1 Sec. 3.4 p. 55
K&R2 Sec. 3.4 p. 58
ANSI Sec. 3.6.4.2
ISO Sec. 6.6.4.2
Rationale Sec. 3.6.4.2
H&S Sec. 8.7 p. 248

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.18.html [26/03/2003 11:40:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.19

Question 20.19

Are the outer parentheses in return statements really optional?

Yes.

Long ago, in the early days of C, they were required, and just enough people learned
C then, and wrote code which is still in circulation, that the notion that they might
still be required is widespread.

(As it happens, parentheses are optional with the sizeof operator, too, as long as
its operand is a variable or a unary expression.)

References: K&R1 Sec. A18.3 p. 218
ANSI Sec. 3.3.3, Sec. 3.6.6
ISO Sec. 6.3.3, Sec. 6.6.6
H&S Sec. 8.9 p. 254

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.19.html [26/03/2003 11:40:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.20

Question 20.20

Why don't C comments nest? How am I supposed to comment out code containing
comments? Are comments legal inside quoted strings?

C comments don't nest mostly because PL/I's comments, which C's are borrowed
from, don't either. Therefore, it is usually better to ``comment out'' large sections of
code, which might contain comments, with #ifdef or #if 0 (but see question
11.19).

The character sequences /* and */ are not special within double-quoted strings, and
do not therefore introduce comments, because a program (particularly one which is
generating C code as output) might want to print them.

Note also that // comments, as in C++, are not currently legal in C, so it's not a
good idea to use them in C programs (even if your compiler supports them as an
extension).

References: K&R1 Sec. A2.1 p. 179
K&R2 Sec. A2.2 p. 192
ANSI Sec. 3.1.9 (esp. footnote 26), Appendix E
ISO Sec. 6.1.9, Annex F
Rationale Sec. 3.1.9
H&S Sec. 2.2 pp. 18-9
PCS Sec. 10 p. 130

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.20.html [26/03/2003 11:40:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.24

Question 20.24

Why doesn't C have nested functions?

It's not trivial to implement nested functions such that they have the proper access to
local variables in the containing function(s), so they were deliberately left out of C as
a simplification. (gcc does allow them, as an extension.) For many potential uses of
nested functions (e.g. qsort comparison functions), an adequate if slightly
cumbersome solution is to use an adjacent function with static declaration,
communicating if necessary via a few static variables. (A cleaner solution when
such functions must communicate is to pass around a pointer to a structure
containing the necessary context.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.24.html [26/03/2003 11:40:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.25

Question 20.25

How can I call FORTRAN (C++, BASIC, Pascal, Ada, LISP) functions from C?
(And vice versa?)

The answer is entirely dependent on the machine and the specific calling sequences
of the various compilers in use, and may not be possible at all. Read your compiler
documentation very carefully; sometimes there is a ``mixed-language programming
guide,'' although the techniques for passing arguments and ensuring correct run-time
startup are often arcane. More information may be found in FORT.gz by Glenn
Geers, available via anonymous ftp from suphys.physics.su.oz.au in the src directory.

cfortran.h, a C header file, simplifies C/FORTRAN interfacing on many popular
machines. It is available via anonymous ftp from zebra.desy.de (131.169.2.244).

In C++, a "C" modifier in an external function declaration indicates that the function
is to be called using C calling conventions.

References: H&S Sec. 4.9.8 pp. 106-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.25.html [26/03/2003 11:40:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.26

Question 20.26

Does anyone know of a program for converting Pascal or FORTRAN (or LISP, Ada,
awk, ``Old'' C, ...) to C?

Several freely distributable programs are available:

● p2c 8 A Pascal to C converter written by Dave Gillespie, posted to
comp.sources.unix in March, 1990 (Volume 21); also available by
anonymous ftp from csvax.cs.caltech.edu, file pub/p2c-1.20.tar.Z .

● ptoc Another Pascal to C converter, this one written in Pascal
(comp.sources.unix, Volume 10, also patches in Volume 13?).

● f2c A FORTRAN to C converter jointly developed by people from Bell Labs,
Bellcore, and Carnegie Mellon. To find out more about f2c, send the mail
message ``send index from f2c'' to netlib@research.att.com or research!netlib.
(It is also available via anonymous ftp on netlib.att.com, in directory
netlib/f2c.)

This FAQ list's maintainer also has available a list of a few other commercial
translation products, and some for more obscure languages.

See also questions 11.31 and 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.26.html [26/03/2003 11:40:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.27

Question 20.27

Is C++ a superset of C? Can I use a C++ compiler to compile C code?

C++ was derived from C, and is largely based on it, but there are some legal C
constructs which are not legal C++. Conversely, ANSI C inherited several features
from C++, including prototypes and const, so neither language is really a subset or
superset of the other. In spite of the differences, many C programs will compile
correctly in a C++ environment, and many recent compilers offer both C and C++
compilation modes.

References: H&S p. xviii, Sec. 1.1.5 p. 6, Sec. 2.8 pp. 36-7, Sec. 4.9 pp. 104-107

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.27.html [26/03/2003 11:40:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.28

Question 20.28

I need a sort of an ``approximate'' strcmp routine, for comparing two strings for
close, but not necessarily exact, equality.

Some nice information and algorithms having to do with approximate string
matching, as well as a useful bibliography, can be found in Sun Wu and Udi
Manber's paper ``AGREP--A Fast Approximate Pattern-Matching Tool.''

Another approach involves the ``soundex'' algorithm, which maps similar-sounding
words to the same codes. Soundex was designed for discovering similar-sounding
names (for telephone directory assistance, as it happens), but it can be pressed into
service for processing arbitrary words.

References: Knuth Sec. 6 pp. 391-2 Volume 3
Wu and Manber, ``AGREP--A Fast Approximate Pattern-Matching Tool''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.28.html [26/03/2003 11:40:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.29

Question 20.29

What is hashing?

Hashing is the process of mapping strings to integers, usually in a relatively small
range. A ``hash function'' maps a string (or some other data structure) to a a bounded
number (the ``hash bucket'') which can more easily be used as an index in an array,
or for performing repeated comparisons. (Obviously, a mapping from a potentially
huge set of strings to a small set of integers will not be unique. Any algorithm using
hashing therefore has to deal with the possibility of ``collisions.'') Many hashing
functions and related algorithms have been developed; a full treatment is beyond the
scope of this list.

References: K&R2 Sec. 6.6
Knuth Sec. 6.4 pp. 506-549 Volume 3
Sedgewick Sec. 16 pp. 231-244

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.29.html [26/03/2003 11:40:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.31

Question 20.31

How can I find the day of the week given the date?

Use mktime or localtime (see questions 13.13 and 13.14, but beware of DST
adjustments if tm_hour is 0), or Zeller's congruence (see the sci.math FAQ list), or this
elegant code by Tomohiko Sakamoto:

dayofweek(y, m, d) /* 0 = Sunday */
int y, m, d; /* 1 <= m <= 12, y > 1752 or so */
{
 static int t[] = {0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4};
 y -= m < 3;
 return (y + y/4 - y/100 + y/400 + t[m-1] + d) % 7;
}

See also questions 13.14 and 20.32.

References: ANSI Sec. 4.12.2.3
ISO Sec. 7.12.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.31.html [26/03/2003 11:40:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.32

Question 20.32

Will 2000 be a leap year? Is (year % 4 == 0) an accurate test for leap years?

Yes and no, respectively. The full expression for the present Gregorian calendar is

 year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)

See a good astronomical almanac or other reference for details. (To forestall an eternal
debate: references which claim the existence of a 4000-year rule are wrong.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.32.html [26/03/2003 11:41:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.34

Question 20.34

Here's a good puzzle: how do you write a program which produces its own source
code as its output?

It is actually quite difficult to write a self-reproducing program that is truly portable,
due particularly to quoting and character set difficulties.

Here is a classic example (which is normally presented on one line, although it will
``fix'' itself the first time it's run):

 char*s="char*s=%c%s%c;main(){printf(s,34,s,34);}";
 main(){printf(s,34,s,34);}

(This program, like many of the genre, assumes that the double-quote character " has
the value 34, as it does in ASCII.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.34.html [26/03/2003 11:41:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.35

Question 20.35

What is ``Duff's Device''?

It's a devastatingly deviously unrolled byte-copying loop, devised by Tom Duff while he was
at Lucasfilm. In its ``classic'' form, it looks like:

 register n = (count + 7) / 8; /* count > 0 assumed */
 switch (count % 8)
 {
 case 0: do { *to = *from++;
 case 7: *to = *from++;
 case 6: *to = *from++;
 case 5: *to = *from++;
 case 4: *to = *from++;
 case 3: *to = *from++;
 case 2: *to = *from++;
 case 1: *to = *from++;
 } while (--n > 0);
 }

where count bytes are to be copied from the array pointed to by from to the memory
location pointed to by to (which is a memory-mapped device output register, which is why
to isn't incremented). It solves the problem of handling the leftover bytes (when count isn't
a multiple of 8) by interleaving a switch statement with the loop which copies bytes 8 at a
time. (Believe it or not, it is legal to have case labels buried within blocks nested in a
switch statement like this. In his announcement of the technique to C's developers and the
world, Duff noted that C's switch syntax, in particular its ``fall through'' behavior, had long
been controversial, and that ``This code forms some sort of argument in that debate, but I'm
not sure whether it's for or against.'')

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.35.html [26/03/2003 11:41:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.36

Question 20.36

When will the next International Obfuscated C Code Contest (IOCCC) be held? How
can I get a copy of the current and previous winning entries?

The contest schedule is tied to the dates of the USENIX conferences at which the
winners are announced. At the time of this writing, it is expected that the yearly
contest will open in October. To obtain a current copy of the rules and guidelines,
send e-mail with the Subject: line ``send rules'' to:

{apple,pyramid,sun,uunet}!hoptoad!judges or judges@toad.com

(Note that these are not the addresses for submitting entries.)

Contest winners should be announced at the winter USENIX conference in January,
and are posted to the net sometime thereafter. Winning entries from previous years
(back to 1984) are archived at ftp.uu.net (see question 18.16) under the directory
pub/ioccc/.

As a last resort, previous winners may be obtained by sending e-mail to the above
address, using the Subject: ``send YEAR winners'', where YEAR is a single four-
digit year, a year range, or ``all''.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.36.html [26/03/2003 11:41:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 20.37

Question 20.37

What was the entry keyword mentioned in K&R1?

It was reserved to allow the possibility of having functions with multiple, differently-
named entry points, à la FORTRAN. It was not, to anyone's knowledge, ever
implemented (nor does anyone remember what sort of syntax might have been
imagined for it). It has been withdrawn, and is not a keyword in ANSI C. (See also
question 1.12.)

References: K&R2 p. 259 Appendix C

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q20.37.html [26/03/2003 11:41:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Declarations and Initializations

1. Declarations and Initializations
1.1 How do you decide which integer type to use?

1.4 What should the 64-bit type on new, 64-bit machines be?

1.7 What's the best way to declare and define global variables?

1.11 What does extern mean in a function declaration?

1.12 What's the auto keyword good for?

1.14 I can't seem to define a linked list node which contains a pointer to itself.

1.21 How do I declare an array of N pointers to functions returning pointers to
functions returning pointers to characters?

1.22 How can I declare a function that returns a pointer to a function of its own type?

1.25 My compiler is complaining about an invalid redeclaration of a function, but I
only define it once and call it once.

1.30 What can I safely assume about the initial values of variables which are not
explicitly initialized?

1.31 Why can't I initialize a local array with a string?

1.32 What is the difference between char a[] = "string"; and char *p =
"string"; ?

1.34 How do I initialize a pointer to a function?

top

http://www.eskimo.com/~scs/C-faq/s1.html [26/03/2003 11:41:05 p.m.]

Structures, Unions, and Enumerations

2. Structures, Unions, and
Enumerations
2.1 What's the difference between struct x1 { ... }; and typedef
struct { ... } x2; ?

2.2 Why doesn't "struct x { ... }; x thestruct;" work?

2.3 Can a structure contain a pointer to itself?

2.4 What's the best way of implementing opaque (abstract) data types in C?

2.6 I came across some code that declared a structure with the last member an array
of one element, and then did some tricky allocation to make it act like the array had
several elements. Is this legal or portable?

2.7 I heard that structures could be assigned to variables and passed to and from
functions, but K&R1 says not.

2.8 Why can't you compare structures?

2.9 How are structure passing and returning implemented?

2.10 Can I pass constant values to functions which accept structure arguments?

2.11 How can I read/write structures from/to data files?

2.12 How can I turn off structure padding?

2.13 Why does sizeof report a larger size than I expect for a structure type?

2.14 How can I determine the byte offset of a field within a structure?

2.15 How can I access structure fields by name at run time?

2.18 I have a program which works correctly, but dumps core after it finishes. Why?

http://www.eskimo.com/~scs/C-faq/s2.html (1 of 2) [26/03/2003 11:41:06 p.m.]

Structures, Unions, and Enumerations

2.20 Can I initialize unions?

2.22 What is the difference between an enumeration and a set of preprocessor
#defines?

2.24 Is there an easy way to print enumeration values symbolically?

top

http://www.eskimo.com/~scs/C-faq/s2.html (2 of 2) [26/03/2003 11:41:06 p.m.]

Expressions

3. Expressions
3.1 Why doesn't the code "a[i] = i++;" work?

3.2 Under my compiler, the code "int i = 7; printf("%d\n", i++ *
i++);" prints 49. Regardless of the order of evaluation, shouldn't it print 56?

3.3 How could the code "int i = 3; i = i++;" ever give 7?

3.4 Don't precedence and parentheses dictate order of evaluation?

3.5 But what about the && and || operators?

3.8 What's a ``sequence point''?

3.9 So given "a[i] = i++;" we don't know which cell of a[] gets written to, but
i does get incremented by one.

3.12 If I'm not using the value of the expression, should I use i++ or ++i to
increment a variable?

3.14 Why doesn't the code "int a = 1000, b = 1000; long int c = a
* b;" work?

3.16 Can I use ?: on the left-hand side of an assignment expression?

top

http://www.eskimo.com/~scs/C-faq/s3.html [26/03/2003 11:41:07 p.m.]

Pointers

4. Pointers
4.2 What's wrong with "char *p; *p = malloc(10);"?

4.3 Does *p++ increment p, or what it points to?

4.5 I want to use a char * pointer to step over some ints. Why doesn't "((int
*)p)++;" work?

4.8 I have a function which accepts, and is supposed to initialize, a pointer, but the
pointer in the caller remains unchanged.

4.9 Can I use a void ** pointer to pass a generic pointer to a function by
reference?

4.10 I have a function which accepts a pointer to an int. How can I pass a constant
like 5 to it?

4.11 Does C even have ``pass by reference''?

4.12 I've seen different methods used for calling functions via pointers.

top

http://www.eskimo.com/~scs/C-faq/s4.html [26/03/2003 11:41:08 p.m.]

Null Pointers

5. Null Pointers
5.1 What is this infamous null pointer, anyway?

5.2 How do I get a null pointer in my programs?

5.3 Is the abbreviated pointer comparison ``if(p)'' to test for non-null pointers
valid?

5.4 What is NULL and how is it #defined?

5.5 How should NULL be defined on a machine which uses a nonzero bit pattern as
the internal representation of a null pointer?

5.6 If NULL were defined as ``((char *)0),'' wouldn't that make function calls
which pass an uncast NULL work?

5.9 If NULL and 0 are equivalent as null pointer constants, which should I use?

5.10 But wouldn't it be better to use NULL, in case the value of NULL changes?

5.12 I use the preprocessor macro "#define Nullptr(type) (type *)0" to
help me build null pointers of the correct type.

5.13 This is strange. NULL is guaranteed to be 0, but the null pointer is not?

5.14 Why is there so much confusion surrounding null pointers?

5.15 I'm confused. I just can't understand all this null pointer stuff.

5.16 Given all the confusion surrounding null pointers, wouldn't it be easier simply
to require them to be represented internally by zeroes?

5.17 Seriously, have any actual machines really used nonzero null pointers?

5.20 What does a run-time ``null pointer assignment'' error mean?

http://www.eskimo.com/~scs/C-faq/s5.html (1 of 2) [26/03/2003 11:41:09 p.m.]

Null Pointers

top

http://www.eskimo.com/~scs/C-faq/s5.html (2 of 2) [26/03/2003 11:41:09 p.m.]

Arrays and Pointers

6. Arrays and Pointers
6.1 I had the definition char a[6] in one source file, and in another I declared
extern char *a. Why didn't it work?

6.2 But I heard that char a[] was identical to char *a.

6.3 So what is meant by the ``equivalence of pointers and arrays'' in C?

6.4 Why are array and pointer declarations interchangeable as function formal
parameters?

6.7 How can an array be an lvalue, if you can't assign to it?

6.8 What is the real difference between arrays and pointers?

6.9 Someone explained to me that arrays were really just constant pointers.

6.11 I came across some ``joke'' code containing the ``expression'' 5["abcdef"] .
How can this be legal C?

6.12 What's the difference between array and &array?

6.13 How do I declare a pointer to an array?

6.14 How can I set an array's size at run time?

6.15 How can I declare local arrays of a size matching a passed-in array?

6.16 How can I dynamically allocate a multidimensional array?

6.17 Can I simulate a non-0-based array with a pointer?

6.18 My compiler complained when I passed a two-dimensional array to a function
expecting a pointer to a pointer.

6.19 How do I write functions which accept two-dimensional arrays when the

http://www.eskimo.com/~scs/C-faq/s6.html (1 of 2) [26/03/2003 11:41:10 p.m.]

Arrays and Pointers

``width'' is not known at compile time?

6.20 How can I use statically- and dynamically-allocated multidimensional arrays
interchangeably when passing them to functions?

6.21 Why doesn't sizeof properly report the size of an array which is a parameter
to a function?

top

http://www.eskimo.com/~scs/C-faq/s6.html (2 of 2) [26/03/2003 11:41:10 p.m.]

Memory Allocation

7. Memory Allocation
7.1 Why doesn't the code ``char *answer; gets(answer);'' work?

7.2 I can't get strcat to work. I tried ``char *s3 = strcat(s1, s2);'' but
I got strange results.

7.3 But the man page for strcat says that it takes two char *'s as arguments.
How am I supposed to know to allocate things?

7.5 I have a function that is supposed to return a string, but when it returns to its
caller, the returned string is garbage.

7.6 Why am I getting ``warning: assignment of pointer from integer lacks a cast'' for
calls to malloc?

7.7 Why does some code carefully cast the values returned by malloc to the pointer
type being allocated?

7.8 Why does so much code leave out the multiplication by sizeof(char) when
allocating strings?

7.14 I've heard that some operating systems don't actually allocate malloc'ed
memory until the program tries to use it. Is this legal?

7.16 I'm allocating a large array for some numeric work, but malloc is acting
strangely.

7.17 I've got 8 meg of memory in my PC. Why can I only seem to malloc 640K or
so?

7.19 My program is crashing, apparently somewhere down inside malloc.

7.20 You can't use dynamically-allocated memory after you free it, can you?

7.21 Why isn't a pointer null after calling free?

http://www.eskimo.com/~scs/C-faq/s7.html (1 of 2) [26/03/2003 11:41:11 p.m.]

Memory Allocation

7.22 When I call malloc to allocate memory for a local pointer, do I have to
explicitly free it?

7.23 When I free a dynamically-allocated structure containing pointers, do I have to
free each subsidiary pointer first?

7.24 Must I free allocated memory before the program exits?

7.25 Why doesn't my program's memory usage go down when I free memory?

7.26 How does free know how many bytes to free?

7.27 So can I query the malloc package to find out how big an allocated block is?

7.30 Is it legal to pass a null pointer as the first argument to realloc?

7.31 What's the difference between calloc and malloc?

7.32 What is alloca and why is its use discouraged?

top

http://www.eskimo.com/~scs/C-faq/s7.html (2 of 2) [26/03/2003 11:41:11 p.m.]

Characters and Strings

8. Characters and Strings
8.1 Why doesn't "strcat(string, '!');" work?

8.2 Why won't the test if(string == "value") correctly compare string
against the value?

8.3 Why can't I assign strings to character arrays?

8.6 How can I get the numeric (character set) value corresponding to a character?

8.9 Why is sizeof('a') not 1?

top

http://www.eskimo.com/~scs/C-faq/s8.html [26/03/2003 11:41:12 p.m.]

Boolean Expressions and Variables

9. Boolean Expressions and
Variables
9.1 What is the right type to use for Boolean values in C?

9.2 What if a built-in logical or relational operator ``returns'' something other than 1?

9.3 Is if(p), where p is a pointer, valid?

top

http://www.eskimo.com/~scs/C-faq/s9.html [26/03/2003 11:41:13 p.m.]

C Preprocessor

10. C Preprocessor
10.2 I've got some cute preprocessor macros that let me write C code that looks more
like Pascal. What do y'all think?

10.3 How can I write a generic macro to swap two values?

10.4 What's the best way to write a multi-statement macro?

10.6 What are .h files and what should I put in them?

10.7 Is it acceptable for one header file to #include another?

10.8 Where are header (``#include'') files searched for?

10.9 I'm getting strange syntax errors on the very first declaration in a file, but it
looks fine.

10.11 Where can I get a copy of a missing header file?

10.12 How can I construct preprocessor #if expressions which compare strings?

10.13 Does the sizeof operator work in preprocessor #if directives?

10.14 Can I use an #ifdef in a #define line, to define something two different
ways?

10.15 Is there anything like an #ifdef for typedefs?

10.16 How can I use a preprocessor #if expression to detect endianness?

10.18 How can I preprocess some code to remove selected conditional compilations,
without preprocessing everything?

10.19 How can I list all of the pre#defined identifiers?

10.20 I have some old code that tries to construct identifiers with a macro like

http://www.eskimo.com/~scs/C-faq/s10.html (1 of 2) [26/03/2003 11:41:14 p.m.]

C Preprocessor

"#define Paste(a, b) a/**/b", but it doesn't work any more.

10.22

What does the message ``warning: macro replacement within a string literal'' mean?

10.23 How can I use a macro argument inside a string literal in the macro expansion?

10.25 I've got this tricky preprocessing I want to do and I can't figure out a way to do
it.

10.26 How can I write a macro which takes a variable number of arguments?

top

http://www.eskimo.com/~scs/C-faq/s10.html (2 of 2) [26/03/2003 11:41:14 p.m.]

ANSI/ISO Standard C

11. ANSI/ISO Standard C
11.1 What is the ``ANSI C Standard?''

11.2 How can I get a copy of the Standard?

11.3 My ANSI compiler is complaining about prototype mismatches for parameters
declared float.

11.4 Can you mix old-style and new-style function syntax?

11.5 Why does the declaration "extern f(struct x *p);" give me a warning
message?

11.8 Why can't I use const values in initializers and array dimensions?

11.9 What's the difference between const char *p and char * const p?

11.10 Why can't I pass a char ** to a function which expects a const char
**?

11.12 Can I declare main as void, to shut off these annoying ``main returns no
value'' messages?

11.13 But what about main's third argument, envp?

11.14 I believe that declaring void main() can't fail, since I'm calling exit
instead of returning.

11.15 The book I've been using always uses void main().

11.16 Is exit(status) truly equivalent to returning the same status from
main?

11.17 How do I get the ANSI ``stringizing'' preprocessing operator `#' to stringize
the macro's value instead of its name?

http://www.eskimo.com/~scs/C-faq/s11.html (1 of 3) [26/03/2003 11:41:15 p.m.]

ANSI/ISO Standard C

11.18 What does the message ``warning: macro replacement within a string literal''
mean?

11.19 I'm getting strange syntax errors inside lines I've #ifdeffed out.

11.20 What are #pragmas ?

11.21 What does ``#pragma once'' mean?

11.22 Is char a[3] = "abc"; legal?

11.24 Why can't I perform arithmetic on a void * pointer?

11.25 What's the difference between memcpy and memmove?

11.26 What should malloc(0) do?

11.27 Why does the ANSI Standard not guarantee more than six case-insensitive
characters of external identifier significance?

11.29 My compiler is rejecting the simplest possible test programs, with all kinds of
syntax errors.

11.30 Why are some ANSI/ISO Standard library routines showing up as undefined,
even though I've got an ANSI compiler?

11.31 Does anyone have a tool for converting old-style C programs to ANSI C, or
for automatically generating prototypes?

11.32 Why won't frobozz-cc, which claims to be ANSI compliant, accept this code?

11.33 What's the difference between implementation-defined, unspecified, and
undefined behavior?

11.34 I'm appalled that the ANSI Standard leaves so many issues undefined.

11.35 I just tried some allegedly-undefined code on an ANSI-conforming compiler,
and got the results I expected.

http://www.eskimo.com/~scs/C-faq/s11.html (2 of 3) [26/03/2003 11:41:15 p.m.]

ANSI/ISO Standard C

top

http://www.eskimo.com/~scs/C-faq/s11.html (3 of 3) [26/03/2003 11:41:15 p.m.]

Stdio

12. Stdio
12.1 What's wrong with the code "char c; while((c = getchar()) !=
EOF) ..."?

12.2 Why won't the code `` while(!feof(infp)) { fgets(buf,
MAXLINE, infp); fputs(buf, outfp); } '' work?

12.4 My program's prompts and intermediate output don't always show up on the
screen.

12.5 How can I read one character at a time, without waiting for the RETURN key?

12.6 How can I print a '%' character with printf?

12.9 How can printf use %f for type double, if scanf requires %lf?

12.10 How can I implement a variable field width with printf?

12.11 How can I print numbers with commas separating the thousands?

12.12 Why doesn't the call scanf("%d", i) work?

12.13 Why doesn't the code "double d; scanf("%f", &d);" work?

12.15 How can I specify a variable width in a scanf format string?

12.17 When I read numbers from the keyboard with scanf "%d\n", it seems to
hang until I type one extra line of input.

12.18 I'm reading a number with scanf %d and then a string with gets(), but the
compiler seems to be skipping the call to gets()!

12.19 I'm re-prompting the user if scanf fails, but sometimes it seems to go into an
infinite loop.

12.20 Why does everyone say not to use scanf? What should I use instead?

http://www.eskimo.com/~scs/C-faq/s12.html (1 of 2) [26/03/2003 11:41:17 p.m.]

Stdio

12.21 How can I tell how much destination buffer space I'll need for an arbitrary
sprintf call? How can I avoid overflowing the destination buffer with sprintf?

12.23 Why does everyone say not to use gets()?

12.24 Why does errno contain ENOTTY after a call to printf?

12.25 What's the difference between fgetpos/fsetpos and ftell/fseek?

12.26 Will fflush(stdin) flush unread characters from the standard input
stream?

12.30 I'm trying to update a file in place, by using fopen mode "r+", but it's not
working.

12.33 How can I redirect stdin or stdout from within a program?

12.34 Once I've used freopen, how can I get the original stream back?

12.38 How can I read a binary data file properly?

top

http://www.eskimo.com/~scs/C-faq/s12.html (2 of 2) [26/03/2003 11:41:17 p.m.]

Library Functions

13. Library Functions
13.1 How can I convert numbers to strings?

13.2 Why does strncpy not always write a '\0'?

13.5 Why do some versions of toupper act strangely if given an upper-case letter?

13.6 How can I split up a string into whitespace-separated fields?

13.7 I need some code to do regular expression and wildcard matching.

13.8 I'm trying to sort an array of strings with qsort, using strcmp as the
comparison function, but it's not working.

13.9 Now I'm trying to sort an array of structures, but the compiler is complaining
that the function is of the wrong type for qsort.

13.10 How can I sort a linked list?

13.11 How can I sort more data than will fit in memory?

13.12 How can I get the time of day in a C program?

13.13 How can I convert a struct tm or a string into a time_t?

13.14 How can I perform calendar manipulations?

13.15 I need a random number generator.

13.16 How can I get random integers in a certain range?

13.17 Each time I run my program, I get the same sequence of numbers back from
rand().

13.18 I need a random true/false value, so I'm just taking rand() % 2, but it's
alternating 0, 1, 0, 1, 0...

http://www.eskimo.com/~scs/C-faq/s13.html (1 of 2) [26/03/2003 11:41:18 p.m.]

Library Functions

13.20 How can I generate random numbers with a normal or Gaussian distribution?

13.24 I'm trying to port this old program. Why do I get ``undefined external'' errors
for some library functions?

13.25 I get errors due to library functions being undefined even though I #include
the right header files.

13.26 I'm still getting errors due to library functions being undefined, even though
I'm requesting the right libraries.

13.28 What does it mean when the linker says that _end is undefined?

top

http://www.eskimo.com/~scs/C-faq/s13.html (2 of 2) [26/03/2003 11:41:18 p.m.]

Floating Point

14. Floating Point
14.1 When I set a float variable to 3.1, why is printf printing it as 3.0999999?

14.2 Why is sqrt(144.) giving me crazy numbers?

14.3 I keep getting ``undefined: sin'' compilation errors.

14.4 My floating-point calculations are acting strangely and giving me different
answers on different machines.

14.5 What's a good way to check for ``close enough'' floating-point equality?

14.6 How do I round numbers?

14.7 Where is C's exponentiation operator?

14.8 The pre-#defined constant M_PI seems to be missing from <math.h>.

14.9 How do I test for IEEE NaN and other special values?

14.11 What's a good way to implement complex numbers in C?

14.12 I'm looking for some mathematical library code.

14.13 I'm having trouble with a Turbo C program which crashes and says something
like ``floating point formats not linked.''

top

http://www.eskimo.com/~scs/C-faq/s14.html [26/03/2003 11:41:18 p.m.]

Variable-Length Argument Lists

15. Variable-Length Argument
Lists
15.1 I heard that you have to #include <stdio.h> before calling printf.
Why?

15.2 How can %f be used for both float and double arguments in printf?

15.3 Why don't function prototypes guard against mismatches in printf's
arguments?

15.4 How can I write a function that takes a variable number of arguments?

15.5 How can I write a function that takes a format string and a variable number of
arguments, like printf, and passes them to printf to do most of the work?

15.6 How can I write a function analogous to scanf, that calls scanf to do most
of the work?

15.7 I have a pre-ANSI compiler, without <stdarg.h>. What can I do?

15.8 How can I discover how many arguments a function was actually called with?

15.9 My compiler isn't letting me declare a function that accepts only variable
arguments.

15.10 Why isn't "va_arg(argp, float)" working?

15.11 I can't get va_arg to pull in an argument of type pointer-to-function.

15.12 How can I write a function which takes a variable number of arguments and
passes them to some other function ?

15.13 How can I call a function with an argument list built up at run time?

http://www.eskimo.com/~scs/C-faq/s15.html (1 of 2) [26/03/2003 11:41:20 p.m.]

Variable-Length Argument Lists

top

http://www.eskimo.com/~scs/C-faq/s15.html (2 of 2) [26/03/2003 11:41:20 p.m.]

Strange Problems

16. Strange Problems
16.3 This program crashes before it even runs!

16.4 I have a program that seems to run correctly, but then crashes as it's exiting.

16.5 This program runs perfectly on one machine, but I get weird results on another.

16.6 Why does the code "char *p = "hello, world!"; p[0] = 'H';"
crash?

16.8 What does ``Segmentation violation'' mean?

top

http://www.eskimo.com/~scs/C-faq/s16.html [26/03/2003 11:41:22 p.m.]

Style

17. Style
17.1 What's the best style for code layout in C?

17.3 Is the code "if(!strcmp(s1, s2))" good style?

17.4 Why do some people write if(0 == x) instead of if(x == 0)?

17.5 I came across some code that puts a (void) cast before each call to printf.
Why?

17.8 What is Hungarian Notation''? Is it worthwhile?

17.9 Where can I get the ``Indian Hill Style Guide'' and other coding standards?

17.10 Some people say that goto's are evil and that I should never use them. Isn't
that a bit extreme?

top

http://www.eskimo.com/~scs/C-faq/s17.html [26/03/2003 11:41:23 p.m.]

System Dependencies

19. System Dependencies
19.1 How can I read a single character from the keyboard without waiting for the
RETURN key?

19.2 How can I find out how many characters are available for reading, or do a non-
blocking read?

19.3 How can I display a percentage-done indication that updates itself in place, or
show one of those ``twirling baton'' progress indicators?

19.4 How can I clear the screen, or print things in inverse video, or move the cursor?

19.5 How do I read the arrow keys? What about function keys?

19.6 How do I read the mouse?

19.7 How can I do serial (``comm'') port I/O?

19.8 How can I direct output to the printer?

19.9 How do I send escape sequences to control a terminal or other device?

19.10 How can I do graphics?

19.11 How can I check whether a file exists?

19.12 How can I find out the size of a file, prior to reading it in?

19.13 How can a file be shortened in-place without completely clearing or rewriting
it?

19.14 How can I insert or delete a line in the middle of a file?

19.15 How can I recover the file name given an open file descriptor?

19.16 How can I delete a file?

http://www.eskimo.com/~scs/C-faq/s19.html (1 of 3) [26/03/2003 11:41:24 p.m.]

System Dependencies

19.17 What's wrong with the call "fopen("c:\newdir\file.dat", "r")"?

19.18 How can I increase the allowable number of simultaneously open files?

19.20 How can I read a directory in a C program?

19.22 How can I find out how much memory is available?

19.23 How can I allocate arrays or structures bigger than 64K?

19.24 What does the error message ``DGROUP exceeds 64K'' mean?

19.25 How can I access memory located at a certain address?

19.27 How can I invoke another program from within a C program?

19.30 How can I invoke another program and trap its output?

19.31 How can my program discover the complete pathname to the executable from
which it was invoked?

19.32 How can I automatically locate a program's configuration files in the same
directory as the executable?

19.33 How can a process change an environment variable in its caller?

19.36 How can I read in an object file and jump to routines in it?

19.37 How can I implement a delay, or time a user's response, with sub-second
resolution?

19.38 How can I trap or ignore keyboard interrupts like control-C?

19.39 How can I handle floating-point exceptions gracefully?

19.40 How do I... Use sockets? Do networking? Write client/server applications?

19.40b How do I use BIOS calls? How can I write ISR's? How can I create TSR's?

http://www.eskimo.com/~scs/C-faq/s19.html (2 of 3) [26/03/2003 11:41:24 p.m.]

System Dependencies

19.41 But I can't use all these nonstandard, system-dependent functions, because my
program has to be ANSI compatible!

top

http://www.eskimo.com/~scs/C-faq/s19.html (3 of 3) [26/03/2003 11:41:24 p.m.]

Acknowledgements

Acknowledgements
Thanks to Jamshid Afshar, David Anderson, Tanner Andrews, Sudheer Apte, Joseph
Arceneaux, Randall Atkinson, Rick Beem, Peter Bennett, Wayne Berke, Dan
Bernstein, Tanmoy Bhattacharya, John Bickers, Gary Blaine, Yuan Bo, Dave
Boutcher, Michael Bresnahan, Vincent Broman, Stan Brown, Joe Buehler,
Kimberley Burchett, Gordon Burditt, Burkhard Burow, Conor P. Cahill, D'Arcy J.M.
Cain, Christopher Calabrese, Ian Cargill, Vinit Carpenter, Paul Carter, Mike
Chambers, Billy Chambless, Franklin Chen, Jonathan Chen, Raymond Chen,
Richard Cheung, Steve Clamage, Ken Corbin, Ian Cottam, Russ Cox, Jonathan
Coxhead, Lee Crawford, Steve Dahmer, Andrew Daviel, James Davies, John E.
Davis, Ken Delong, Jutta Degener, Norm Diamond, Jeff Dunlop, Ray Dunn, Stephen
M. Dunn, Michael J. Eager, Scott Ehrlich, Arno Eigenwillig, Dave Eisen, Bjorn
Engsig, David Evans, Clive D.W. Feather, Dominic Feeley, Simao Ferraz, Chris
Flatters, Rod Flores, Alexander Forst, Steve Fosdick, Jeff Francis, Tom Gambill,
Dave Gillespie, Samuel Goldstein, Tim Goodwin, Alasdair Grant, Ron Guilmette,
Doug Gwyn, Michael Hafner, Tony Hansen, Elliotte Rusty Harold, Joe Harrington,
Des Herriott, Guy Harris, John Hascall, Ger Hobbelt, Jos Horsmeier, Blair
Houghton, James C. Hu, Chin Huang, David Hurt, Einar Indridason, Vladimir
Ivanovic, Jon Jagger, Ke Jin, Kirk Johnson, Larry Jones, Arjan Kenter, James Kew,
Lawrence Kirby, Kin-ichi Kitano, Peter Klausler, Andrew Koenig, Tom Koenig,
Adam Kolawa, Jukka Korpela, Ajoy Krishnan T, Markus Kuhn, Deepak Kulkarni,
Oliver Laumann, John Lauro, Felix Lee, Mike Lee, Timothy J. Lee, Tony Lee, Marty
Leisner, Don Libes, Brian Liedtke, Philip Lijnzaad, Keith Lindsay, Yen-Wei Liu,
Paul Long, Christopher Lott, Tim Love, Tim McDaniel, Kevin McMahon, Stuart
MacMartin, John R. MacMillan, Andrew Main, Bob Makowski, Evan Manning,
Barry Margolin, George Matas, Brad Mears, Roger Miller, Bill Mitchell, Mark
Moraes, Darren Morby, Bernhard Muenzer, David Murphy, Walter Murray, Ralf
Muschall, Ken Nakata, Todd Nathan, Landon Curt Noll, Tim Norman, Paul Nulsen,
David O'Brien, Richard A. O'Keefe, Adam Kolawa, James Ojaste, Hans Olsson, Bob
Peck, Andrew Phillips, Christopher Phillips, François Pinard, Nick Pitfield, Wayne
Pollock, Dan Pop, Lutz Prechelt, Lynn Pye, Kevin D. Quitt, Pat Rankin, Arjun Ray,
Eric S. Raymond, Peter W. Richards, Eric Roode, Manfred Rosenboom, J. M.
Rosenstock, Rick Rowe, Erkki Ruohtula, John Rushford, Kadda Sahnine, Tomohiko
Sakamoto, Matthew Saltzman, Rich Salz, Chip Salzenberg, Matthew Sams, Paul
Sand, DaviD W. Sanderson, Frank Sandy, Christopher Sawtell, Jonas Schlein, Paul
Schlyter, Doug Schmidt, Rene Schmit, Russell Schulz, Dean Schulze, Chris Sears,
Patricia Shanahan, Raymond Shwake, Peter da Silva, Joshua Simons, Ross Smith,
Henri Socha, Leslie J. Somos, Henry Spencer, David Spuler, James Stern, Bob Stout,
Steve Sullivan, Melanie Summit, Erik Talvola, Dave Taylor, Clarke Thatcher,
Wayne Throop, Chris Torek, Steve Traugott, Ilya Tsindlekht, Andrew Tucker, Gøran

http://www.eskimo.com/~scs/C-faq/sx2.html (1 of 2) [26/03/2003 11:41:25 p.m.]

http://nqcd.lanl.gov/people/tanmoy/tanmoy.html
http://vinny.csd.mu.edu/
http://www.cs.tu-berlin.de/~jutta/index.html
http://www.hut.fi/~jkorpela/index.html
http://wwwcip.informatik.uni-erlangen.de/user/mskuhn
http://elib.cme.nist.gov/msid/staff/libes.don.html

Acknowledgements

Uddeborg, Rodrigo Vanegas, Jim Van Zandt, Wietse Venema, Tom Verhoeff, Ed
Vielmetti, Larry Virden, Chris Volpe, Mark Warren, Alan Watson, Kurt Watzka,
Larry Weiss, Martin Weitzel, Howard West, Tom White, Freek Wiedijk, Dik T.
Winter, Lars Wirzenius, Dave Wolverton, Mitch Wright, Conway Yee, Ozan S.
Yigit, and Zhuo Zang, who have contributed, directly or indirectly, to these pages.
Thanks to the reviewers of the book-length version: Mark Brader, Vinit Carpenter,
Stephen Clamage, Jutta Degener, Doug Gwyn, Karl Heuer, and Joseph Kent. Thanks
to Jukka Korpela and Jutta Degener for providing interim versions of this list in web
form while I was dragging my feet. Special thanks to Karl Heuer, and particularly to
Mark Brader, who (to borrow a line from Steve Johnson) have goaded me beyond
my inclination, and occasionally beyond my endurance, in relentless pursuit of a
better FAQ list.

[If your name appears here, and you would like it to be a link to your home page, just
send me the URL.]

top

http://www.eskimo.com/~scs/C-faq/sx2.html (2 of 2) [26/03/2003 11:41:25 p.m.]

http://www.cs.helsinki.fi/~wirzeniu/
http://www.hut.fi/~jkorpela/index.html
http://www.cs.tu-berlin.de/~jutta/index.html

Questions

1. Declarations and Initializations

1.1 How do you decide which integer type to use?

1.4 What should the 64-bit type on new, 64-bit machines be?

1.7 What's the best way to declare and define global variables?

1.11 What does extern mean in a function declaration?

1.12 What's the auto keyword good for?

1.14 I can't seem to define a linked list node which contains a pointer to itself.

1.21 How do I declare an array of N pointers to functions returning pointers to
functions returning pointers to characters?

1.22 How can I declare a function that returns a pointer to a function of its own type?

1.25 My compiler is complaining about an invalid redeclaration of a function, but I
only define it once and call it once.

1.30 What can I safely assume about the initial values of variables which are not
explicitly initialized?

1.31 Why can't I initialize a local array with a string?

1.32 What is the difference between char a[] = "string"; and char *p =
"string"; ?

1.34 How do I initialize a pointer to a function?

2. Structures, Unions, and Enumerations

2.1 What's the difference between struct x1 { ... }; and typedef

http://www.eskimo.com/~scs/C-faq/questions.html (1 of 22) [26/03/2003 11:41:34 p.m.]

Questions

struct { ... } x2; ?

2.2 Why doesn't "struct x { ... }; x thestruct;" work?

2.3 Can a structure contain a pointer to itself?

2.4 What's the best way of implementing opaque (abstract) data types in C?

2.6 I came across some code that declared a structure with the last member an array
of one element, and then did some tricky allocation to make it act like the array had
several elements. Is this legal or portable?

2.7 I heard that structures could be assigned to variables and passed to and from
functions, but K&R1 says not.

2.8 Why can't you compare structures?

2.9 How are structure passing and returning implemented?

2.10 Can I pass constant values to functions which accept structure arguments?

2.11 How can I read/write structures from/to data files?

2.12 How can I turn off structure padding?

2.13 Why does sizeof report a larger size than I expect for a structure type?

2.14 How can I determine the byte offset of a field within a structure?

2.15 How can I access structure fields by name at run time?

2.18 I have a program which works correctly, but dumps core after it finishes. Why?

2.20 Can I initialize unions?

2.22 What is the difference between an enumeration and a set of preprocessor
#defines?

http://www.eskimo.com/~scs/C-faq/questions.html (2 of 22) [26/03/2003 11:41:34 p.m.]

Questions

2.24 Is there an easy way to print enumeration values symbolically?

3. Expressions

3.1 Why doesn't the code "a[i] = i++;" work?

3.2 Under my compiler, the code "int i = 7; printf("%d\n", i++ *
i++);" prints 49. Regardless of the order of evaluation, shouldn't it print 56?

3.3 How could the code [CENSORED] ever give 7?

3.4 Don't precedence and parentheses dictate order of evaluation?

3.5 But what about the && and || operators?

3.8 What's a ``sequence point''?

3.9 So given "a[i] = i++;" we don't know which cell of a[] gets written to, but
i does get incremented by one.

3.12 If I'm not using the value of the expression, should I use i++ or ++i to
increment a variable?

3.14 Why doesn't the code "int a = 1000, b = 1000; long int c = a
* b;" work?

3.16 Can I use ?: on the left-hand side of an assignment expression?

4. Pointers

4.2 What's wrong with "char *p; *p = malloc(10);"?

4.3 Does *p++ increment p, or what it points to?

4.5 I want to use a char * pointer to step over some ints. Why doesn't "((int

http://www.eskimo.com/~scs/C-faq/questions.html (3 of 22) [26/03/2003 11:41:34 p.m.]

Questions

*)p)++;" work?

4.8 I have a function which accepts, and is supposed to initialize, a pointer, but the
pointer in the caller remains unchanged.

4.9 Can I use a void ** pointer to pass a generic pointer to a function by
reference?

4.10 I have a function which accepts a pointer to an int. How can I pass a constant
like 5 to it?

4.11 Does C even have ``pass by reference''?

4.12 I've seen different methods used for calling functions via pointers.

5. Null Pointers

5.1 What is this infamous null pointer, anyway?

5.2 How do I get a null pointer in my programs?

5.3 Is the abbreviated pointer comparison ``if(p)'' to test for non-null pointers
valid?

5.4 What is NULL and how is it #defined?

5.5 How should NULL be defined on a machine which uses a nonzero bit pattern as
the internal representation of a null pointer?

5.6 If NULL were defined as ``((char *)0),'' wouldn't that make function calls
which pass an uncast NULL work?

5.9 If NULL and 0 are equivalent as null pointer constants, which should I use?

5.10 But wouldn't it be better to use NULL, in case the value of NULL changes?

http://www.eskimo.com/~scs/C-faq/questions.html (4 of 22) [26/03/2003 11:41:34 p.m.]

Questions

5.12 I use the preprocessor macro "#define Nullptr(type) (type *)0" to
help me build null pointers of the correct type.

5.13 This is strange. NULL is guaranteed to be 0, but the null pointer is not?

5.14 Why is there so much confusion surrounding null pointers?

5.15 I'm confused. I just can't understand all this null pointer stuff.

5.16 Given all the confusion surrounding null pointers, wouldn't it be easier simply
to require them to be represented internally by zeroes?

5.17 Seriously, have any actual machines really used nonzero null pointers?

5.20 What does a run-time ``null pointer assignment'' error mean?

6. Arrays and Pointers

6.1 I had the definition char a[6] in one source file, and in another I declared
extern char *a. Why didn't it work?

6.2 But I heard that char a[] was identical to char *a.

6.3 So what is meant by the ``equivalence of pointers and arrays'' in C?

6.4 Why are array and pointer declarations interchangeable as function formal
parameters?

6.7 How can an array be an lvalue, if you can't assign to it?

6.8 What is the real difference between arrays and pointers?

6.9 Someone explained to me that arrays were really just constant pointers.

6.11 I came across some ``joke'' code containing the ``expression'' 5["abcdef"] .
How can this be legal C?

http://www.eskimo.com/~scs/C-faq/questions.html (5 of 22) [26/03/2003 11:41:34 p.m.]

Questions

6.12 What's the difference between array and &array?

6.13 How do I declare a pointer to an array?

6.14 How can I set an array's size at compile time?

6.15 How can I declare local arrays of a size matching a passed-in array?

6.16 How can I dynamically allocate a multidimensional array?

6.17 Can I simulate a non-0-based array with a pointer?

6.18 My compiler complained when I passed a two-dimensional array to a function
expecting a pointer to a pointer.

6.19 How do I write functions which accept two-dimensional arrays when the
``width'' is not known at compile time?

6.20 How can I use statically- and dynamically-allocated multidimensional arrays
interchangeably when passing them to functions?

6.21 Why doesn't sizeof properly report the size of an array which is a parameter
to a function?

7. Memory Allocation

7.1 Why doesn't the code ``char *answer; gets(answer);'' work?

7.2 I can't get strcat to work. I tried ``char *s3 = strcat(s1, s2);'' but
I got strange results.

7.3 But the man page for strcat says that it takes two char *'s as arguments.
How am I supposed to know to allocate things?

7.5 I have a function that is supposed to return a string, but when it returns to its
caller, the returned string is garbage.

http://www.eskimo.com/~scs/C-faq/questions.html (6 of 22) [26/03/2003 11:41:34 p.m.]

Questions

7.6 Why am I getting ``warning: assignment of pointer from integer lacks a cast'' for
calls to malloc?

7.7 Why does some code carefully cast the values returned by malloc to the pointer
type being allocated?

7.8 Why does so much code leave out the multiplication by sizeof(char) when
allocating strings?

7.14 I've heard that some operating systems don't actually allocate malloc'ed
memory until the program tries to use it. Is this legal?

7.16 I'm allocating a large array for some numeric work, but malloc is acting
strangely.

7.17 I've got 8 meg of memory in my PC. Why can I only seem to malloc 640K or
so?

7.19 My program is crashing, apparently somewhere down inside malloc.

7.20 You can't use dynamically-allocated memory after you free it, can you?

7.21 Why isn't a pointer null after calling free?

7.22 When I call malloc to allocate memory for a local pointer, do I have to
explicitly free it?

7.23 When I free a dynamically-allocated structure containing pointers, do I have to
free each subsidiary pointer first?

7.24 Must I free allocated memory before the program exits?

7.25 Why doesn't my program's memory usage go down when I free memory?

7.26 How does free know how many bytes to free?

7.27 So can I query the malloc package to find out how big an allocated block is?

http://www.eskimo.com/~scs/C-faq/questions.html (7 of 22) [26/03/2003 11:41:34 p.m.]

Questions

7.30 Is it legal to pass a null pointer as the first argument to realloc?

7.31 What's the difference between calloc and malloc?

7.32 What is alloca and why is its use discouraged?

8. Characters and Strings

8.1 Why doesn't "strcat(string, '!');" work?

8.2 Why won't the test if(string == "value") correctly compare string
against the value?

8.3 Why can't I assign strings to character arrays?

8.6 How can I get the numeric (character set) value corresponding to a character?

8.9 Why is sizeof('a') not 1?

9. Boolean Expressions and Variables

9.1 What is the right type to use for Boolean values in C?

9.2 What if a built-in logical or relational operator ``returns'' something other than 1?

9.3 Is if(p), where p is a pointer, valid?

10. C Preprocessor

10.2 I've got some cute preprocessor macros that let me write C code that looks more
like Pascal. What do y'all think?

10.3 How can I write a generic macro to swap two values?

http://www.eskimo.com/~scs/C-faq/questions.html (8 of 22) [26/03/2003 11:41:34 p.m.]

Questions

10.4 What's the best way to write a multi-statement macro?

10.6 What are .h files and what should I put in them?

10.7 Is it acceptable for one header file to #include another?

10.8 Where are header (``#include'') files searched for?

10.9 I'm getting strange syntax errors on the very first declaration in a file, but it
looks fine.

10.11 Where can I get a copy of a missing header file?

10.12 How can I construct preprocessor #if expressions which compare strings?

10.13 Does the sizeof operator work in preprocessor #if directives?

10.14 Can I use an #ifdef in a #define line, to define something two different
ways?

10.15 Is there anything like an #ifdef for typedefs?

10.16 How can I use a preprocessor #if expression to detect endianness?

10.18 How can I preprocess some code to remove selected conditional compilations,
without preprocessing everything?

10.19 How can I list all of the pre#defined identifiers?

10.20 I have some old code that tries to construct identifiers with a macro like
"#define Paste(a, b) a/**/b", but it doesn't work any more.

10.22

What does the message ``warning: macro replacement within a string literal'' mean?

10.23 How can I use a macro argument inside a string literal in the macro expansion?

http://www.eskimo.com/~scs/C-faq/questions.html (9 of 22) [26/03/2003 11:41:34 p.m.]

Questions

10.25 I've got this tricky preprocessing I want to do and I can't figure out a way to do
it.

10.26 How can I write a macro which takes a variable number of arguments?

11. ANSI/ISO Standard C

11.1 What is the ``ANSI C Standard?''

11.2 How can I get a copy of the Standard?

11.3 My ANSI compiler is complaining about prototype mismatches for parameters
declared float.

11.4 Can you mix old-style and new-style function syntax?

11.5 Why does the declaration "extern f(struct x *p);" give me a warning
message?

11.8 Why can't I use const values in initializers and array dimensions?

11.9 What's the difference between const char *p and char * const p?

11.10 Why can't I pass a char ** to a function which expects a const char
**?

11.12 Can I declare main as void, to shut off these annoying ``main returns no
value'' messages?

11.13 But what about main's third argument, envp?

11.14 I believe that declaring void main() can't fail, since I'm calling exit
instead of returning.

11.15 The book I've been using always uses void main().

http://www.eskimo.com/~scs/C-faq/questions.html (10 of 22) [26/03/2003 11:41:34 p.m.]

Questions

11.16 Is exit(status) truly equivalent to returning the same status from
main?

11.17 How do I get the ANSI ``stringizing'' preprocessing operator `#' to stringize
the macro's value instead of its name?

11.18 What does the message ``warning: macro replacement within a string literal''
mean?

11.19 I'm getting strange syntax errors inside lines I've #ifdeffed out.

11.20 What are #pragmas ?

11.21 What does ``#pragma once'' mean?

11.22 Is char a[3] = "abc"; legal?

11.24 Why can't I perform arithmetic on a void * pointer?

11.25 What's the difference between memcpy and memmove?

11.26 What should malloc(0) do?

11.27 Why does the ANSI Standard not guarantee more than six case-insensitive
characters of external identifier significance?

11.29 My compiler is rejecting the simplest possible test programs, with all kinds of
syntax errors.

11.30 Why are some ANSI/ISO Standard library routines showing up as undefined,
even though I've got an ANSI compiler?

11.31 Does anyone have a tool for converting old-style C programs to ANSI C, or
for automatically generating prototypes?

11.32 Why won't frobozz-cc, which claims to be ANSI compliant, accept this code?

11.33 What's the difference between implementation-defined, unspecified, and

http://www.eskimo.com/~scs/C-faq/questions.html (11 of 22) [26/03/2003 11:41:34 p.m.]

Questions

undefined behavior?

11.34 I'm appalled that the ANSI Standard leaves so many issues undefined.

11.35 I just tried some allegedly-undefined code on an ANSI-conforming compiler,
and got the results I expected.

12. Stdio

12.1 What's wrong with the code "char c; while((c = getchar()) !=
EOF) ..."?

12.2 Why won't the code `` while(!feof(infp)) { fgets(buf,
MAXLINE, infp); fputs(buf, outfp); } '' work?

12.4 My program's prompts and intermediate output don't always show up on the
screen.

12.5 How can I read one character at a time, without waiting for the RETURN key?

12.6 How can I print a '%' character with printf?

12.9 How can printf use %f for type double, if scanf requires %lf?

12.10 How can I implement a variable field width with printf?

12.11 How can I print numbers with commas separating the thousands?

12.12 Why doesn't the call scanf("%d", i) work?

12.13 Why doesn't the code "double d; scanf("%f", &d);" work?

12.15 How can I specify a variable width in a scanf format string?

12.17 When I read numbers from the keyboard with scanf "%d\n", it seems to
hang until I type one extra line of input.

http://www.eskimo.com/~scs/C-faq/questions.html (12 of 22) [26/03/2003 11:41:34 p.m.]

Questions

12.18 I'm reading a number with scanf %d and then a string with gets(), but the
compiler seems to be skipping the call to gets()!

12.19 I'm re-prompting the user if scanf fails, but sometimes it seems to go into an
infinite loop.

12.20 Why does everyone say not to use scanf? What should I use instead?

12.21 How can I tell how much destination buffer space I'll need for an arbitrary
sprintf call? How can I avoid overflowing the destination buffer with sprintf?

12.23 Why does everyone say not to use gets()?

12.24 Why does errno contain ENOTTY after a call to printf?

12.25 What's the difference between fgetpos/fsetpos and ftell/fseek?

12.26 Will fflush(stdin) flush unread characters from the standard input
stream?

12.30 I'm trying to update a file in place, by using fopen mode "r+", but it's not
working.

12.33 How can I redirect stdin or stdout from within a program?

12.34 Once I've used freopen, how can I get the original stream back?

12.38 How can I read a binary data file properly?

13. Library Functions

13.1 How can I convert numbers to strings?

13.2 Why does strncpy not always write a '\0'?

13.5 Why do some versions of toupper act strangely if given an upper-case letter?

http://www.eskimo.com/~scs/C-faq/questions.html (13 of 22) [26/03/2003 11:41:34 p.m.]

Questions

13.6 How can I split up a string into whitespace-separated fields?

13.7 I need some code to do regular expression and wildcard matching.

13.8 I'm trying to sort an array of strings with qsort, using strcmp as the
comparison function, but it's not working.

13.9 Now I'm trying to sort an array of structures, but the compiler is complaining
that the function is of the wrong type for qsort.

13.10 How can I sort a linked list?

13.11 How can I sort more data than will fit in memory?

13.12 How can I get the time of day in a C program?

13.13 How can I convert a struct tm or a string into a time_t?

13.14 How can I perform calendar manipulations?

13.15 I need a random number generator.

13.16 How can I get random integers in a certain range?

13.17 Each time I run my program, I get the same sequence of numbers back from
rand().

13.18 I need a random true/false value, so I'm just taking rand() % 2, but it's
alternating 0, 1, 0, 1, 0...

13.20 How can I generate random numbers with a normal or Gaussian distribution?

13.24 I'm trying to port this old program. Why do I get ``undefined external'' errors
for some library functions?

13.25 I get errors due to library functions being undefined even though I #include
the right header files.

http://www.eskimo.com/~scs/C-faq/questions.html (14 of 22) [26/03/2003 11:41:34 p.m.]

Questions

13.26 I'm still getting errors due to library functions being undefined, even though
I'm requesting the right libraries.

13.28 What does it mean when the linker says that _end is undefined?

14. Floating Point

14.1 When I set a float variable to 3.1, why is printf printing it as 3.0999999?

14.2 Why is sqrt(144.) giving me crazy numbers?

14.3 I keep getting ``undefined: sin'' compilation errors.

14.4 My floating-point calculations are acting strangely and giving me different
answers on different machines.

14.5 What's a good way to check for ``close enough'' floating-point equality?

14.6 How do I round numbers?

14.7 Where is C's exponentiation operator?

14.8 The pre-#defined constant M_PI seems to be missing from <math.h>.

14.9 How do I test for IEEE NaN and other special values?

14.11 What's a good way to implement complex numbers in C?

14.12 I'm looking for some mathematical library code.

14.13 I'm having trouble with a Turbo C program which crashes and says something
like ``floating point formats not linked.''

15. Variable-Length Argument Lists

http://www.eskimo.com/~scs/C-faq/questions.html (15 of 22) [26/03/2003 11:41:34 p.m.]

Questions

15.1 I heard that you have to #include <stdio.h> before calling printf.
Why?

15.2 How can %f be used for both float and double arguments in printf?

15.3 Why don't function prototypes guard against mismatches in printf's
arguments?

15.4 How can I write a function that takes a variable number of arguments?

15.5 How can I write a function that takes a format string and a variable number of
arguments, like printf, and passes them to printf to do most of the work?

15.6 How can I write a function analogous to scanf, that calls scanf to do most
of the work?

15.7 I have a pre-ANSI compiler, without <stdarg.h>. What can I do?

15.8 How can I discover how many arguments a function was actually called with?

15.9 My compiler isn't letting me declare a function that accepts only variable
arguments.

15.10 Why isn't "va_arg(argp, float)" working?

15.11 I can't get va_arg to pull in an argument of type pointer-to-function.

15.12 How can I write a function which takes a variable number of arguments and
passes them to some other function ?

15.13 How can I call a function with an argument list built up at run time?

16. Strange Problems

16.3 This program crashes before it even runs!

http://www.eskimo.com/~scs/C-faq/questions.html (16 of 22) [26/03/2003 11:41:34 p.m.]

Questions

16.4 I have a program that seems to run correctly, but then crashes as it's exiting.

16.5 This program runs perfectly on one machine, but I get weird results on another.

16.6 Why does the code "char *p = "hello, world!"; p[0] = 'H';"
crash?

16.8 What does ``Segmentation violation'' mean?

17. Style

17.1 What's the best style for code layout in C?

17.3 Is the code "if(!strcmp(s1, s2))" good style?

17.4 Why do some people write if(0 == x) instead of if(x == 0)?

17.5 I came across some code that puts a (void) cast before each call to printf.
Why?

17.8 What is Hungarian Notation''? Is it worthwhile?

17.9 Where can I get the ``Indian Hill Style Guide'' and other coding standards?

17.10 Some people say that goto's are evil and that I should never use them. Isn't
that a bit extreme?

18. Tools and Resources

18.1 I'm looking for C development tools (cross-reference generators, code
beautifiers, etc.).

18.2 How can I track down these pesky malloc problems?

18.3 What's a free or cheap C compiler I can use?

http://www.eskimo.com/~scs/C-faq/questions.html (17 of 22) [26/03/2003 11:41:34 p.m.]

Questions

18.4 I just typed in this program, and it's acting strangely. Can you see anything
wrong with it?

18.5 How can I shut off the ``warning: possible pointer alignment problem'' message
which lint gives me for each call to malloc?

18.7 Where can I get an ANSI-compatible lint?

18.8 Don't ANSI function prototypes render lint obsolete?

18.9 Are there any C tutorials or other resources on the net?

18.10 What's a good book for learning C?

18.13 Where can I find the sources of the standard C libraries?

18.14 I need code to parse and evaluate expressions.

18.15 Where can I get a BNF or YACC grammar for C?

18.15a Does anyone have a C compiler test suite I can use?

18.16 Where and how can I get copies of all these freely distributable programs?

19. System Dependencies

19.1 How can I read a single character from the keyboard without waiting for the
RETURN key?

19.2 How can I find out how many characters are available for reading, or do a non-
blocking read?

19.3 How can I display a percentage-done indication that updates itself in place, or
show one of those ``twirling baton'' progress indicators?

http://www.eskimo.com/~scs/C-faq/questions.html (18 of 22) [26/03/2003 11:41:34 p.m.]

Questions

19.4 How can I clear the screen, or print things in inverse video, or move the cursor?

19.5 How do I read the arrow keys? What about function keys?

19.6 How do I read the mouse?

19.7 How can I do serial (``comm'') port I/O?

19.8 How can I direct output to the printer?

19.9 How do I send escape sequences to control a terminal or other device?

19.10 How can I do graphics?

19.11 How can I check whether a file exists?

19.12 How can I find out the size of a file, prior to reading it in?

19.13 How can a file be shortened in-place without completely clearing or rewriting
it?

19.14 How can I insert or delete a line in the middle of a file?

19.15 How can I recover the file name given an open file descriptor?

19.16 How can I delete a file?

19.17 What's wrong with the call "fopen("c:\newdir\file.dat", "r")"?

19.18 How can I increase the allowable number of simultaneously open files?

19.20 How can I read a directory in a C program?

19.22 How can I find out how much memory is available?

19.23 How can I allocate arrays or structures bigger than 64K?

19.24 What does the error message ``DGROUP exceeds 64K'' mean?

http://www.eskimo.com/~scs/C-faq/questions.html (19 of 22) [26/03/2003 11:41:34 p.m.]

Questions

19.25 How can I access memory located at a certain address?

19.27 How can I invoke another program from within a C program?

19.30 How can I invoke another program and trap its output?

19.31 How can my program discover the complete pathname to the executable from
which it was invoked?

19.32 How can I automatically locate a program's configuration files in the same
directory as the executable?

19.33 How can a process change an environment variable in its caller?

19.36 How can I read in an object file and jump to routines in it?

19.37 How can I implement a delay, or time a user's response, with sub-second
resolution?

19.38 How can I trap or ignore keyboard interrupts like control-C?

19.39 How can I handle floating-point exceptions gracefully?

19.40 How do I... Use sockets? Do networking? Write client/server applications?

19.40b How do I use BIOS calls? How can I write ISR's? How can I create TSR's?

19.41 But I can't use all these nonstandard, system-dependent functions, because my
program has to be ANSI compatible!

20. Miscellaneous

20.1 How can I return multiple values from a function?

20.3 How do I access command-line arguments?

http://www.eskimo.com/~scs/C-faq/questions.html (20 of 22) [26/03/2003 11:41:34 p.m.]

Questions

20.5 How can I write data files which can be read on other machines with different
data formats?

20.6 How can I call a function, given its name as a string?

20.8 How can I implement sets or arrays of bits?

20.9 How can I determine whether a machine's byte order is big-endian or little-
endian?

20.10 How can I convert integers to binary or hexadecimal?

20.11 Can I use base-2 constants (something like 0b101010)?
Is there a printf format for binary?

20.12 What is the most efficient way to count the number of bits which are set in a
value?

20.13 How can I make my code more efficient?

20.14 Are pointers really faster than arrays? How much do function calls slow things
down?

20.17 Is there a way to switch on strings?

20.18 Is there a way to have non-constant case labels (i.e. ranges or arbitrary
expressions)?

20.19 Are the outer parentheses in return statements really optional?

20.20 Why don't C comments nest? Are they legal inside quoted strings?

20.24 Why doesn't C have nested functions?

20.25 How can I call FORTRAN (C++, BASIC, Pascal, Ada, LISP) functions from
C?

20.26 Does anyone know of a program for converting Pascal or FORTRAN to C?

http://www.eskimo.com/~scs/C-faq/questions.html (21 of 22) [26/03/2003 11:41:34 p.m.]

Questions

20.27 Can I use a C++ compiler to compile C code?

20.28 I need to compare two strings for close, but not necessarily exact, equality.

20.29 What is hashing?

20.31 How can I find the day of the week given the date?

20.32 Will 2000 be a leap year?

20.34 How do you write a program which produces its own source code as its
output?

20.35 What is ``Duff's Device''?

20.36 When will the next Obfuscated C Code Contest be held? How can I get a copy
of previous winning entries?

20.37 What was the entry keyword mentioned in K&R1?

20.38 Where does the name ``C'' come from, anyway?

20.39 How do you pronounce ``char''?

20.40 Where can I get extra copies of this list?

top

http://www.eskimo.com/~scs/C-faq/questions.html (22 of 22) [26/03/2003 11:41:34 p.m.]

Question 1.1

Question 1.1

How do you decide which integer type to use?

If you might need large values (above 32,767 or below -32,767), use long.
Otherwise, if space is very important (i.e. if there are large arrays or many
structures), use short. Otherwise, use int. If well-defined overflow characteristics
are important and negative values are not, or if you want to steer clear of sign-
extension problems when manipulating bits or bytes, use one of the corresponding
unsigned types. (Beware when mixing signed and unsigned values in expressions,
though.)

Although character types (especially unsigned char) can be used as ``tiny''
integers, doing so is sometimes more trouble than it's worth, due to unpredictable
sign extension and increased code size. (Using unsigned char can help; see
question 12.1 for a related problem.)

A similar space/time tradeoff applies when deciding between float and double.
None of the above rules apply if the address of a variable is taken and must have a
particular type.

If for some reason you need to declare something with an exact size (usually the only
good reason for doing so is when attempting to conform to some externally-imposed
storage layout, but see question 20.5), be sure to encapsulate the choice behind an
appropriate typedef.

References: K&R1 Sec. 2.2 p. 34
K&R2 Sec. 2.2 p. 36, Sec. A4.2 pp. 195-6, Sec. B11 p. 257
ANSI Sec. 2.2.4.2.1, Sec. 3.1.2.5
ISO Sec. 5.2.4.2.1, Sec. 6.1.2.5
H&S Secs. 5.1,5.2 pp. 110-114

Read sequentially: next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.1.html [26/03/2003 11:41:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.1

Question 12.1

What's wrong with this code?

char c;
while((c = getchar()) != EOF) ...

For one thing, the variable to hold getchar's return value must be an int.
getchar can return all possible character values, as well as EOF. By passing
getchar's return value through a char, either a normal character might be
misinterpreted as EOF, or the EOF might be altered (particularly if type char is
unsigned) and so never seen.

References: K&R1 Sec. 1.5 p. 14
K&R2 Sec. 1.5.1 p. 16
ANSI Sec. 3.1.2.5, Sec. 4.9.1, Sec. 4.9.7.5
ISO Sec. 6.1.2.5, Sec. 7.9.1, Sec. 7.9.7.5
H&S Sec. 5.1.3 p. 116, Sec. 15.1, Sec. 15.6
CT&P Sec. 5.1 p. 70
PCS Sec. 11 p. 157

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.1.html [26/03/2003 11:41:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.4

Question 1.4

What should the 64-bit type on new, 64-bit machines be?

Some vendors of C products for 64-bit machines support 64-bit long ints. Others
fear that too much existing code is written to assume that ints and longs are the
same size, or that one or the other of them is exactly 32 bits, and introduce a new,
nonstandard, 64-bit long long (or __longlong) type instead.

Programmers interested in writing portable code should therefore insulate their 64-
bit type needs behind appropriate typedefs. Vendors who feel compelled to introduce
a new, longer integral type should advertise it as being ``at least 64 bits'' (which is
truly new, a type traditional C does not have), and not ``exactly 64 bits.''

References: ANSI Sec. F.5.6
ISO Sec. G.5.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.4.html [26/03/2003 11:41:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.7

Question 1.7

What's the best way to declare and define global variables?

First, though there can be many declarations (and in many translation units) of a
single ``global'' (strictly speaking, ``external'') variable or function, there must be
exactly one definition. (The definition is the declaration that actually allocates space,
and provides an initialization value, if any.) The best arrangement is to place each
definition in some relevant .c file, with an external declaration in a header (``.h'') file,
which is #included wherever the declaration is needed. The .c file containing the
definition should also #include the same header file, so that the compiler can
check that the definition matches the declarations.

This rule promotes a high degree of portability: it is consistent with the requirements
of the ANSI C Standard, and is also consistent with most pre-ANSI compilers and
linkers. (Unix compilers and linkers typically use a ``common model'' which allows
multiple definitions, as long as at most one is initialized; this behavior is mentioned
as a ``common extension'' by the ANSI Standard, no pun intended. A few very odd
systems may require an explicit initializer to distinguish a definition from an external
declaration.)

It is possible to use preprocessor tricks to arrange that a line like

 DEFINE(int, i);

need only be entered once in one header file, and turned into a definition or a
declaration depending on the setting of some macro, but it's not clear if this is worth
the trouble.

It's especially important to put global declarations in header files if you want the
compiler to catch inconsistent declarations for you. In particular, never place a
prototype for an external function in a .c file: it wouldn't generally be checked for
consistency with the definition, and an incompatible prototype is worse than useless.

See also questions 10.6 and 18.8.

References: K&R1 Sec. 4.5 pp. 76-7
K&R2 Sec. 4.4 pp. 80-1
ANSI Sec. 3.1.2.2, Sec. 3.7, Sec. 3.7.2, Sec. F.5.11

http://www.eskimo.com/~scs/C-faq/q1.7.html (1 of 2) [26/03/2003 11:41:39 p.m.]

Question 1.7

ISO Sec. 6.1.2.2, Sec. 6.7, Sec. 6.7.2, Sec. G.5.11
Rationale Sec. 3.1.2.2
H&S Sec. 4.8 pp. 101-104, Sec. 9.2.3 p. 267
CT&P Sec. 4.2 pp. 54-56

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.7.html (2 of 2) [26/03/2003 11:41:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.6

Question 10.6

I'm splitting up a program into multiple source files for the first time, and I'm wondering
what to put in .c files and what to put in .h files. (What does ``.h'' mean, anyway?)

As a general rule, you should put these things in header (.h) files:

macro definitions (preprocessor #defines)
structure, union, and enumeration declarations
typedef declarations
external function declarations (see also question 1.11)

global variable declarations

It's especially important to put a declaration or definition in a header file when it will be
shared between several other files. (In particular, never put external function prototypes
in .c files. See also question 1.7.)

On the other hand, when a definition or declaration should remain private to one source
file, it's fine to leave it there.

See also questions 1.7 and 10.7.

References: K&R2 Sec. 4.5 pp. 81-2
H&S Sec. 9.2.3 p. 267
CT&P Sec. 4.6 pp. 66-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.6.html [26/03/2003 11:41:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.8

Question 18.8

Don't ANSI function prototypes render lint obsolete?

Not really. First of all, prototypes work only if they are present and correct; an
inadvertently incorrect prototype is worse than useless. Secondly, lint checks
consistency across multiple source files, and checks data declarations as well as
functions. Finally, an independent program like lint will probably always be more
scrupulous at enforcing compatible, portable coding practices than will any
particular, implementation-specific, feature- and extension-laden compiler.

If you do want to use function prototypes instead of lint for cross-file consistency
checking, make sure that you set the prototypes up correctly in header files. See
questions 1.7 and 10.6.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.8.html [26/03/2003 11:41:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.11

Question 1.11

What does extern mean in a function declaration?

It can be used as a stylistic hint to indicate that the function's definition is probably in
another source file, but there is no formal difference between

 extern int f();

and

 int f();

References: ANSI Sec. 3.1.2.2, Sec. 3.5.1
ISO Sec. 6.1.2.2, Sec. 6.5.1
Rationale Sec. 3.1.2.2
H&S Secs. 4.3,4.3.1 pp. 75-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.11.html [26/03/2003 11:41:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.12

Question 1.12

What's the auto keyword good for?

Nothing; it's archaic. See also question 20.37.

References: K&R1 Sec. A8.1 p. 193
ANSI Sec. 3.1.2.4, Sec. 3.5.1
ISO Sec. 6.1.2.4, Sec. 6.5.1
H&S Sec. 4.3 p. 75, Sec. 4.3.1 p. 76

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.12.html [26/03/2003 11:41:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.14

Question 1.14

I can't seem to define a linked list successfully. I tried

 typedef struct {
 char *item;
 NODEPTR next;
 } *NODEPTR;

but the compiler gave me error messages. Can't a structure in C contain a pointer to
itself?

Structures in C can certainly contain pointers to themselves; the discussion and
example in section 6.5 of K&R make this clear. The problem with the NODEPTR
example is that the typedef has not been defined at the point where the next field is
declared. To fix this code, first give the structure a tag (``struct node''). Then,
declare the next field as a simple struct node *, or disentangle the typedef
declaration from the structure definition, or both. One corrected version would be

 struct node {
 char *item;
 struct node *next;
 };

 typedef struct node *NODEPTR;

and there are at least three other equivalently correct ways of arranging it.

A similar problem, with a similar solution, can arise when attempting to declare a
pair of typedef'ed mutually referential structures.

See also question 2.1.

References: K&R1 Sec. 6.5 p. 101
K&R2 Sec. 6.5 p. 139
ANSI Sec. 3.5.2, Sec. 3.5.2.3, esp. examples
ISO Sec. 6.5.2, Sec. 6.5.2.3
H&S Sec. 5.6.1 pp. 132-3

http://www.eskimo.com/~scs/C-faq/q1.14.html (1 of 2) [26/03/2003 11:41:44 p.m.]

Question 1.14

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.14.html (2 of 2) [26/03/2003 11:41:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.1

Question 2.1

What's the difference between these two declarations?

 struct x1 { ... };
 typedef struct { ... } x2;

The first form declares a structure tag; the second declares a typedef. The main
difference is that the second declaration is of a slightly more abstract type--its users
don't necessarily know that it is a structure, and the keyword struct is not used
when declaring instances of it.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.1.html [26/03/2003 11:41:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.21

Question 1.21

How do I declare an array of N pointers to functions returning pointers to functions returning pointers to
characters?

The first part of this question can be answered in at least three ways:

1. char *(*(*a[N])())();
2. Build the declaration up incrementally, using typedefs:

 typedef char *pc; /* pointer to char */
 typedef pc fpc(); /* function returning pointer to char */
 typedef fpc *pfpc; /* pointer to above */
 typedef pfpc fpfpc(); /* function returning... */
 typedef fpfpc *pfpfpc; /* pointer to... */
 pfpfpc a[N]; /* array of... */

3. Use the cdecl program, which turns English into C and vice versa:

 cdecl> declare a as array of pointer to function returning
 pointer to function returning pointer to char
 char *(*(*a[])())()

cdecl can also explain complicated declarations, help with casts, and indicate which set of parentheses
the arguments go in (for complicated function definitions, like the one above). Versions of cdecl are in
volume 14 of comp.sources.unix (see question 18.16) and K&R2.

Any good book on C should explain how to read these complicated C declarations ``inside out'' to understand them
(``declaration mimics use'').

The pointer-to-function declarations in the examples above have not included parameter type information. When
the parameters have complicated types, declarations can really get messy. (Modern versions of cdecl can help
here, too.)

References: K&R2 Sec. 5.12 p. 122
ANSI Sec. 3.5ff (esp. Sec. 3.5.4)
ISO Sec. 6.5ff (esp. Sec. 6.5.4)
H&S Sec. 4.5 pp. 85-92, Sec. 5.10.1 pp. 149-50

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.21.html [26/03/2003 11:41:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.22

Question 1.22

How can I declare a function that can return a pointer to a function of the same type?
I'm building a state machine with one function for each state, each of which returns a
pointer to the function for the next state. But I can't find a way to declare the
functions.

You can't quite do it directly. Either have the function return a generic function
pointer, with some judicious casts to adjust the types as the pointers are passed
around; or have it return a structure containing only a pointer to a function returning
that structure.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.22.html [26/03/2003 11:41:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.25

Question 1.25

My compiler is complaining about an invalid redeclaration of a function, but I only
define it once and call it once.

Functions which are called without a declaration in scope (perhaps because the first
call precedes the function's definition) are assumed to be declared as returning int
(and without any argument type information), leading to discrepancies if the function
is later declared or defined otherwise. Non-int functions must be declared before
they are called.

Another possible source of this problem is that the function has the same name as
another one declared in some header file.

See also questions 11.3 and 15.1.

References: K&R1 Sec. 4.2 p. 70
K&R2 Sec. 4.2 p. 72
ANSI Sec. 3.3.2.2
ISO Sec. 6.3.2.2
H&S Sec. 4.7 p. 101

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.25.html [26/03/2003 11:41:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.3

Question 11.3

My ANSI compiler complains about a mismatch when it sees

 extern int func(float);

 int func(x)
 float x;
 { ...

You have mixed the new-style prototype declaration ``extern int
func(float);'' with the old-style definition ``int func(x) float x;''. It
is usually safe to mix the two styles (see question 11.4), but not in this case.

Old C (and ANSI C, in the absence of prototypes, and in variable-length argument
lists; see question 15.2) ``widens'' certain arguments when they are passed to
functions. floats are promoted to double, and characters and short integers are
promoted to int. (For old-style function definitions, the values are automatically
converted back to the corresponding narrower types within the body of the called
function, if they are declared that way there.)

This problem can be fixed either by using new-style syntax consistently in the
definition:

 int func(float x) { ... }

or by changing the new-style prototype declaration to match the old-style definition:

 extern int func(double);

(In this case, it would be clearest to change the old-style definition to use double as
well, as long as the address of that parameter is not taken.)

It may also be safer to avoid ``narrow'' (char, short int, and float) function
arguments and return types altogether.

See also question 1.25.

References: K&R1 Sec. A7.1 p. 186

http://www.eskimo.com/~scs/C-faq/q11.3.html (1 of 2) [26/03/2003 11:41:53 p.m.]

Question 11.3

K&R2 Sec. A7.3.2 p. 202
ANSI Sec. 3.3.2.2, Sec. 3.5.4.3
ISO Sec. 6.3.2.2, Sec. 6.5.4.3
Rationale Sec. 3.3.2.2, Sec. 3.5.4.3
H&S Sec. 9.2 pp. 265-7, Sec. 9.4 pp. 272-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.3.html (2 of 2) [26/03/2003 11:41:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.1

Question 15.1

I heard that you have to #include <stdio.h> before calling printf. Why?

So that a proper prototype for printf will be in scope.

A compiler may use a different calling sequence for functions which accept variable-
length argument lists. (It might do so if calls using variable-length argument lists
were less efficient than those using fixed-length.) Therefore, a prototype (indicating,
using the ellipsis notation ``...'', that the argument list is of variable length) must
be in scope whenever a varargs function is called, so that the compiler knows to use
the varargs calling mechanism.

References: ANSI Sec. 3.3.2.2, Sec. 4.1.6
ISO Sec. 6.3.2.2, Sec. 7.1.7
Rationale Sec. 3.3.2.2, Sec. 4.1.6
H&S Sec. 9.2.4 pp. 268-9, Sec. 9.6 pp. 275-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.1.html [26/03/2003 11:41:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.30

Question 1.30

What can I safely assume about the initial values of variables which are not
explicitly initialized? If global variables start out as ``zero,'' is that good enough for
null pointers and floating-point zeroes?

Variables with static duration (that is, those declared outside of functions, and those
declared with the storage class static), are guaranteed initialized (just once, at
program startup) to zero, as if the programmer had typed ``= 0''. Therefore, such
variables are initialized to the null pointer (of the correct type; see also section 5) if
they are pointers, and to 0.0 if they are floating-point.

Variables with automatic duration (i.e. local variables without the static storage
class) start out containing garbage, unless they are explicitly initialized. (Nothing
useful can be predicted about the garbage.)

Dynamically-allocated memory obtained with malloc and realloc is also likely
to contain garbage, and must be initialized by the calling program, as appropriate.
Memory obtained with calloc is all-bits-0, but this is not necessarily useful for
pointer or floating-point values (see question 7.31, and section 5).

References: K&R1 Sec. 4.9 pp. 82-4
K&R2 Sec. 4.9 pp. 85-86
ANSI Sec. 3.5.7, Sec. 4.10.3.1, Sec. 4.10.5.3
ISO Sec. 6.5.7, Sec. 7.10.3.1, Sec. 7.10.5.3
H&S Sec. 4.2.8 pp. 72-3, Sec. 4.6 pp. 92-3, Sec. 4.6.2 pp. 94-5, Sec. 4.6.3 p. 96, Sec.
16.1 p. 386

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.30.html [26/03/2003 11:41:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.31

Question 7.31

What's the difference between calloc and malloc? Is it safe to take advantage of
calloc's zero-filling? Does free work on memory allocated with calloc, or do
you need a cfree?

calloc(m, n) is essentially equivalent to

p = malloc(m * n);
memset(p, 0, m * n);

The zero fill is all-bits-zero, and does not therefore guarantee useful null pointer
values (see section 5 of this list) or floating-point zero values. free is properly used
to free the memory allocated by calloc.

References: ANSI Sec. 4.10.3 to 4.10.3.2
ISO Sec. 7.10.3 to 7.10.3.2
H&S Sec. 16.1 p. 386, Sec. 16.2 p. 386
PCS Sec. 11 pp. 141,142

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.31.html [26/03/2003 11:41:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.31

Question 1.31

This code, straight out of a book, isn't compiling:

f()
{
 char a[] = "Hello, world!";
}

Perhaps you have a pre-ANSI compiler, which doesn't allow initialization of
``automatic aggregates'' (i.e. non-static local arrays, structures, and unions). As a
workaround, you can make the array global or static (if you won't need a fresh
copy during any subsequent calls), or replace it with a pointer (if the array won't be
written to). (You can always initialize local char * variables to point to string
literals, but see question 1.32.) If neither of these conditions hold, you'll have to
initialize the array by hand with strcpy when f is called. See also question 11.29.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.31.html [26/03/2003 11:41:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.32

Question 1.32

What is the difference between these initializations?

char a[] = "string literal";
char *p = "string literal";

My program crashes if I try to assign a new value to p[i].

A string literal can be used in two slightly different ways. As an array initializer (as
in the declaration of char a[]), it specifies the initial values of the characters in
that array. Anywhere else, it turns into an unnamed, static array of characters, which
may be stored in read-only memory, which is why you can't safely modify it. In an
expression context, the array is converted at once to a pointer, as usual (see section
6), so the second declaration initializes p to point to the unnamed array's first
element.

(For compiling old code, some compilers have a switch controlling whether strings
are writable or not.)

See also questions 1.31, 6.1, 6.2, and 6.8.

References: K&R2 Sec. 5.5 p. 104
ANSI Sec. 3.1.4, Sec. 3.5.7
ISO Sec. 6.1.4, Sec. 6.5.7
Rationale Sec. 3.1.4
H&S Sec. 2.7.4 pp. 31-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.32.html [26/03/2003 11:41:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.29

Question 11.29

My compiler is rejecting the simplest possible test programs, with all kinds of syntax
errors.

Perhaps it is a pre-ANSI compiler, unable to accept function prototypes and the like.

See also questions 1.31, 10.9, and 11.30.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.29.html [26/03/2003 11:42:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.1

Question 6.1

I had the definition char a[6] in one source file, and in another I declared
extern char *a. Why didn't it work?

The declaration extern char *a simply does not match the actual definition.
The type pointer-to-type-T is not the same as array-of-type-T. Use extern char
a[].

References: ANSI Sec. 3.5.4.2
ISO Sec. 6.5.4.2
CT&P Sec. 3.3 pp. 33-4, Sec. 4.5 pp. 64-5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.1.html [26/03/2003 11:42:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.2

Question 6.2

But I heard that char a[] was identical to char *a.

Not at all. (What you heard has to do with formal parameters to functions; see
question 6.4.) Arrays are not pointers. The array declaration char a[6] requests
that space for six characters be set aside, to be known by the name ``a.'' That is, there
is a location named ``a'' at which six characters can sit. The pointer declaration
char *p, on the other hand, requests a place which holds a pointer, to be known by
the name ``p.'' This pointer can point almost anywhere: to any char, or to any
contiguous array of chars, or nowhere (see also questions 5.1 and 1.30).

As usual, a picture is worth a thousand words. The declarations

 char a[] = "hello";
 char *p = "world";

would initialize data structures which could be represented like this:

 +---+---+---+---+---+---+
 a: | h | e | l | l | o |\0 |
 +---+---+---+---+---+---+
 +-----+ +---+---+---+---+---+---+
 p: | *======> | w | o | r | l | d |\0 |
 +-----+ +---+---+---+---+---+---+

It is important to realize that a reference like x[3] generates different code
depending on whether x is an array or a pointer. Given the declarations above, when
the compiler sees the expression a[3], it emits code to start at the location ``a,''
move three past it, and fetch the character there. When it sees the expression p[3],
it emits code to start at the location ``p,'' fetch the pointer value there, add three to
the pointer, and finally fetch the character pointed to. In other words, a[3] is three
places past (the start of) the object named a, while p[3] is three places past the
object pointed to by p. In the example above, both a[3] and p[3] happen to be the
character 'l', but the compiler gets there differently.

References: K&R2 Sec. 5.5 p. 104
CT&P Sec. 4.5 pp. 64-5

http://www.eskimo.com/~scs/C-faq/q6.2.html (1 of 2) [26/03/2003 11:42:02 p.m.]

Question 6.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.2.html (2 of 2) [26/03/2003 11:42:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.8

Question 6.8

Practically speaking, what is the difference between arrays and pointers?

Arrays automatically allocate space, but can't be relocated or resized. Pointers must
be explicitly assigned to point to allocated space (perhaps using malloc), but can
be reassigned (i.e. pointed at different objects) at will, and have many other uses
besides serving as the base of blocks of memory.

Due to the so-called equivalence of arrays and pointers (see question 6.3), arrays and
pointers often seem interchangeable, and in particular a pointer to a block of memory
assigned by malloc is frequently treated (and can be referenced using []) exactly
as if it were a true array. See questions 6.14 and 6.16. (Be careful with sizeof,
though.)

See also questions 1.32 and 20.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.8.html [26/03/2003 11:42:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 1.34

Question 1.34

I finally figured out the syntax for declaring pointers to functions, but now how do I
initialize one?

Use something like

extern int func();
int (*fp)() = func;

When the name of a function appears in an expression like this, it ``decays'' into a
pointer (that is, it has its address implicitly taken), much as an array name does.

An explicit declaration for the function is normally needed, since implicit external
function declaration does not happen in this case (because the function name in the
initialization is not part of a function call).

See also question 4.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q1.34.html [26/03/2003 11:42:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.12

Question 4.12

I've seen different methods used for calling functions via pointers. What's the story?

Originally, a pointer to a function had to be ``turned into'' a ``real'' function, with the
* operator (and an extra pair of parentheses, to keep the precedence straight), before
calling:

 int r, func(), (*fp)() = func;
 r = (*fp)();

It can also be argued that functions are always called via pointers, and that ``real''
function names always decay implicitly into pointers (in expressions, as they do in
initializations; see question 1.34). This reasoning, made widespread through pcc and
adopted in the ANSI standard, means that

 r = fp();

is legal and works correctly, whether fp is the name of a function or a pointer to
one. (The usage has always been unambiguous; there is nothing you ever could have
done with a function pointer followed by an argument list except call the function
pointed to.) An explicit * is still allowed (and recommended, if portability to older
compilers is important).

See also question 1.34.

References: K&R1 Sec. 5.12 p. 116
K&R2 Sec. 5.11 p. 120
ANSI Sec. 3.3.2.2
ISO Sec. 6.3.2.2
Rationale Sec. 3.3.2.2
H&S Sec. 5.8 p. 147, Sec. 7.4.3 p. 190

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q4.12.html (1 of 2) [26/03/2003 11:42:06 p.m.]

Question 4.12

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.12.html (2 of 2) [26/03/2003 11:42:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.2

Question 2.2

Why doesn't

struct x { ... };
x thestruct;

work?

C is not C++. Typedef names are not automatically generated for structure tags. See
also question 2.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.2.html [26/03/2003 11:42:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.3

Question 2.3

Can a structure contain a pointer to itself?

Most certainly. See question 1.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.3.html [26/03/2003 11:42:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.4

Question 2.4

What's the best way of implementing opaque (abstract) data types in C?

One good way is for clients to use structure pointers (perhaps additionally hidden
behind typedefs) which point to structure types which are not publicly defined.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.4.html [26/03/2003 11:42:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.6

Question 2.6

I came across some code that declared a structure like this:

struct name {
 int namelen;
 char namestr[1];
};

and then did some tricky allocation to make the namestr array act like it had
several elements. Is this legal or portable?

This technique is popular, although Dennis Ritchie has called it ``unwarranted
chumminess with the C implementation.'' An official interpretation has deemed that
it is not strictly conforming with the C Standard. (A thorough treatment of the
arguments surrounding the legality of the technique is beyond the scope of this list.)
It does seem to be portable to all known implementations. (Compilers which check
array bounds carefully might issue warnings.)

Another possibility is to declare the variable-size element very large, rather than very
small; in the case of the above example:

 ...
 char namestr[MAXSIZE];
 ...

where MAXSIZE is larger than any name which will be stored. However, it looks
like this technique is disallowed by a strict interpretation of the Standard as well.

References: Rationale Sec. 3.5.4.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.6.html [26/03/2003 11:42:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.7

Question 2.7

I heard that structures could be assigned to variables and passed to and from
functions, but K&R1 says not.

What K&R1 said was that the restrictions on structure operations would be lifted in a
forthcoming version of the compiler, and in fact structure assignment and passing
were fully functional in Ritchie's compiler even as K&R1 was being published.
Although a few early C compilers lacked these operations, all modern compilers
support them, and they are part of the ANSI C standard, so there should be no
reluctance to use them. [footnote]

(Note that when a structure is assigned, passed, or returned, the copying is done
monolithically; anything pointed to by any pointer fields is not copied.)

References: K&R1 Sec. 6.2 p. 121
K&R2 Sec. 6.2 p. 129
ANSI Sec. 3.1.2.5, Sec. 3.2.2.1, Sec. 3.3.16
ISO Sec. 6.1.2.5, Sec. 6.2.2.1, Sec. 6.3.16
H&S Sec. 5.6.2 p. 133

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.7.html [26/03/2003 11:42:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Footnote 1

However, passing large structures to and from functions can be expensive (see
question 2.9), so you may want to consider using pointers, instead (as long as you
don't need pass-by-value semantics, of course).

back

http://www.eskimo.com/~scs/C-faq/fn1.html [26/03/2003 11:42:12 p.m.]

Question 2.8

Question 2.8

Why can't you compare structures?

There is no single, good way for a compiler to implement structure comparison
which is consistent with C's low-level flavor. A simple byte-by-byte comparison
could founder on random bits present in unused ``holes'' in the structure (such
padding is used to keep the alignment of later fields correct; see question 2.12). A
field-by-field comparison might require unacceptable amounts of repetitive code for
large structures.

If you need to compare two structures, you'll have to write your own function to do
so, field by field.

References: K&R2 Sec. 6.2 p. 129
ANSI Sec. 4.11.4.1 footnote 136
Rationale Sec. 3.3.9
H&S Sec. 5.6.2 p. 133

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.8.html [26/03/2003 11:42:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.12

Question 2.12

My compiler is leaving holes in structures, which is wasting space and preventing
``binary'' I/O to external data files. Can I turn off the padding, or otherwise control
the alignment of structure fields?

Your compiler may provide an extension to give you this control (perhaps a
#pragma; see question 11.20), but there is no standard method.

See also question 20.5.

References: K&R2 Sec. 6.4 p. 138
H&S Sec. 5.6.4 p. 135

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.12.html [26/03/2003 11:42:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.9

Question 2.9

How are structure passing and returning implemented?

When structures are passed as arguments to functions, the entire structure is typically
pushed on the stack, using as many words as are required. (Programmers often
choose to use pointers to structures instead, precisely to avoid this overhead.) Some
compilers merely pass a pointer to the structure, though they may have to make a
local copy to preserve pass-by-value semantics.

Structures are often returned from functions in a location pointed to by an extra,
compiler-supplied ``hidden'' argument to the function. Some older compilers used a
special, static location for structure returns, although this made structure-valued
functions non-reentrant, which ANSI C disallows.

References: ANSI Sec. 2.2.3
ISO Sec. 5.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.9.html [26/03/2003 11:42:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.10

Question 2.10

How can I pass constant values to functions which accept structure arguments?

C has no way of generating anonymous structure values. You will have to use a
temporary structure variable or a little structure-building function; see question 14.11
for an example. (gcc provides structure constants as an extension, and the
mechanism will probably be added to a future revision of the C Standard.) See also
question 4.10.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.10.html [26/03/2003 11:42:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.11

Question 14.11

What's a good way to implement complex numbers in C?

It is straightforward to define a simple structure and some arithmetic functions to
manipulate them. See also questions 2.7, 2.10, and 14.12.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.11.html [26/03/2003 11:42:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.10

Question 4.10

I have a function

 extern int f(int *);

which accepts a pointer to an int. How can I pass a constant by reference? A call
like

 f(&5);

doesn't seem to work.

You can't do this directly. You will have to declare a temporary variable, and then
pass its address to the function:

 int five = 5;
 f(&five);

See also questions 2.10, 4.8, and 20.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.10.html [26/03/2003 11:42:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.11

Question 2.11

How can I read/write structures from/to data files?

It is relatively straightforward to write a structure out using fwrite:

 fwrite(&somestruct, sizeof somestruct, 1, fp);

and a corresponding fread invocation can read it back in. (Under pre-ANSI C, a
(char *) cast on the first argument is required. What's important is that fwrite
receive a byte pointer, not a structure pointer.) However, data files so written will not
be portable (see questions 2.12 and 20.5). Note also that if the structure contains any
pointers, only the pointer values will be written, and they are most unlikely to be
valid when read back in. Finally, note that for widespread portability you must use
the "b" flag when fopening the files; see question 12.38.

A more portable solution, though it's a bit more work initially, is to write a pair of
functions for writing and reading a structure, field-by-field, in a portable (perhaps
even human-readable) way.

References: H&S Sec. 15.13 p. 381

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.11.html [26/03/2003 11:42:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.38

Question 12.38

How can I read a binary data file properly? I'm occasionally seeing 0x0a and 0x0d
values getting garbled, and it seems to hit EOF prematurely if the data contains the
value 0x1a.

When you're reading a binary data file, you should specify "rb" mode when calling
fopen, to make sure that text file translations do not occur. Similarly, when writing
binary data files, use "wb".

Note that the text/binary distinction is made when you open the file: once a file is
open, it doesn't matter which I/O calls you use on it. See also question 20.5.

References: ANSI Sec. 4.9.5.3
ISO Sec. 7.9.5.3
H&S Sec. 15.2.1 p. 348

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.38.html [26/03/2003 11:42:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.20

Question 11.20

What are #pragmas and what are they good for?

The #pragma directive provides a single, well-defined ``escape hatch'' which can
be used for all sorts of implementation-specific controls and extensions: source
listing control, structure packing, warning suppression (like lint's old /*
NOTREACHED */ comments), etc.

References: ANSI Sec. 3.8.6
ISO Sec. 6.8.6
H&S Sec. 3.7 p. 61

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.20.html [26/03/2003 11:42:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.13

Question 2.13

Why does sizeof report a larger size than I expect for a structure type, as if there
were padding at the end?

Structures may have this padding (as well as internal padding), if necessary, to
ensure that alignment properties will be preserved when an array of contiguous
structures is allocated. Even when the structure is not part of an array, the end
padding remains, so that sizeof can always return a consistent size. See question
2.12.

References: H&S Sec. 5.6.7 pp. 139-40

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.13.html [26/03/2003 11:42:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.14

Question 2.14

How can I determine the byte offset of a field within a structure?

ANSI C defines the offsetof() macro, which should be used if available; see
<stddef.h>. If you don't have it, one possible implementation is

 #define offsetof(type, mem) ((size_t) \
 ((char *)&((type *)0)->mem - (char *)(type *)0))

This implementation is not 100% portable; some compilers may legitimately refuse to accept it.

See question 2.15 for a usage hint.

References: ANSI Sec. 4.1.5
ISO Sec. 7.1.6
Rationale Sec. 3.5.4.2
H&S Sec. 11.1 pp. 292-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.14.html [26/03/2003 11:42:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.15

Question 2.15

How can I access structure fields by name at run time?

Build a table of names and offsets, using the offsetof() macro. The offset of
field b in struct a is

 offsetb = offsetof(struct a, b)

If structp is a pointer to an instance of this structure, and field b is an int (with
offset as computed above), b's value can be set indirectly with

 *(int *)((char *)structp + offsetb) = value;

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.15.html [26/03/2003 11:42:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.18

Question 2.18

This program works correctly, but it dumps core after it finishes. Why?

 struct list {
 char *item;
 struct list *next;
 }

 /* Here is the main program. */

 main(argc, argv)
 { ... }

A missing semicolon causes main to be declared as returning a structure. (The
connection is hard to see because of the intervening comment.) Since structure-
valued functions are usually implemented by adding a hidden return pointer (see
question 2.9), the generated code for main() tries to accept three arguments,
although only two are passed (in this case, by the C start-up code). See also questions
10.9 and 16.4.

References: CT&P Sec. 2.3 pp. 21-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.18.html [26/03/2003 11:42:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.9

Question 10.9

I'm getting strange syntax errors on the very first declaration in a file, but it looks
fine.

Perhaps there's a missing semicolon at the end of the last declaration in the last
header file you're #including. See also questions 2.18 and 11.29.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.9.html [26/03/2003 11:42:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.4

Question 16.4

I have a program that seems to run correctly, but it crashes as it's exiting, after the
last statement in main(). What could be causing this?

Look for a misdeclared main() (see questions 2.18 and 10.9), or local buffers
passed to setbuf or setvbuf, or problems in cleanup functions registered by
atexit. See also questions 7.5 and 11.16.

References: CT&P Sec. 5.3 pp. 72-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q16.4.html [26/03/2003 11:42:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.20

Question 2.20

Can I initialize unions?

ANSI Standard C allows an initializer for the first member of a union. There is no
standard way of initializing any other member (nor, under a pre-ANSI compiler, is
there generally any way of initializing a union at all).

References: K&R2 Sec. 6.8 pp. 148-9
ANSI Sec. 3.5.7
ISO Sec. 6.5.7
H&S Sec. 4.6.7 p. 100

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.20.html [26/03/2003 11:42:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.22

Question 2.22

What is the difference between an enumeration and a set of preprocessor
#defines?

At the present time, there is little difference. Although many people might have
wished otherwise, the C Standard says that enumerations may be freely intermixed
with other integral types, without errors. (If such intermixing were disallowed
without explicit casts, judicious use of enumerations could catch certain
programming errors.)

Some advantages of enumerations are that the numeric values are automatically
assigned, that a debugger may be able to display the symbolic values when
enumeration variables are examined, and that they obey block scope. (A compiler
may also generate nonfatal warnings when enumerations and integers are
indiscriminately mixed, since doing so can still be considered bad style even though
it is not strictly illegal.) A disadvantage is that the programmer has little control over
those nonfatal warnings; some programmers also resent not having control over the
sizes of enumeration variables.

References: K&R2 Sec. 2.3 p. 39, Sec. A4.2 p. 196
ANSI Sec. 3.1.2.5, Sec. 3.5.2, Sec. 3.5.2.2, Appendix E
ISO Sec. 6.1.2.5, Sec. 6.5.2, Sec. 6.5.2.2, Annex F
H&S Sec. 5.5 pp. 127-9, Sec. 5.11.2 p. 153

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.22.html [26/03/2003 11:42:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 2.24

Question 2.24

Is there an easy way to print enumeration values symbolically?

No. You can write a little function to map an enumeration constant to a string. (If all
you're worried about is debugging, a good debugger should automatically print
enumeration constants symbolically.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q2.24.html [26/03/2003 11:42:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.1

Question 3.1

Why doesn't this code:

a[i] = i++;

work?

The subexpression i++ causes a side effect--it modifies i's value--which leads to
undefined behavior since i is also referenced elsewhere in the same expression.
(Note that although the language in K&R suggests that the behavior of this
expression is unspecified, the C Standard makes the stronger statement that it is
undefined--see question 11.33.)

References: K&R1 Sec. 2.12
K&R2 Sec. 2.12
ANSI Sec. 3.3
ISO Sec. 6.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.1.html [26/03/2003 11:42:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.33

Question 11.33

People seem to make a point of distinguishing between implementation-defined,
unspecified, and undefined behavior. What's the difference?

Briefly: implementation-defined means that an implementation must choose some
behavior and document it. Unspecified means that an implementation should choose
some behavior, but need not document it. Undefined means that absolutely anything
might happen. In no case does the Standard impose requirements; in the first two
cases it occasionally suggests (and may require a choice from among) a small set of
likely behaviors.

Note that since the Standard imposes no requirements on the behavior of a compiler
faced with an instance of undefined behavior, the compiler can do absolutely
anything. In particular, there is no guarantee that the rest of the program will perform
normally. It's perilous to think that you can tolerate undefined behavior in a program;
see question 3.2 for a relatively simple example.

If you're interested in writing portable code, you can ignore the distinctions, as you'll
want to avoid code that depends on any of the three behaviors.

See also questions 3.9, and 11.34.

References: ANSI Sec. 1.6
ISO Sec. 3.10, Sec. 3.16, Sec. 3.17
Rationale Sec. 1.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.33.html [26/03/2003 11:42:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.2

Question 3.2

Under my compiler, the code

int i = 7;
printf("%d\n", i++ * i++);

prints 49. Regardless of the order of evaluation, shouldn't it print 56?

Although the postincrement and postdecrement operators ++ and -- perform their
operations after yielding the former value, the implication of ``after'' is often
misunderstood. It is not guaranteed that an increment or decrement is performed
immediately after giving up the previous value and before any other part of the
expression is evaluated. It is merely guaranteed that the update will be performed
sometime before the expression is considered ``finished'' (before the next ``sequence
point,'' in ANSI C's terminology; see question 3.8). In the example, the compiler
chose to multiply the previous value by itself and to perform both increments
afterwards.

The behavior of code which contains multiple, ambiguous side effects has always
been undefined. (Loosely speaking, by ``multiple, ambiguous side effects'' we mean
any combination of ++, --, =, +=, -=, etc. in a single expression which causes the
same object either to be modified twice or modified and then inspected. This is a
rough definition; see question 3.8 for a precise one, and question 11.33 for the
meaning of ``undefined.'') Don't even try to find out how your compiler implements
such things (contrary to the ill-advised exercises in many C textbooks); as K&R
wisely point out, ``if you don't know how they are done on various machines, that
innocence may help to protect you.''

References: K&R1 Sec. 2.12 p. 50
K&R2 Sec. 2.12 p. 54
ANSI Sec. 3.3
ISO Sec. 6.3
CT&P Sec. 3.7 p. 47
PCS Sec. 9.5 pp. 120-1

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q3.2.html (1 of 2) [26/03/2003 11:43:01 p.m.]

Question 3.2

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.2.html (2 of 2) [26/03/2003 11:43:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.8

Question 3.8

How can I understand these complex expressions? What's a ``sequence point''?

A sequence point is the point (at the end of a full expression, or at the ||, &&, ?:, or
comma operators, or just before a function call) at which the dust has settled and all
side effects are guaranteed to be complete. The ANSI/ISO C Standard states that

Between the previous and next sequence point an object shall have its
stored value modified at most once by the evaluation of an expression.
Furthermore, the prior value shall be accessed only to determine the
value to be stored.

The second sentence can be difficult to understand. It says that if an object is written
to within a full expression, any and all accesses to it within the same expression must
be for the purposes of computing the value to be written. This rule effectively
constrains legal expressions to those in which the accesses demonstrably precede the
modification.

See also question 3.9.

References: ANSI Sec. 2.1.2.3, Sec. 3.3, Appendix B
ISO Sec. 5.1.2.3, Sec. 6.3, Annex C
Rationale Sec. 2.1.2.3
H&S Sec. 7.12.1 pp. 228-9

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.8.html [26/03/2003 11:43:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.3

Question 3.3

I've experimented with the code

int i = 3;
i = i++;

on several compilers. Some gave i the value 3, some gave 4, but one gave 7. I know
the behavior is undefined, but how could it give 7?

Undefined behavior means anything can happen. See questions 3.9 and 11.33. (Also,
note that neither i++ nor ++i is the same as i+1. If you want to increment i, use
i=i+1 or i++ or ++i, not some combination. See also question 3.12.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.3.html [26/03/2003 11:43:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.9

Question 3.9

So given

a[i] = i++;

we don't know which cell of a[] gets written to, but i does get incremented by one.

No. Once an expression or program becomes undefined, all aspects of it become
undefined. See questions 3.2, 3.3, 11.33, and 11.35.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.9.html [26/03/2003 11:43:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.12

Question 3.12

If I'm not using the value of the expression, should I use i++ or ++i to increment a
variable?

Since the two forms differ only in the value yielded, they are entirely equivalent
when only their side effect is needed.

See also question 3.3.

References: K&R1 Sec. 2.8 p. 43
K&R2 Sec. 2.8 p. 47
ANSI Sec. 3.3.2.4, Sec. 3.3.3.1
ISO Sec. 6.3.2.4, Sec. 6.3.3.1
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5.8 pp. 199-200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.12.html [26/03/2003 11:43:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.4

Question 3.4

Can I use explicit parentheses to force the order of evaluation I want? Even if I don't,
doesn't precedence dictate it?

Not in general.

Operator precedence and explicit parentheses impose only a partial ordering on the
evaluation of an expression. In the expression

 f() + g() * h()

although we know that the multiplication will happen before the addition, there is no
telling which of the three functions will be called first.

When you need to ensure the order of subexpression evaluation, you may need to use
explicit temporary variables and separate statements.

References: K&R1 Sec. 2.12 p. 49, Sec. A.7 p. 185
K&R2 Sec. 2.12 pp. 52-3, Sec. A.7 p. 200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.4.html [26/03/2003 11:43:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.5

Question 3.5

But what about the && and || operators?
I see code like ``while((c = getchar()) != EOF && c != '\n')'' ...

There is a special exception for those operators (as well as the ?: operator): left-to-
right evaluation is guaranteed (as is an intermediate sequence point, see question
3.8). Any book on C should make this clear.

References: K&R1 Sec. 2.6 p. 38, Secs. A7.11-12 pp. 190-1
K&R2 Sec. 2.6 p. 41, Secs. A7.14-15 pp. 207-8
ANSI Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15
ISO Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15
H&S Sec. 7.7 pp. 217-8, Sec. 7.8 pp. 218-20, Sec. 7.12.1 p. 229
CT&P Sec. 3.7 pp. 46-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.5.html [26/03/2003 11:43:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.35

Question 11.35

People keep saying that the behavior of i = i++ is undefined, but I just tried it on
an ANSI-conforming compiler, and got the results I expected.

A compiler may do anything it likes when faced with undefined behavior (and,
within limits, with implementation-defined and unspecified behavior), including
doing what you expect. It's unwise to depend on it, though. See also questions 11.32,
11.33, and 11.34.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.35.html [26/03/2003 11:43:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.14

Question 3.14

Why doesn't the code

int a = 1000, b = 1000;
long int c = a * b;

work?

Under C's integral promotion rules, the multiplication is carried out using int
arithmetic, and the result may overflow or be truncated before being promoted and
assigned to the long int left-hand side. Use an explicit cast to force long
arithmetic:

 long int c = (long int)a * b;

Note that (long int)(a * b) would not have the desired effect.

A similar problem can arise when two integers are divided, with the result assigned
to a floating-point variable.

References: K&R1 Sec. 2.7 p. 41
K&R2 Sec. 2.7 p. 44
ANSI Sec. 3.2.1.5
ISO Sec. 6.2.1.5
H&S Sec. 6.3.4 p. 176
CT&P Sec. 3.9 pp. 49-50

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.14.html [26/03/2003 11:43:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 3.16

Question 3.16

I have a complicated expression which I have to assign to one of two variables,
depending on a condition. Can I use code like this?

 ((condition) ? a : b) = complicated_expression;

No. The ?: operator, like most operators, yields a value, and you can't assign to a
value. (In other words, ?: does not yield an lvalue.) If you really want to, you can try
something like

 *((condition) ? &a : &b) = complicated_expression;

although this is admittedly not as pretty.

References: ANSI Sec. 3.3.15 esp. footnote 50
ISO Sec. 6.3.15
H&S Sec. 7.1 pp. 179-180

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q3.16.html [26/03/2003 11:43:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.2

Question 4.2

I'm trying to declare a pointer and allocate some space for it, but it's not working.
What's wrong with this code?

char *p;
*p = malloc(10);

The pointer you declared is p, not *p. To make a pointer point somewhere, you just
use the name of the pointer:

 p = malloc(10);

It's when you're manipulating the pointed-to memory that you use * as an indirection
operator:

 *p = 'H';

See also questions 1.21, 7.1, and 8.3.

References: CT&P Sec. 3.1 p. 28

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.2.html [26/03/2003 11:43:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.1

Question 7.1

Why doesn't this fragment work?

 char *answer;
 printf("Type something:\n");
 gets(answer);
 printf("You typed \"%s\"\n", answer);

The pointer variable answer, which is handed to gets() as the location into
which the response should be stored, has not been set to point to any valid storage.
That is, we cannot say where the pointer answer points. (Since local variables are
not initialized, and typically contain garbage, it is not even guaranteed that answer
starts out as a null pointer. See questions 1.30 and 5.1.)

The simplest way to correct the question-asking program is to use a local array,
instead of a pointer, and let the compiler worry about allocation:

#include <stdio.h>
#include <string.h>

char answer[100], *p;
printf("Type something:\n");
fgets(answer, sizeof answer, stdin);
if((p = strchr(answer, '\n')) != NULL)
 *p = '\0';
printf("You typed \"%s\"\n", answer);

This example also uses fgets() instead of gets(), so that the end of the array
cannot be overwritten. (See question 12.23. Unfortunately for this example,
fgets() does not automatically delete the trailing \n, gets() would.) It would
also be possible to use malloc() to allocate the answer buffer.

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q7.1.html (1 of 2) [26/03/2003 11:43:13 p.m.]

Question 7.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.1.html (2 of 2) [26/03/2003 11:43:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.3

Question 8.3

If I can say

 char a[] = "Hello, world!";

why can't I say

 char a[14];
 a = "Hello, world!";

Strings are arrays, and you can't assign arrays directly. Use strcpy instead:

 strcpy(a, "Hello, world!");

See also questions 1.32, 4.2, and 7.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q8.3.html [26/03/2003 11:43:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.3

Question 4.3

Does *p++ increment p, or what it points to?

Unary operators like *, ++, and -- all associate (group) from right to left. Therefore,
*p++ increments p (and returns the value pointed to by p before the increment). To
increment the value pointed to by p, use (*p)++ (or perhaps ++*p, if the order of
the side effect doesn't matter).

References: K&R1 Sec. 5.1 p. 91
K&R2 Sec. 5.1 p. 95
ANSI Sec. 3.3.2, Sec. 3.3.3
ISO Sec. 6.3.2, Sec. 6.3.3
H&S Sec. 7.4.4 pp. 192-3, Sec. 7.5 p. 193, Secs. 7.5.7,7.5.8 pp. 199-200

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.3.html [26/03/2003 11:43:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.5

Question 4.5

I have a char * pointer that happens to point to some ints, and I want to step it
over them. Why doesn't

((int *)p)++;

work?

In C, a cast operator does not mean ``pretend these bits have a different type, and
treat them accordingly''; it is a conversion operator, and by definition it yields an
rvalue, which cannot be assigned to, or incremented with ++. (It is an anomaly in
pcc-derived compilers, and an extension in gcc, that expressions such as the above
are ever accepted.) Say what you mean: use

 p = (char *)((int *)p + 1);

or (since p is a char *) simply

 p += sizeof(int);

Whenever possible, you should choose appropriate pointer types in the first place,
instead of trying to treat one type as another.

References: K&R2 Sec. A7.5 p. 205
ANSI Sec. 3.3.4 (esp. footnote 14)
ISO Sec. 6.3.4
Rationale Sec. 3.3.2.4
H&S Sec. 7.1 pp. 179-80

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.5.html [26/03/2003 11:43:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.8

Question 4.8

I have a function which accepts, and is supposed to initialize, a pointer:

 void f(ip)
 int *ip;
 {
 static int dummy = 5;
 ip = &dummy;
 }

But when I call it like this:

 int *ip;
 f(ip);

the pointer in the caller remains unchanged.

Are you sure the function initialized what you thought it did? Remember that
arguments in C are passed by value. The called function altered only the passed copy
of the pointer. You'll either want to pass the address of the pointer (the function will
end up accepting a pointer-to-a-pointer), or have the function return the pointer.

See also questions 4.9 and 4.11.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.8.html [26/03/2003 11:43:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.9

Question 4.9

Can I use a void ** pointer to pass a generic pointer to a function by reference?

Not portably. There is no generic pointer-to-pointer type in C. void * acts as a
generic pointer only because conversions are applied automatically when other
pointer types are assigned to and from void *'s; these conversions cannot be
performed (the correct underlying pointer type is not known) if an attempt is made to
indirect upon a void ** value which points at something other than a void *.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.9.html [26/03/2003 11:43:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 4.11

Question 4.11

Does C even have ``pass by reference''?

Not really. Strictly speaking, C always uses pass by value. You can simulate pass by
reference yourself, by defining functions which accept pointers and then using the &
operator when calling, and the compiler will essentially simulate it for you when you
pass an array to a function (by passing a pointer instead, see question 6.4 et al.), but
C has nothing truly equivalent to formal pass by reference or C++ reference
parameters. (However, function-like preprocessor macros do provide a form of ``call
by name''.)

See also questions 4.8 and 20.1.

References: K&R1 Sec. 1.8 pp. 24-5, Sec. 5.2 pp. 91-3
K&R2 Sec. 1.8 pp. 27-8, Sec. 5.2 pp. 91-3
ANSI Sec. 3.3.2.2, esp. footnote 39
ISO Sec. 6.3.2.2
H&S Sec. 9.5 pp. 273-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q4.11.html [26/03/2003 11:43:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.4

Question 6.4

Then why are array and pointer declarations interchangeable as function formal
parameters?

It's supposed to be a convenience.

Since arrays decay immediately into pointers, an array is never actually passed to a
function. Allowing pointer parameters to be declared as arrays is a simply a way of
making it look as though the array was being passed--a programmer may wish to
emphasize that a parameter is traditionally treated as if it were an array, or that an
array (strictly speaking, the address) is traditionally passed. As a convenience,
therefore, any parameter declarations which ``look like'' arrays, e.g.

 f(a)
 char a[];
 { ... }

are treated by the compiler as if they were pointers, since that is what the function
will receive if an array is passed:

 f(a)
 char *a;
 { ... }

This conversion holds only within function formal parameter declarations, nowhere
else. If the conversion bothers you, avoid it; many people have concluded that the
confusion it causes outweighs the small advantage of having the declaration ``look
like'' the call or the uses within the function.

See also question 6.21.

References: K&R1 Sec. 5.3 p. 95, Sec. A10.1 p. 205
K&R2 Sec. 5.3 p. 100, Sec. A8.6.3 p. 218, Sec. A10.1 p. 226
ANSI Sec. 3.5.4.3, Sec. 3.7.1, Sec. 3.9.6
ISO Sec. 6.5.4.3, Sec. 6.7.1, Sec. 6.9.6
H&S Sec. 9.3 p. 271
CT&P Sec. 3.3 pp. 33-4

http://www.eskimo.com/~scs/C-faq/q6.4.html (1 of 2) [26/03/2003 11:43:22 p.m.]

Question 6.4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.4.html (2 of 2) [26/03/2003 11:43:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.1

Question 5.1

What is this infamous null pointer, anyway?

The language definition states that for each pointer type, there is a special value--the
``null pointer''--which is distinguishable from all other pointer values and which is
``guaranteed to compare unequal to a pointer to any object or function.'' That is, the
address-of operator & will never yield a null pointer, nor will a successful call to
malloc. (malloc does return a null pointer when it fails, and this is a typical use
of null pointers: as a ``special'' pointer value with some other meaning, usually ``not
allocated'' or ``not pointing anywhere yet.'')

A null pointer is conceptually different from an uninitialized pointer. A null pointer
is known not to point to any object or function; an uninitialized pointer might point
anywhere. See also questions 1.30, 7.1, and 7.31.

As mentioned above, there is a null pointer for each pointer type, and the internal
values of null pointers for different types may be different. Although programmers
need not know the internal values, the compiler must always be informed which type
of null pointer is required, so that it can make the distinction if necessary (see
questions 5.2, 5.5, and 5.6).

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102
ANSI Sec. 3.2.2.3
ISO Sec. 6.2.2.3
Rationale Sec. 3.2.2.3
H&S Sec. 5.3.2 pp. 121-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.1.html [26/03/2003 11:43:23 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

http://www.eskimo.com/~scs/C-faq/q5.2.html

Question 5.2

How do I get a null pointer in my programs?

According to the language definition, a constant 0 in a pointer context is converted
into a null pointer at compile time. That is, in an initialization, assignment, or
comparison when one side is a variable or expression of pointer type, the compiler
can tell that a constant 0 on the other side requests a null pointer, and generate the
correctly-typed null pointer value. Therefore, the following fragments are perfectly
legal:

 char *p = 0;
 if(p != 0)

(See also question 5.3.)

However, an argument being passed to a function is not necessarily recognizable as a
pointer context, and the compiler may not be able to tell that an unadorned 0
``means'' a null pointer. To generate a null pointer in a function call context, an
explicit cast may be required, to force the 0 to be recognized as a pointer. For
example, the Unix system call execl takes a variable-length, null-pointer-
terminated list of character pointer arguments, and is correctly called like this:

 execl("/bin/sh", "sh", "-c", "date", (char *)0);

If the (char *) cast on the last argument were omitted, the compiler would not
know to pass a null pointer, and would pass an integer 0 instead. (Note that many
Unix manuals get this example wrong .)

When function prototypes are in scope, argument passing becomes an ``assignment
context,'' and most casts may safely be omitted, since the prototype tells the compiler
that a pointer is required, and of which type, enabling it to correctly convert an
unadorned 0. Function prototypes cannot provide the types for variable arguments in
variable-length argument lists however, so explicit casts are still required for those
arguments. (See also question 15.3.) It is safest to properly cast all null pointer
constants in function calls: to guard against varargs functions or those without
prototypes, to allow interim use of non-ANSI compilers, and to demonstrate that you
know what you are doing. (Incidentally, it's also a simpler rule to remember.)

http://www.eskimo.com/~scs/C-faq/q5.2.html (1 of 2) [26/03/2003 11:43:24 p.m.]

http://www.eskimo.com/~scs/C-faq/q5.2.html

Summary:

 Unadorned 0 okay: Explicit cast required:

 initialization function call,
 no prototype in scope
 assignment
 variable argument in
 comparison varargs function call

 function call,
 prototype in scope,
 fixed argument

References: K&R1 Sec. A7.7 p. 190, Sec. A7.14 p. 192
K&R2 Sec. A7.10 p. 207, Sec. A7.17 p. 209
ANSI Sec. 3.2.2.3
ISO Sec. 6.2.2.3
H&S Sec. 4.6.3 p. 95, Sec. 6.2.7 p. 171

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.2.html (2 of 2) [26/03/2003 11:43:24 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.5

Question 5.5

How should NULL be defined on a machine which uses a nonzero bit pattern as the
internal representation of a null pointer?

The same as on any other machine: as 0 (or ((void *)0)).

Whenever a programmer requests a null pointer, either by writing ``0'' or ``NULL,'' it
is the compiler's responsibility to generate whatever bit pattern the machine uses for
that null pointer. Therefore, #defining NULL as 0 on a machine for which internal
null pointers are nonzero is as valid as on any other: the compiler must always be
able to generate the machine's correct null pointers in response to unadorned 0's seen
in pointer contexts. See also questions 5.2, 5.10, and 5.17.

References: ANSI Sec. 4.1.5
ISO Sec. 7.1.6
Rationale Sec. 4.1.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.5.html [26/03/2003 11:43:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.6

Question 5.6

If NULL were defined as follows:

 #define NULL ((char *)0)

wouldn't that make function calls which pass an uncast NULL work?

Not in general. The problem is that there are machines which use different internal
representations for pointers to different types of data. The suggested definition would
make uncast NULL arguments to functions expecting pointers to characters work
correctly, but pointer arguments of other types would still be problematical, and legal
constructions such as

 FILE *fp = NULL;

could fail.

Nevertheless, ANSI C allows the alternate definition

 #define NULL ((void *)0)

for NULL. Besides potentially helping incorrect programs to work (but only on
machines with homogeneous pointers, thus questionably valid assistance), this
definition may catch programs which use NULL incorrectly (e.g. when the ASCII
NUL character was really intended; see question 5.9).

References: Rationale Sec. 4.1.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.6.html [26/03/2003 11:43:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.3

Question 5.3

Is the abbreviated pointer comparison ``if(p)'' to test for non-null pointers valid?
What if the internal representation for null pointers is nonzero?

When C requires the Boolean value of an expression (in the if, while, for, and do
statements, and with the &&, ||, !, and ?: operators), a false value is inferred when
the expression compares equal to zero, and a true value otherwise. That is, whenever
one writes

 if(expr)

where ``expr'' is any expression at all, the compiler essentially acts as if it had been
written as

 if((expr) != 0)

Substituting the trivial pointer expression ``p'' for ``expr,'' we have

 if(p) is equivalent to if(p != 0)

and this is a comparison context, so the compiler can tell that the (implicit) 0 is
actually a null pointer constant, and use the correct null pointer value. There is no
trickery involved here; compilers do work this way, and generate identical code for
both constructs. The internal representation of a null pointer does not matter.

The boolean negation operator, !, can be described as follows:

 !expr is essentially equivalent to (expr)?0:1
 or to ((expr) == 0)

which leads to the conclusion that

 if(!p) is equivalent to if(p == 0)

``Abbreviations'' such as if(p), though perfectly legal, are considered by some to be
bad style (and by others to be good style; see question 17.10).

See also question 9.2.

http://www.eskimo.com/~scs/C-faq/q5.3.html (1 of 2) [26/03/2003 11:43:28 p.m.]

Question 5.3

References: K&R2 Sec. A7.4.7 p. 204
ANSI Sec. 3.3.3.3, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec. 3.6.4.1, Sec.
3.6.5
ISO Sec. 6.3.3.3, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec. 6.6.4.1, Sec.
6.6.5
H&S Sec. 5.3.2 p. 122

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.3.html (2 of 2) [26/03/2003 11:43:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.3

Question 15.3

I had a frustrating problem which turned out to be caused by the line

 printf("%d", n);

where n was actually a long int. I thought that ANSI function prototypes were
supposed to guard against argument type mismatches like this.

When a function accepts a variable number of arguments, its prototype does not (and
cannot) provide any information about the number and types of those variable
arguments. Therefore, the usual protections do not apply in the variable-length part
of variable-length argument lists: the compiler cannot perform implicit conversions
or (in general) warn about mismatches.

See also questions 5.2, 11.3, 12.9, and 15.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.3.html [26/03/2003 11:43:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.10

Question 17.10

Some people say that goto's are evil and that I should never use them. Isn't that a bit
extreme?

Programming style, like writing style, is somewhat of an art and cannot be codified
by inflexible rules, although discussions about style often seem to center exclusively
around such rules.

In the case of the goto statement, it has long been observed that unfettered use of
goto's quickly leads to unmaintainable spaghetti code. However, a simple,
unthinking ban on the goto statement does not necessarily lead immediately to
beautiful programming: an unstructured programmer is just as capable of
constructing a Byzantine tangle without using any goto's (perhaps substituting
oddly-nested loops and Boolean control variables, instead).

Most observations or ``rules'' about programming style usually work better as
guidelines than rules, and work much better if programmers understand what the
guidelines are trying to accomplish. Blindly avoiding certain constructs or following
rules without understanding them can lead to just as many problems as the rules were
supposed to avert.

Furthermore, many opinions on programming style are just that: opinions. It's usually
futile to get dragged into ``style wars,'' because on certain issues (such as those
referred to in questions 9.2, 5.3, 5.9, and 10.7), opponents can never seem to agree,
or agree to disagree, or stop arguing.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.10.html [26/03/2003 11:43:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.2

Question 9.2

Isn't #defining TRUE to be 1 dangerous, since any nonzero value is considered ``true''
in C? What if a built-in logical or relational operator ``returns'' something other than
1?

It is true (sic) that any nonzero value is considered true in C, but this applies only
``on input'', i.e. where a Boolean value is expected. When a Boolean value is
generated by a built-in operator, it is guaranteed to be 1 or 0. Therefore, the test

 if((a == b) == TRUE)

would work as expected (as long as TRUE is 1), but it is obviously silly. In general,
explicit tests against TRUE and FALSE are inappropriate, because some library
functions (notably isupper, isalpha, etc.) return, on success, a nonzero value
which is not necessarily 1. (Besides, if you believe that ``if((a == b) ==
TRUE)'' is an improvement over ``if(a == b)'', why stop there? Why not use
``if(((a == b) == TRUE) == TRUE)''?) A good rule of thumb is to use
TRUE and FALSE (or the like) only for assignment to a Boolean variable or function
parameter, or as the return value from a Boolean function, but never in a comparison.

The preprocessor macros TRUE and FALSE (and, of course, NULL) are used for code
readability, not because the underlying values might ever change. (See also questions
5.3 and 5.10.)

On the other hand, Boolean values and definitions can evidently be confusing, and
some programmers feel that TRUE and FALSE macros only compound the
confusion. (See also question 5.9.)

References: K&R1 Sec. 2.6 p. 39, Sec. 2.7 p. 41
K&R2 Sec. 2.6 p. 42, Sec. 2.7 p. 44, Sec. A7.4.7 p. 204, Sec. A7.9 p. 206
ANSI Sec. 3.3.3.3, Sec. 3.3.8, Sec. 3.3.9, Sec. 3.3.13, Sec. 3.3.14, Sec. 3.3.15, Sec.
3.6.4.1, Sec. 3.6.5
ISO Sec. 6.3.3.3, Sec. 6.3.8, Sec. 6.3.9, Sec. 6.3.13, Sec. 6.3.14, Sec. 6.3.15, Sec.
6.6.4.1, Sec. 6.6.5
H&S Sec. 7.5.4 pp. 196-7, Sec. 7.6.4 pp. 207-8, Sec. 7.6.5 pp. 208-9, Sec. 7.7 pp.
217-8, Sec. 7.8 pp. 218-9, Sec. 8.5 pp. 238-9, Sec. 8.6 pp. 241-4
``What the Tortoise Said to Achilles''

http://www.eskimo.com/~scs/C-faq/q9.2.html (1 of 2) [26/03/2003 11:43:31 p.m.]

Question 9.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q9.2.html (2 of 2) [26/03/2003 11:43:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.4

Question 5.4

What is NULL and how is it #defined?

As a matter of style, many programmers prefer not to have unadorned 0's scattered
through their programs. Therefore, the preprocessor macro NULL is #defined (by
<stdio.h> or <stddef.h>) with the value 0, possibly cast to (void *) (see
also question 5.6). A programmer who wishes to make explicit the distinction
between 0 the integer and 0 the null pointer constant can then use NULL whenever a
null pointer is required.

Using NULL is a stylistic convention only; the preprocessor turns NULL back into 0
which is then recognized by the compiler, in pointer contexts, as before. In
particular, a cast may still be necessary before NULL (as before 0) in a function call
argument. The table under question 5.2 above applies for NULL as well as 0 (an
unadorned NULL is equivalent to an unadorned 0).

NULL should only be used for pointers; see question 5.9.

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102
ANSI Sec. 4.1.5, Sec. 3.2.2.3
ISO Sec. 7.1.6, Sec. 6.2.2.3
Rationale Sec. 4.1.5
H&S Sec. 5.3.2 p. 122, Sec. 11.1 p. 292

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.4.html [26/03/2003 11:43:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.9

Question 5.9

If NULL and 0 are equivalent as null pointer constants, which should I use?

Many programmers believe that NULL should be used in all pointer contexts, as a
reminder that the value is to be thought of as a pointer. Others feel that the confusion
surrounding NULL and 0 is only compounded by hiding 0 behind a macro, and
prefer to use unadorned 0 instead. There is no one right answer. (See also questions
9.2 and 17.10.) C programmers must understand that NULL and 0 are
interchangeable in pointer contexts, and that an uncast 0 is perfectly acceptable. Any
usage of NULL (as opposed to 0) should be considered a gentle reminder that a
pointer is involved; programmers should not depend on it (either for their own
understanding or the compiler's) for distinguishing pointer 0's from integer 0's.

NULL should not be used when another kind of 0 is required, even though it might
work, because doing so sends the wrong stylistic message. (Furthermore, ANSI
allows the definition of NULL to be ((void *)0), which will not work at all in
non-pointer contexts.) In particular, do not use NULL when the ASCII null character
(NUL) is desired. Provide your own definition

 #define NUL '\0'

if you must.

References: K&R1 Sec. 5.4 pp. 97-8
K&R2 Sec. 5.4 p. 102

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.9.html [26/03/2003 11:43:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.10

Question 5.10

But wouldn't it be better to use NULL (rather than 0), in case the value of NULL
changes, perhaps on a machine with nonzero internal null pointers?

No. (Using NULL may be preferable, but not for this reason.) Although symbolic
constants are often used in place of numbers because the numbers might change, this
is not the reason that NULL is used in place of 0. Once again, the language
guarantees that source-code 0's (in pointer contexts) generate null pointers. NULL is
used only as a stylistic convention. See questions 5.5 and 9.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.10.html [26/03/2003 11:43:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.17

Question 5.17

Seriously, have any actual machines really used nonzero null pointers, or different
representations for pointers to different types?

The Prime 50 series used segment 07777, offset 0 for the null pointer, at least for
PL/I. Later models used segment 0, offset 0 for null pointers in C, necessitating new
instructions such as TCNP (Test C Null Pointer), evidently as a sop to all the extant
poorly-written C code which made incorrect assumptions. Older, word-addressed
Prime machines were also notorious for requiring larger byte pointers (char *'s)
than word pointers (int *'s).

The Eclipse MV series from Data General has three architecturally supported pointer
formats (word, byte, and bit pointers), two of which are used by C compilers: byte
pointers for char * and void *, and word pointers for everything else.

Some Honeywell-Bull mainframes use the bit pattern 06000 for (internal) null
pointers.

The CDC Cyber 180 Series has 48-bit pointers consisting of a ring, segment, and
offset. Most users (in ring 11) have null pointers of 0xB00000000000. It was
common on old CDC ones-complement machines to use an all-one-bits word as a
special flag for all kinds of data, including invalid addresses.

The old HP 3000 series uses a different addressing scheme for byte addresses than
for word addresses; like several of the machines above it therefore uses different
representations for char * and void * pointers than for other pointers.

The Symbolics Lisp Machine, a tagged architecture, does not even have conventional
numeric pointers; it uses the pair <NIL, 0> (basically a nonexistent <object,
offset> handle) as a C null pointer.

Depending on the ``memory model'' in use, 8086-family processors (PC
compatibles) may use 16-bit data pointers and 32-bit function pointers, or vice versa.

Some 64-bit Cray machines represent int * in the lower 48 bits of a word; char
* additionally uses the upper 16 bits to indicate a byte address within a word.

References: K&R1 Sec. A14.4 p. 211

http://www.eskimo.com/~scs/C-faq/q5.17.html (1 of 2) [26/03/2003 11:43:35 p.m.]

Question 5.17

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.17.html (2 of 2) [26/03/2003 11:43:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.12

Question 5.12

I use the preprocessor macro

#define Nullptr(type) (type *)0

to help me build null pointers of the correct type.

This trick, though popular and superficially attractive, does not buy much. It is not
needed in assignments and comparisons; see question 5.2. It does not even save
keystrokes. Its use may suggest to the reader that the program's author is shaky on
the subject of null pointers, requiring that the #definition of the macro, its
invocations, and all other pointer usages be checked. See also questions 9.1 and 10.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.12.html [26/03/2003 11:43:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.1

Question 9.1

What is the right type to use for Boolean values in C? Why isn't it a standard type?
Should I use #defines or enums for the true and false values?

C does not provide a standard Boolean type, in part because picking one involves a
space/time tradeoff which can best be decided by the programmer. (Using an int may be
faster, while using char may save data space. Smaller types may make the generated
code bigger or slower, though, if they require lots of conversions to and from int.)

The choice between #defines and enumeration constants for the true/false values is
arbitrary and not terribly interesting (see also questions 2.22 and 17.10). Use any of

 #define TRUE 1 #define YES 1
 #define FALSE 0 #define NO 0

 enum bool {false, true}; enum bool {no, yes};

or use raw 1 and 0, as long as you are consistent within one
program or project. (An enumeration may be preferable if
your debugger shows the names of enumeration constants when
examining variables.)

Some people prefer variants like

 #define TRUE (1==1)
 #define FALSE (!TRUE)

or define ``helper'' macros such as

 #define Istrue(e) ((e) != 0)

These don't buy anything (see question 9.2; see also questions 5.12 and 10.2).

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q9.1.html (1 of 2) [26/03/2003 11:43:39 p.m.]

Question 9.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q9.1.html (2 of 2) [26/03/2003 11:43:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.2

Question 10.2

Here are some cute preprocessor macros:

 #define begin {
 #define end }

What do y'all think?

Bleah. See also section 17.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.2.html [26/03/2003 11:43:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.13

Question 5.13

This is strange. NULL is guaranteed to be 0, but the null pointer is not?

When the term ``null'' or ``NULL'' is casually used, one of several things may be
meant:

1. 1. The conceptual null pointer, the abstract language concept defined in
question 5.1. It is implemented with...

2. 2. The internal (or run-time) representation of a null pointer, which may or
may not be all-bits-0 and which may be different for different pointer types.
The actual values should be of concern only to compiler writers. Authors of C
programs never see them, since they use...

3. 3. The null pointer constant, which is a constant integer 0 (see question 5.2).
It is often hidden behind...

4. 4. The NULL macro, which is #defined to be 0 or ((void *)0) (see
question 5.4). Finally, as red herrings, we have...

5. 5. The ASCII null character (NUL), which does have all bits zero, but has no
necessary relation to the null pointer except in name; and...

6. 6. The ``null string,'' which is another name for the empty string (""). Using
the term ``null string'' can be confusing in C, because an empty string
involves a null ('\0') character, but not a null pointer, which brings us full
circle...

This article uses the phrase ``null pointer'' (in lower case) for sense 1, the character
``0'' or the phrase ``null pointer constant'' for sense 3, and the capitalized word
``NULL'' for sense 4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.13.html [26/03/2003 11:43:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.14

Question 5.14

Why is there so much confusion surrounding null pointers? Why do these questions
come up so often?

C programmers traditionally like to know more than they need to about the
underlying machine implementation. The fact that null pointers are represented both
in source code, and internally to most machines, as zero invites unwarranted
assumptions. The use of a preprocessor macro (NULL) may seem to suggest that the
value could change some day, or on some weird machine. The construct ``if(p ==
0)'' is easily misread as calling for conversion of p to an integral type, rather than 0
to a pointer type, before the comparison. Finally, the distinction between the several
uses of the term ``null'' (listed in question 5.13) is often overlooked.

One good way to wade out of the confusion is to imagine that C used a keyword
(perhaps nil, like Pascal) as a null pointer constant. The compiler could either turn
nil into the correct type of null pointer when it could determine the type from the
source code, or complain when it could not. Now in fact, in C the keyword for a null
pointer constant is not nil but 0, which works almost as well, except that an uncast
0 in a non-pointer context generates an integer zero instead of an error message, and
if that uncast 0 was supposed to be a null pointer constant, the code may not work.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.14.html [26/03/2003 11:43:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.15

Question 5.15

I'm confused. I just can't understand all this null pointer stuff.

Follow these two simple rules:

1. When you want a null pointer constant in source code, use ``0'' or ``NULL''.
2. If the usage of ``0'' or ``NULL'' is an argument in a function call, cast it to the

pointer type expected by the function being called.

The rest of the discussion has to do with other people's misunderstandings, with the
internal representation of null pointers (which you shouldn't need to know), and with
ANSI C refinements. Understand questions 5.1, 5.2, and 5.4, and consider 5.3, 5.9,
5.13, and 5.14, and you'll do fine.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.15.html [26/03/2003 11:43:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.16

Question 5.16

Given all the confusion surrounding null pointers, wouldn't it be easier simply to
require them to be represented internally by zeroes?

If for no other reason, doing so would be ill-advised because it would unnecessarily
constrain implementations which would otherwise naturally represent null pointers
by special, nonzero bit patterns, particularly when those values would trigger
automatic hardware traps for invalid accesses.

Besides, what would such a requirement really accomplish? Proper understanding of
null pointers does not require knowledge of the internal representation, whether zero
or nonzero. Assuming that null pointers are internally zero does not make any code
easier to write (except for a certain ill-advised usage of calloc; see question 7.31).
Known-zero internal pointers would not obviate casts in function calls, because the
size of the pointer might still be different from that of an int. (If ``nil'' were used to
request null pointers, as mentioned in question 5.14, the urge to assume an internal
zero representation would not even arise.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.16.html [26/03/2003 11:43:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 5.20

Question 5.20

What does a run-time ``null pointer assignment'' error mean? How do I track it
down?

This message, which typically occurs with MS-DOS compilers (see, therefore,
section 19) means that you've written, via a null (perhaps because uninitialized)
pointer, to location 0. (See also question 16.8.)

A debugger may let you set a data breakpoint or watchpoint or something on location
0. Alternatively, you could write a bit of code to stash away a copy of 20 or so bytes
from location 0, and periodically check that the memory at location 0 hasn't changed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q5.20.html [26/03/2003 11:43:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.8

Question 16.8

What do ``Segmentation violation'' and ``Bus error'' mean?

These generally mean that your program tried to access memory it shouldn't have,
invariably as a result of improper pointer use. Likely causes are inadvertent use of
null pointers (see also questions 5.2 and 5.20) or uninitialized, misaligned, or
otherwise improperly allocated pointers (see questions 7.1 and 7.2); corruption of the
malloc arena (see question 7.19); and mismatched function arguments, especially
involving pointers; two possibilities are scanf (see question 12.12) and fprintf
(make sure it receives its first FILE * argument).

See also questions 16.3 and 16.4.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q16.8.html [26/03/2003 11:43:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.3

Question 6.3

So what is meant by the ``equivalence of pointers and arrays'' in C?

Much of the confusion surrounding arrays and pointers in C can be traced to a
misunderstanding of this statement. Saying that arrays and pointers are ``equivalent''
means neither that they are identical nor even interchangeable.

``Equivalence'' refers to the following key definition:

An lvalue of type array-of-T which appears in an expression decays
(with three exceptions) into a pointer to its first element; the type of
the resultant pointer is pointer-to-T.

(The exceptions are when the array is the operand of a sizeof or & operator, or is a
string literal initializer for a character array.)

As a consequence of this definition, the compiler doesn't apply the array subscripting
operator [] that differently to arrays and pointers, after all. In an expression of the
form a[i], the array decays into a pointer, following the rule above, and is then
subscripted just as would be a pointer variable in the expression p[i] (although the
eventual memory accesses will be different, as explained in question 6.2). If you
were to assign the array's address to the pointer:

 p = a;

then p[3] and a[3] would access the same element.

See also question 6.8.

References: K&R1 Sec. 5.3 pp. 93-6
K&R2 Sec. 5.3 p. 99
ANSI Sec. 3.2.2.1, Sec. 3.3.2.1, Sec. 3.3.6
ISO Sec. 6.2.2.1, Sec. 6.3.2.1, Sec. 6.3.6
H&S Sec. 5.4.1 p. 124

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q6.3.html (1 of 2) [26/03/2003 11:43:47 p.m.]

Question 6.3

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.3.html (2 of 2) [26/03/2003 11:43:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.21

Question 6.21

Why doesn't sizeof properly report the size of an array when the array is a
parameter to a function?

The compiler pretends that the array parameter was declared as a pointer (see
question 6.4), and sizeof reports the size of the pointer.

References: H&S Sec. 7.5.2 p. 195

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.21.html [26/03/2003 11:43:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.7

Question 6.7

How can an array be an lvalue, if you can't assign to it?

The ANSI C Standard defines a ``modifiable lvalue,'' which an array is not.

References: ANSI Sec. 3.2.2.1
ISO Sec. 6.2.2.1
Rationale Sec. 3.2.2.1
H&S Sec. 7.1 p. 179

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.7.html [26/03/2003 11:43:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.14

Question 6.14

How can I set an array's size at run time?
How can I avoid fixed-sized arrays?

The equivalence between arrays and pointers (see question 6.3) allows a pointer to
malloc'ed memory to simulate an array quite effectively. After executing

 #include <stdlib.h>
 int *dynarray = (int *)malloc(10 * sizeof(int));

(and if the call to malloc succeeds), you can reference dynarray[i] (for i from
0 to 9) just as if dynarray were a conventional, statically-allocated array (int
a[10]). See also question 6.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.14.html [26/03/2003 11:43:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.16

Question 6.16

How can I dynamically allocate a multidimensional array?

It is usually best to allocate an array of pointers, and then initialize each pointer to a dynamically-
allocated ``row.'' Here is a two-dimensional example:

 #include <stdlib.h>

 int **array1 = (int **)malloc(nrows * sizeof(int *));
 for(i = 0; i < nrows; i++)
 array1[i] = (int *)malloc(ncolumns * sizeof(int));

(In real code, of course, all of malloc's return values would be checked.)

You can keep the array's contents contiguous, while making later reallocation of individual rows
difficult, with a bit of explicit pointer arithmetic:

 int **array2 = (int **)malloc(nrows * sizeof(int *));
 array2[0] = (int *)malloc(nrows * ncolumns * sizeof(int));
 for(i = 1; i < nrows; i++)
 array2[i] = array2[0] + i * ncolumns;

In either case, the elements of the dynamic array can be accessed with normal-looking array
subscripts: arrayx[i][j] (for 0 <= i < NROWS and 0 <= j < NCOLUMNS).

If the double indirection implied by the above schemes is for some reason unacceptable, you can
simulate a two-dimensional array with a single, dynamically-allocated one-dimensional array:

 int *array3 = (int *)malloc(nrows * ncolumns * sizeof(int));

However, you must now perform subscript calculations manually, accessing the i,jth element with
array3[i * ncolumns + j]. (A macro could hide the explicit calculation, but invoking it
would require parentheses and commas which wouldn't look exactly like multidimensional array
syntax, and the macro would need access to at least one of the dimensions, as well. See also question
6.19.)

Finally, you could use pointers to arrays:

 int (*array4)[NCOLUMNS] =
 (int (*)[NCOLUMNS])malloc(nrows * sizeof(*array4));

but the syntax starts getting horrific and at most one dimension may be specified at run time.

With all of these techniques, you may of course need to remember to free the arrays (which may take
several steps; see question 7.23) when they are no longer needed, and you cannot necessarily intermix

http://www.eskimo.com/~scs/C-faq/q6.16.html (1 of 2) [26/03/2003 11:43:58 p.m.]

Question 6.16

dynamically-allocated arrays with conventional, statically-allocated ones (see question 6.20, and also
question 6.18).

All of these techniques can also be extended to three or more dimensions.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.16.html (2 of 2) [26/03/2003 11:43:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.9

Question 6.9

Someone explained to me that arrays were really just constant pointers.

This is a bit of an oversimplification. An array name is ``constant'' in that it cannot
be assigned to, but an array is not a pointer, as the discussion and pictures in question
6.2 should make clear. See also questions 6.3 and 6.8.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.9.html [26/03/2003 11:43:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.11

Question 6.11

I came across some ``joke'' code containing the ``expression'' 5["abcdef"] . How
can this be legal C?

Yes, Virginia, array subscripting is commutative in C. This curious fact follows from
the pointer definition of array subscripting, namely that a[e] is identical to
*((a)+(e)), for any two expressions a and e, as long as one of them is a pointer
expression and one is integral. This unsuspected commutativity is often mentioned in
C texts as if it were something to be proud of, but it finds no useful application
outside of the Obfuscated C Contest (see question 20.36).

References: Rationale Sec. 3.3.2.1
H&S Sec. 5.4.1 p. 124, Sec. 7.4.1 pp. 186-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.11.html [26/03/2003 11:44:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.12

Question 6.12

Since array references decay into pointers, if arr is an array, what's the difference
between arr and &arr?

The type.

In Standard C, &arr yields a pointer, of type pointer-to-array-of-T, to the entire
array. (In pre-ANSI C, the & in &arr generally elicited a warning, and was generally
ignored.) Under all C compilers, a simple reference (without an explicit &) to an
array yields a pointer, of type pointer-to-T, to the array's first element. (See also
questions 6.3, 6.13, and 6.18.)

References: ANSI Sec. 3.2.2.1, Sec. 3.3.3.2
ISO Sec. 6.2.2.1, Sec. 6.3.3.2
Rationale Sec. 3.3.3.2
H&S Sec. 7.5.6 p. 198

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.12.html [26/03/2003 11:44:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.13

Question 6.13

How do I declare a pointer to an array?

Usually, you don't want to. When people speak casually of a pointer to an array, they
usually mean a pointer to its first element.

Instead of a pointer to an array, consider using a pointer to one of the array's
elements. Arrays of type T decay into pointers to type T (see question 6.3), which is
convenient; subscripting or incrementing the resultant pointer will access the
individual members of the array. True pointers to arrays, when subscripted or
incremented, step over entire arrays, and are generally useful only when operating on
arrays of arrays, if at all. (See question 6.18.)

If you really need to declare a pointer to an entire array, use something like ``int
(*ap)[N];'' where N is the size of the array. (See also question 1.21.) If the size of
the array is unknown, N can in principle be omitted, but the resulting type, ``pointer
to array of unknown size,'' is useless.

See also question 6.12.

References: ANSI Sec. 3.2.2.1
ISO Sec. 6.2.2.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.13.html [26/03/2003 11:44:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.18

Question 6.18

My compiler complained when I passed a two-dimensional array to a function expecting a
pointer to a pointer.

The rule (see question 6.3) by which arrays decay into pointers is not applied recursively. An
array of arrays (i.e. a two-dimensional array in C) decays into a pointer to an array, not a pointer
to a pointer. Pointers to arrays can be confusing, and must be treated carefully; see also question
6.13. (The confusion is heightened by the existence of incorrect compilers, including some old
versions of pcc and pcc-derived lints, which improperly accept assignments of multi-
dimensional arrays to multi-level pointers.)

If you are passing a two-dimensional array to a function:

 int array[NROWS][NCOLUMNS];
 f(array);

the function's declaration must match:

 f(int a[][NCOLUMNS])
 { ... }

or

 f(int (*ap)[NCOLUMNS]) /* ap is a pointer to an array */
 { ... }

In the first declaration, the compiler performs the usual implicit parameter rewriting of ``array of
array'' to ``pointer to array'' (see questions 6.3 and 6.4); in the second form the pointer
declaration is explicit. Since the called function does not allocate space for the array, it does not
need to know the overall size, so the number of rows, NROWS, can be omitted. The ``shape'' of
the array is still important, so the column dimension NCOLUMNS (and, for three- or more
dimensional arrays, the intervening ones) must be retained.

If a function is already declared as accepting a pointer to a pointer, it is probably meaningless to
pass a two-dimensional array directly to it.

See also questions 6.12 and 6.15.

References: K&R1 Sec. 5.10 p. 110
K&R2 Sec. 5.9 p. 113
H&S Sec. 5.4.3 p. 126

http://www.eskimo.com/~scs/C-faq/q6.18.html (1 of 2) [26/03/2003 11:44:04 p.m.]

Question 6.18

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.18.html (2 of 2) [26/03/2003 11:44:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.15

Question 6.15

How can I declare local arrays of a size matching a passed-in array?

You can't, in C. Array dimensions must be compile-time constants. (gcc provides
parameterized arrays as an extension.) You'll have to use malloc, and remember to
call free before the function returns. See also questions 6.14, 6.16, 6.19, 7.22, and
maybe 7.32.

References: ANSI Sec. 3.4, Sec. 3.5.4.2
ISO Sec. 6.4, Sec. 6.5.4.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.15.html [26/03/2003 11:44:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.19

Question 6.19

How do I write functions which accept two-dimensional arrays when the ``width'' is not known at
compile time?

It's not easy. One way is to pass in a pointer to the [0][0] element, along with the two dimensions,
and simulate array subscripting ``by hand:''

 f2(aryp, nrows, ncolumns)
 int *aryp;
 int nrows, ncolumns;
 { ... array[i][j] is accessed as aryp[i * ncolumns + j] ... }

This function could be called with the array from question 6.18 as

 f2(&array[0][0], NROWS, NCOLUMNS);

It must be noted, however, that a program which performs multidimensional array subscripting ``by
hand'' in this way is not in strict conformance with the ANSI C Standard; according to an official
interpretation, the behavior of accessing (&array[0][0])[x] is not defined for x >=
NCOLUMNS.

gcc allows local arrays to be declared having sizes which are specified by a function's arguments, but
this is a nonstandard extension.

When you want to be able to use a function on multidimensional arrays of various sizes, one solution is
to simulate all the arrays dynamically, as in question 6.16.

See also questions 6.18, 6.20, and 6.15.

References: ANSI Sec. 3.3.6
ISO Sec. 6.3.6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.19.html [26/03/2003 11:44:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.22

Question 7.22

When I call malloc to allocate memory for a local pointer, do I have to explicitly
free it?

Yes. Remember that a pointer is different from what it points to. Local variables are
deallocated when the function returns, but in the case of a pointer variable, this
means that the pointer is deallocated, not what it points to. Memory allocated with
malloc always persists until you explicitly free it. In general, for every call to
malloc, there should be a corresponding call to free.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.22.html [26/03/2003 11:44:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.32

Question 7.32

What is alloca and why is its use discouraged?

alloca allocates memory which is automatically freed when the function which
called alloca returns. That is, memory allocated with alloca is local to a
particular function's ``stack frame'' or context.

alloca cannot be written portably, and is difficult to implement on machines
without a conventional stack. Its use is problematical (and the obvious
implementation on a stack-based machine fails) when its return value is passed
directly to another function, as in fgets(alloca(100), 100, stdin).

For these reasons, alloca is not Standard and cannot be used in programs which
must be widely portable, no matter how useful it might be.

See also question 7.22.

References: Rationale Sec. 4.10.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.32.html [26/03/2003 11:44:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.23

Question 7.23

I'm allocating structures which contain pointers to other dynamically-allocated
objects. When I free a structure, do I have to free each subsidiary pointer first?

Yes. In general, you must arrange that each pointer returned from malloc be
individually passed to free, exactly once (if it is freed at all).

A good rule of thumb is that for each call to malloc in a program, you should be
able to point at the call to free which frees the memory allocated by that malloc
call.

See also question 7.24.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.23.html [26/03/2003 11:44:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.20

Question 6.20

How can I use statically- and dynamically-allocated multidimensional arrays
interchangeably when passing them to functions?

There is no single perfect method. Given the declarations

 int array[NROWS][NCOLUMNS];
 int **array1; /* ragged */
 int **array2; /* contiguous */
 int *array3; /* "flattened" */
 int (*array4)[NCOLUMNS];

with the pointers initialized as in the code fragments in question 6.16, and functions
declared as

 f1(int a[][NCOLUMNS], int nrows, int ncolumns);
 f2(int *aryp, int nrows, int ncolumns);
 f3(int **pp, int nrows, int ncolumns);

where f1 accepts a conventional two-dimensional array, f2 accepts a ``flattened'' two-
dimensional array, and f3 accepts a pointer-to-pointer, simulated array (see also
questions 6.18 and 6.19), the following calls should work as expected:

 f1(array, NROWS, NCOLUMNS);
 f1(array4, nrows, NCOLUMNS);
 f2(&array[0][0], NROWS, NCOLUMNS);
 f2(*array, NROWS, NCOLUMNS);
 f2(*array2, nrows, ncolumns);
 f2(array3, nrows, ncolumns);
 f2(*array4, nrows, NCOLUMNS);
 f3(array1, nrows, ncolumns);
 f3(array2, nrows, ncolumns);

The following two calls would probably work on most systems, but involve
questionable casts, and work only if the dynamic ncolumns matches the static
NCOLUMNS:

 f1((int (*)[NCOLUMNS])(*array2), nrows, ncolumns);
 f1((int (*)[NCOLUMNS])array3, nrows, ncolumns);

http://www.eskimo.com/~scs/C-faq/q6.20.html (1 of 2) [26/03/2003 11:44:14 p.m.]

Question 6.20

It must again be noted that passing &array[0][0] (or, equivalently, *array) to
f2 is not strictly conforming; see question 6.19.

If you can understand why all of the above calls work and are written as they are, and
if you understand why the combinations that are not listed would not work, then you
have a very good understanding of arrays and pointers in C.

Rather than worrying about all of this, one approach to using multidimensional arrays
of various sizes is to make them all dynamic, as in question 6.16. If there are no static
multidimensional arrays--if all arrays are allocated like array1 or array2 in
question 6.16--then all functions can be written like f3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.20.html (2 of 2) [26/03/2003 11:44:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 6.17

Question 6.17

Here's a neat trick: if I write

 int realarray[10];
 int *array = &realarray[-1];

I can treat array as if it were a 1-based array.

Although this technique is attractive (and was used in old editions of the book
Numerical Recipes in C), it does not conform to the C standards. Pointer arithmetic
is defined only as long as the pointer points within the same allocated block of
memory, or to the imaginary ``terminating'' element one past it; otherwise, the
behavior is undefined, even if the pointer is not dereferenced. The code above could
fail if, while subtracting the offset, an illegal address were generated (perhaps
because the address tried to ``wrap around'' past the beginning of some memory
segment).

References: K&R2 Sec. 5.3 p. 100, Sec. 5.4 pp. 102-3, Sec. A7.7 pp. 205-6
ANSI Sec. 3.3.6
ISO Sec. 6.3.6
Rationale Sec. 3.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q6.17.html [26/03/2003 11:44:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.23

Question 12.23

Why does everyone say not to use gets()?

Unlike fgets(), gets() cannot be told the size of the buffer it's to read into, so it
cannot be prevented from overflowing that buffer. As a general rule, always use
fgets(). See question 7.1 for a code fragment illustrating the replacement of
gets() with fgets().

References: Rationale Sec. 4.9.7.2
H&S Sec. 15.7 p. 356

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.23.html [26/03/2003 11:44:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.2

Question 7.2

I can't get strcat to work. I tried

 char *s1 = "Hello, ";
 char *s2 = "world!";
 char *s3 = strcat(s1, s2);

but I got strange results.

As in question 7.1, the main problem here is that space for the concatenated result is
not properly allocated. C does not provide an automatically-managed string type. C
compilers only allocate memory for objects explicitly mentioned in the source code
(in the case of ``strings,'' this includes character arrays and string literals). The
programmer must arrange for sufficient space for the results of run-time operations
such as string concatenation, typically by declaring arrays, or by calling malloc.

strcat performs no allocation; the second string is appended to the first one, in
place. Therefore, one fix would be to declare the first string as an array:

 char s1[20] = "Hello, ";

Since strcat returns the value of its first argument (s1, in this case), the variable
s3 is superfluous.

The original call to strcat in the question actually has two problems: the string
literal pointed to by s1, besides not being big enough for any concatenated text, is
not necessarily writable at all. See question 1.32.

References: CT&P Sec. 3.2 p. 32

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.2.html [26/03/2003 11:44:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.3

Question 7.3

But the man page for strcat says that it takes two char *'s as arguments. How
am I supposed to know to allocate things?

In general, when using pointers you always have to consider memory allocation, if
only to make sure that the compiler is doing it for you. If a library function's
documentation does not explicitly mention allocation, it is usually the caller's
problem.

The Synopsis section at the top of a Unix-style man page or in the ANSI C standard
can be misleading. The code fragments presented there are closer to the function
definitions used by an implementor than the invocations used by the caller. In
particular, many functions which accept pointers (e.g. to structures or strings) are
usually called with the address of some object (a structure, or an array--see questions
6.3 and 6.4). Other common examples are time (see question 13.12) and stat.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.3.html [26/03/2003 11:44:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.12

Question 13.12

How can I get the current date or time of day in a C program?

Just use the time, ctime, and/or localtime functions. (These routines have
been around for years, and are in the ANSI standard.) Here is a simple example:

#include <stdio.h>
#include <time.h>

main()
{
 time_t now;
 time(&now);
 printf("It's %.24s.\n", ctime(&now));
 return 0;
}

References: K&R2 Sec. B10 pp. 255-7
ANSI Sec. 4.12
ISO Sec. 7.12
H&S Sec. 18

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.12.html [26/03/2003 11:44:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.5

Question 7.5

I have a function that is supposed to return a string, but when it returns to its caller, the
returned string is garbage.

Make sure that the pointed-to memory is properly allocated. The returned pointer
should be to a statically-allocated buffer, or to a buffer passed in by the caller, or to
memory obtained with malloc, but not to a local (automatic) array. In other words,
never do something like

 char *itoa(int n)
 {
 char retbuf[20]; /* WRONG */
 sprintf(retbuf, "%d", n);
 return retbuf; /* WRONG */
 }

One fix (which is imperfect, especially if the function in question is called recursively,
or if several of its return values are needed simultaneously) would be to declare the
return buffer as

 static char retbuf[20];

See also questions 12.21 and 20.1.

References: ANSI Sec. 3.1.2.4
ISO Sec. 6.1.2.4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.5.html [26/03/2003 11:44:27 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.21

Question 12.21

How can I tell how much destination buffer space I'll need for an arbitrary sprintf
call? How can I avoid overflowing the destination buffer with sprintf?

There are not (yet) any good answers to either of these excellent questions, and this
represents perhaps the biggest deficiency in the traditional stdio library.

When the format string being used with sprintf is known and relatively simple, you
can usually predict a buffer size in an ad-hoc way. If the format consists of one or two
%s's, you can count the fixed characters in the format string yourself (or let sizeof
count them for you) and add in the result of calling strlen on the string(s) to be
inserted. You can conservatively estimate the size that %d will expand to with code like:

#include <limits.h>
char buf[(sizeof(int) * CHAR_BIT + 2) / 3 + 1 + 1];
sprintf(buf, "%d", n);

(This code computes the number of characters required for a base-8 representation of a
number; a base-10 expansion is guaranteed to take as much room or less.)

When the format string is more complicated, or is not even known until run time,
predicting the buffer size becomes as difficult as reimplementing sprintf, and
correspondingly error-prone (and inadvisable). A last-ditch technique which is
sometimes suggested is to use fprintf to print the same text to a bit bucket or
temporary file, and then to look at fprintf's return value or the size of the file (but
see question 19.12).

If there's any chance that the buffer might not be big enough, you won't want to call
sprintf without some guarantee that the buffer will not overflow and overwrite some
other part of memory. Several stdio's (including GNU and 4.4bsd) provide the obvious
snprintf function, which can be used like this:

 snprintf(buf, bufsize, "You typed \"%s\"", answer);

and we can hope that a future revision of the ANSI/ISO C Standard will include this
function.

http://www.eskimo.com/~scs/C-faq/q12.21.html (1 of 2) [26/03/2003 11:44:28 p.m.]

Question 12.21

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.21.html (2 of 2) [26/03/2003 11:44:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.6

Question 7.6

Why am I getting ``warning: assignment of pointer from integer lacks a cast'' for
calls to malloc?

Have you #included <stdlib.h>, or otherwise arranged for malloc to be
declared properly?

References: H&S Sec. 4.7 p. 101

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.6.html [26/03/2003 11:44:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.7

Question 7.7

Why does some code carefully cast the values returned by malloc to the pointer
type being allocated?

Before ANSI/ISO Standard C introduced the void * generic pointer type, these
casts were typically required to silence warnings (and perhaps induce conversions)
when assigning between incompatible pointer types. (Under ANSI/ISO Standard C,
these casts are no longer necessary.)

References: H&S Sec. 16.1 pp. 386-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.7.html [26/03/2003 11:44:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.8

Question 7.8

I see code like

 char *p = malloc(strlen(s) + 1);
 strcpy(p, s);

Shouldn't that be malloc((strlen(s) + 1) * sizeof(char))?

It's never necessary to multiply by sizeof(char), since sizeof(char) is, by
definition, exactly 1. (On the other hand, multiplying by sizeof(char) doesn't
hurt, and may help by introducing a size_t into the expression.) See also question
8.9.

References: ANSI Sec. 3.3.3.4
ISO Sec. 6.3.3.4
H&S Sec. 7.5.2 p. 195

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.8.html [26/03/2003 11:44:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.9

Question 8.9

I think something's wrong with my compiler: I just noticed that sizeof('a') is 2,
not 1 (i.e. not sizeof(char)).

Perhaps surprisingly, character constants in C are of type int, so sizeof('a') is
sizeof(int) (though it's different in C++). See also question 7.8.

References: ANSI Sec. 3.1.3.4
ISO Sec. 6.1.3.4
H&S Sec. 2.7.3 p. 29

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q8.9.html [26/03/2003 11:44:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.14

Question 7.14

I've heard that some operating systems don't actually allocate malloc'ed memory
until the program tries to use it. Is this legal?

It's hard to say. The Standard doesn't say that systems can act this way, but it doesn't
explicitly say that they can't, either.

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.14.html [26/03/2003 11:44:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.16

Question 7.16

I'm allocating a large array for some numeric work, using the line

 double *array = malloc(256 * 256 * sizeof(double));

malloc isn't returning null, but the program is acting strangely, as if it's overwriting
memory, or malloc isn't allocating as much as I asked for, or something.

Notice that 256 x 256 is 65,536, which will not fit in a 16-bit int, even before you
multiply it by sizeof(double). If you need to allocate this much memory, you'll
have to be careful. If size_t (the type accepted by malloc) is a 32-bit type on your
machine, but int is 16 bits, you might be able to get away with writing 256 * (256
* sizeof(double)) (see question 3.14). Otherwise, you'll have to break your data
structure up into smaller chunks, or use a 32-bit machine, or use some nonstandard
memory allocation routines. See also question 19.23.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.16.html [26/03/2003 11:44:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.23

Question 19.23

How can I allocate arrays or structures bigger than 64K?

A reasonable computer ought to give you transparent access to all available memory.
If you're not so lucky, you'll either have to rethink your program's use of memory, or
use various system-specific techniques.

64K is (still) a pretty big chunk of memory. No matter how much memory your
computer has available, it's asking a lot to be able to allocate huge amounts of it
contiguously. (The C Standard does not guarantee that a single object can be larger
than 32K.) Often it's a good idea to use data structures which don't require that all
memory be contiguous. For dynamically-allocated multidimensional arrays, you can
use pointers to pointers, as illustrated in question 6.16. Instead of a large array of
structures, you can use a linked list, or an array of pointers to structures.

If you're using a PC-compatible (8086-based) system, and running up against a 640K
limit, consider using ``huge'' memory model, or expanded or extended memory, or
malloc variants such as halloc or farmalloc, or a 32-bit ``flat'' compiler (e.g.
djgpp, see question 18.3), or some kind of a DOS extender, or another operating
system.

References: ANSI Sec. 2.2.4.1
ISO Sec. 5.2.4.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.23.html [26/03/2003 11:44:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.17

Question 7.17

I've got 8 meg of memory in my PC. Why can I only seem to malloc 640K or so?

Under the segmented architecture of PC compatibles, it can be difficult to use more
than 640K with any degree of transparency. See also question 19.23.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.17.html [26/03/2003 11:44:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.19

Question 7.19

My program is crashing, apparently somewhere down inside malloc, but I can't see
anything wrong with it.

It is unfortunately very easy to corrupt malloc's internal data structures, and the
resulting problems can be stubborn. The most common source of problems is writing
more to a malloc'ed region than it was allocated to hold; a particularly common
bug is to malloc(strlen(s)) instead of strlen(s) + 1. Other problems
may involve using pointers to freed storage, freeing pointers twice, freeing
pointers not obtained from malloc, or trying to realloc a null pointer (see
question 7.30).

See also questions 7.26, 16.8, and 18.2.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.19.html [26/03/2003 11:44:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.30

Question 7.30

Is it legal to pass a null pointer as the first argument to realloc? Why would you
want to?

ANSI C sanctions this usage (and the related realloc(..., 0), which frees),
although several earlier implementations do not support it, so it may not be fully
portable. Passing an initially-null pointer to realloc can make it easier to write a
self-starting incremental allocation algorithm.

References: ANSI Sec. 4.10.3.4
ISO Sec. 7.10.3.4
H&S Sec. 16.3 p. 388

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.30.html [26/03/2003 11:44:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.26

Question 7.26

How does free know how many bytes to free?

The malloc/free implementation remembers the size of each block allocated and
returned, so it is not necessary to remind it of the size when freeing.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.26.html [26/03/2003 11:44:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.2

Question 18.2

How can I track down these pesky malloc problems?

A number of debugging packages exist to help track down malloc problems; one
popular one is Conor P. Cahill's ``dbmalloc,'' posted to comp.sources.misc in 1992,
volume 32. Others are ``leak,'' available in volume 27 of the comp.sources.unix
archives; JMalloc.c and JMalloc.h in the ``Snippets'' collection; and MEMDEBUG
from ftp.crpht.lu in pub/sources/memdebug . See also question 18.16.

A number of commercial debugging tools exist, and can be invaluable in tracking
down malloc-related and other stubborn problems:

● Bounds-Checker for DOS, from Nu-Mega Technologies, P.O. Box 7780,
Nashua, NH 03060-7780, USA, 603-889-2386.

● CodeCenter (formerly Saber-C) from Centerline Software (formerly Saber),
10 Fawcett Street, Cambridge, MA 02138-1110, USA, 617-498-3000.

● Insight, from ParaSoft Corporation, 2500 E. Foothill Blvd., Pasadena, CA
91107, USA, 818-792-9941, insight@parasoft.com .

● Purify, from Pure Software, 1309 S. Mary Ave., Sunnyvale, CA 94087, USA,
800-224-7873, info-home@pure.com .

● SENTINEL, from AIB Software, 46030 Manekin Plaza, Dulles, VA 20166,
USA, 703-430-9247, 800-296-3000, info@aib.com .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.2.html [26/03/2003 11:44:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.20

Question 7.20

You can't use dynamically-allocated memory after you free it, can you?

No. Some early documentation for malloc stated that the contents of freed memory
were ``left undisturbed,'' but this ill-advised guarantee was never universal and is not
required by the C Standard.

Few programmers would use the contents of freed memory deliberately, but it is easy
to do so accidentally. Consider the following (correct) code for freeing a singly-
linked list:

 struct list *listp, *nextp;
 for(listp = base; listp != NULL; listp = nextp) {
 nextp = listp->next;
 free((void *)listp);
 }

and notice what would happen if the more-obvious loop iteration expression listp
= listp->next were used, without the temporary nextp pointer.

References: K&R2 Sec. 7.8.5 p. 167
ANSI Sec. 4.10.3
ISO Sec. 7.10.3
Rationale Sec. 4.10.3.2
H&S Sec. 16.2 p. 387
CT&P Sec. 7.10 p. 95

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.20.html [26/03/2003 11:44:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.21

Question 7.21

Why isn't a pointer null after calling free?
How unsafe is it to use (assign, compare) a pointer value after it's been freed?

When you call free, the memory pointed to by the passed pointer is freed, but the
value of the pointer in the caller remains unchanged, because C's pass-by-value
semantics mean that called functions never permanently change the values of their
arguments. (See also question 4.8.)

A pointer value which has been freed is, strictly speaking, invalid, and any use of it,
even if is not dereferenced can theoretically lead to trouble, though as a quality of
implementation issue, most implementations will probably not go out of their way to
generate exceptions for innocuous uses of invalid pointers.

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3
Rationale Sec. 3.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.21.html [26/03/2003 11:44:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.24

Question 7.24

Must I free allocated memory before the program exits?

You shouldn't have to. A real operating system definitively reclaims all memory
when a program exits. Nevertheless, some personal computers are said not to reliably
recover memory, and all that can be inferred from the ANSI/ISO C Standard is that
this is a ``quality of implementation issue.''

References: ANSI Sec. 4.10.3.2
ISO Sec. 7.10.3.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.24.html [26/03/2003 11:44:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.25

Question 7.25

I have a program which mallocs and later frees a lot of memory, but memory
usage (as reported by ps) doesn't seem to go back down.

Most implementations of malloc/free do not return freed memory to the
operating system (if there is one), but merely make it available for future malloc
calls within the same program.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.25.html [26/03/2003 11:44:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 7.27

Question 7.27

So can I query the malloc package to find out how big an allocated block is?

Not portably.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q7.27.html [26/03/2003 11:44:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.1

Question 8.1

Why doesn't

strcat(string, '!');

work?

There is a very real difference between characters and strings, and strcat
concatenates strings.

Characters in C are represented by small integers corresponding to their character set
values (see also question 8.6). Strings are represented by arrays of characters; you
usually manipulate a pointer to the first character of the array. It is never correct to
use one when the other is expected. To append a ! to a string, use

 strcat(string, "!");

See also questions 1.32, 7.2, and 16.6.

References: CT&P Sec. 1.5 pp. 9-10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q8.1.html [26/03/2003 11:44:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.6

Question 8.6

How can I get the numeric (character set) value corresponding to a character, or vice
versa?

In C, characters are represented by small integers corresponding to their values (in
the machine's character set), so you don't need a conversion routine: if you have the
character, you have its value.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q8.6.html [26/03/2003 11:44:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.6

Question 16.6

Why does this code:

char *p = "hello, world!";
p[0] = 'H';

crash?

String literals are not necessarily modifiable, except (in effect) when they are used as
array initializers. Try

 char a[] = "hello, world!";

See also question 1.32.

References: ANSI Sec. 3.1.4
ISO Sec. 6.1.4
H&S Sec. 2.7.4 pp. 31-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q16.6.html [26/03/2003 11:44:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 8.2

Question 8.2

I'm checking a string to see if it matches a particular value. Why isn't this code
working?

 char *string;
 ...
 if(string == "value") {
 /* string matches "value" */
 ...
 }

Strings in C are represented as arrays of characters, and C never manipulates
(assigns, compares, etc.) arrays as a whole. The == operator in the code fragment
above compares two pointers--the value of the pointer variable string and a
pointer to the string literal "value"--to see if they are equal, that is, if they point to
the same place. They probably don't, so the comparison never succeeds.

To compare two strings, you generally use the library function strcmp:

 if(strcmp(string, "value") == 0) {
 /* string matches "value" */
 ...
 }

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q8.2.html [26/03/2003 11:44:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 9.3

Question 9.3

Is if(p), where p is a pointer, a valid conditional?

Yes. See question 5.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q9.3.html [26/03/2003 11:44:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.3

Question 10.3

How can I write a generic macro to swap two values?

There is no good answer to this question. If the values are integers, a well-known
trick using exclusive-OR could perhaps be used, but it will not work for floating-
point values or pointers, or if the two values are the same variable (and the
``obvious'' supercompressed implementation for integral types a^=b^=a^=b is
illegal due to multiple side-effects; see question 3.2). If the macro is intended to be
used on values of arbitrary type (the usual goal), it cannot use a temporary, since it
does not know what type of temporary it needs (and would have a hard time naming
it if it did), and standard C does not provide a typeof operator.

The best all-around solution is probably to forget about using a macro, unless you're
willing to pass in the type as a third argument.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.3.html [26/03/2003 11:44:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.4

Question 10.4

What's the best way to write a multi-statement macro?

The usual goal is to write a macro that can be invoked as if it were a statement
consisting of a single function call. This means that the ``caller'' will be supplying
the final semicolon, so the macro body should not. The macro body cannot therefore
be a simple brace-enclosed compound statement, because syntax errors would result
if it were invoked (apparently as a single statement, but with a resultant extra
semicolon) as the if branch of an if/else statement with an explicit else clause.

The traditional solution, therefore, is to use

 #define MACRO(arg1, arg2) do { \
 /* declarations */ \
 stmt1; \
 stmt2; \
 /* ... */ \
 } while(0) /* (no trailing ;) */

When the caller appends a semicolon, this expansion becomes a single statement
regardless of context. (An optimizing compiler will remove any ``dead'' tests or
branches on the constant condition 0, although lint may complain.)

If all of the statements in the intended macro are simple expressions, with no
declarations or loops, another technique is to write a single, parenthesized expression
using one or more comma operators. (For an example, see the first DEBUG() macro
in question 10.26.) This technique also allows a value to be ``returned.''

References: H&S Sec. 3.3.2 p. 45
CT&P Sec. 6.3 pp. 82-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.4.html [26/03/2003 11:44:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

http://www.eskimo.com/~scs/C-faq/q10.26.html

Question 10.26

How can I write a macro which takes a variable number of arguments?

One popular trick is to define and invoke the macro with a single, parenthesized
``argument'' which in the macro expansion becomes the entire argument list, parentheses
and all, for a function such as printf:

 #define DEBUG(args) (printf("DEBUG: "), printf args)

 if(n != 0) DEBUG(("n is %d\n", n));

The obvious disadvantage is that the caller must always remember to use the extra
parentheses.

gcc has an extension which allows a function-like macro to accept a variable number of
arguments, but it's not standard. Other possible solutions are to use different macros
(DEBUG1, DEBUG2, etc.) depending on the number of arguments, to play games with
commas:

 #define DEBUG(args) (printf("DEBUG: "), printf(args))
 #define _ ,

 DEBUG("i = %d" _ i)

It is often better to use a bona-fide function, which can take a variable number of
arguments in a well-defined way. See questions 15.4 and 15.5.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.26.html [26/03/2003 11:44:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.7

Question 10.7

Is it acceptable for one header file to #include another?

It's a question of style, and thus receives considerable debate. Many people believe
that ``nested #include files'' are to be avoided: the prestigious Indian Hill Style
Guide (see question 17.9) disparages them; they can make it harder to find relevant
definitions; they can lead to multiple-definition errors if a file is #included twice;
and they make manual Makefile maintenance very difficult. On the other hand, they
make it possible to use header files in a modular way (a header file can #include
what it needs itself, rather than requiring each #includer to do so); a tool like
grep (or a tags file) makes it easy to find definitions no matter where they are; a
popular trick along the lines of:

 #ifndef HFILENAME_USED
 #define HFILENAME_USED
 ...header file contents...
 #endif

(where a different bracketing macro name is used for each header file) makes a
header file ``idempotent'' so that it can safely be #included multiple times; and
automated Makefile maintenance tools (which are a virtual necessity in large projects
anyway; see question 18.1) handle dependency generation in the face of nested
#include files easily. See also question 17.10.

References: Rationale Sec. 4.1.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.7.html [26/03/2003 11:44:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.1

Question 18.1

I need some C development tools.

Here is a crude list of some which are available.

a C cross-reference generator
cflow, cxref, calls, cscope, xscope, or ixfw

a C beautifier/pretty-printer
cb, indent, GNU indent, or vgrind

a revision control or configuration management tool
RCS or SCCS

a C source obfuscator (shrouder)
obfus, shroud, or opqcp

a ``make'' dependency generator
makedepend, or try cc -M or cpp -M

tools to compute code metrics
ccount, Metre, lcount, or csize, or see URL

http://www.qucis.queensu.ca:1999/Software-Engineering/Cmetrics.html ; there is
also a package sold by McCabe and Associates
a C lines-of-source counter

this can be done very crudely with the standard Unix utility wc, and
considerably better with grep -c ";"
a prototype generator

see question 11.31
a tool to track down malloc problems

see question 18.2
a ``selective'' C preprocessor

see question 10.18
language translation tools

see questions 11.31 and 20.26
C verifiers (lint)

see question 18.7
a C compiler!

see question 18.3

(This list of tools is by no means complete; if you know of tools not mentioned,
you're welcome to contact this list's maintainer.)

http://www.eskimo.com/~scs/C-faq/q18.1.html (1 of 2) [26/03/2003 11:44:57 p.m.]

http://www.qucis.queensu.ca:1999/Software-Engineering/Cmetrics.html

Question 18.1

Other lists of tools, and discussion about them, can be found in the Usenet
newsgroups comp.compilers and comp.software-eng .

See also questions 18.16 and 18.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.1.html (2 of 2) [26/03/2003 11:44:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.8

Question 10.8

Where are header (``#include'') files searched for?

The exact behavior is implementation-defined (which means that it is supposed to be
documented; see question 11.33). Typically, headers named with <> syntax are
searched for in one or more standard places. Header files named with "" syntax are
first searched for in the ``current directory,'' then (if not found) in the same standard
places.

Traditionally (especially under Unix compilers), the current directory is taken to be
the directory containing the file containing the #include directive. Under other
compilers, however, the current directory (if any) is the directory in which the
compiler was initially invoked. Check your compiler documentation.

References: K&R2 Sec. A12.4 p. 231
ANSI Sec. 3.8.2
ISO Sec. 6.8.2
H&S Sec. 3.4 p. 55

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.8.html [26/03/2003 11:44:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.11

Question 10.11

I seem to be missing the system header file <sgtty.h>. Can someone send me a
copy?

Standard headers exist in part so that definitions appropriate to your compiler,
operating system, and processor can be supplied. You cannot just pick up a copy of
someone else's header file and expect it to work, unless that person is using exactly
the same environment. Ask your compiler vendor why the file was not provided (or
to send a replacement copy).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.11.html [26/03/2003 11:44:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.12

Question 10.12

How can I construct preprocessor #if expressions which compare strings?

You can't do it directly; preprocessor #if arithmetic uses only integers. You can
#define several manifest constants, however, and implement conditionals on
those.

See also question 20.17.

References: K&R2 Sec. 4.11.3 p. 91
ANSI Sec. 3.8.1
ISO Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.12.html [26/03/2003 11:45:00 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.13

Question 10.13

Does the sizeof operator work in preprocessor #if directives?

No. Preprocessing happens during an earlier phase of compilation, before type names
have been parsed. Instead of sizeof, consider using the predefined constants in
ANSI's <limits.h>, if applicable, or perhaps a ``configure'' script. (Better yet, try
to write code which is inherently insensitive to type sizes.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83
ISO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.13.html [26/03/2003 11:45:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.14

Question 10.14

Can I use an #ifdef in a #define line, to define something two different ways?

No. You can't ``run the preprocessor on itself,'' so to speak. What you can do is use
one of two completely separate #define lines, depending on the #ifdef setting.

References: ANSI Sec. 3.8.3, Sec. 3.8.3.4
ISO Sec. 6.8.3, Sec. 6.8.3.4
H&S Sec. 3.2 pp. 40-1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.14.html [26/03/2003 11:45:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.15

Question 10.15

Is there anything like an #ifdef for typedefs?

Unfortunately, no. (See also question 10.13.)

References: ANSI Sec. 2.1.1.2, Sec. 3.8.1 footnote 83
ISO Sec. 5.1.1.2, Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.15.html [26/03/2003 11:45:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.16

Question 10.16

How can I use a preprocessor #if expression to tell if a machine is big-endian or
little-endian?

You probably can't. (Preprocessor arithmetic uses only long integers, and there is
no concept of addressing.) Are you sure you need to know the machine's endianness
explicitly? Usually it's better to write code which doesn't care). See also question
20.9.

References: ANSI Sec. 3.8.1
ISO Sec. 6.8.1
H&S Sec. 7.11.1 p. 225

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.16.html [26/03/2003 11:45:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.18

Question 10.18

I inherited some code which contains far too many #ifdef's for my taste. How can
I preprocess the code to leave only one conditional compilation set, without running
it through the preprocessor and expanding all of the #include's and #define's as
well?

There are programs floating around called unifdef, rmifdef, and scpp
(``selective C preprocessor'') which do exactly this. See question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.18.html [26/03/2003 11:45:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.19

Question 10.19

How can I list all of the pre#defined identifiers?

There's no standard way, although it is a common need. If the compiler
documentation is unhelpful, the most expedient way is probably to extract printable
strings from the compiler or preprocessor executable with something like the Unix
strings utility. Beware that many traditional system-specific pre#defined
identifiers (e.g. ``unix'') are non-Standard (because they clash with the user's
namespace) and are being removed or renamed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.19.html [26/03/2003 11:45:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.20

Question 10.20

I have some old code that tries to construct identifiers with a macro like

#define Paste(a, b) a/**/b

but it doesn't work any more.

It was an undocumented feature of some early preprocessor implementations
(notably John Reiser's) that comments disappeared entirely and could therefore be
used for token pasting. ANSI affirms (as did K&R1) that comments are replaced
with white space. However, since the need for pasting tokens was demonstrated and
real, ANSI introduced a well-defined token-pasting operator, ##, which can be used
like this:

 #define Paste(a, b) a##b

See also question 11.17.

References: ANSI Sec. 3.8.3.3
ISO Sec. 6.8.3.3
Rationale Sec. 3.8.3.3
H&S Sec. 3.3.9 p. 52

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.20.html [26/03/2003 11:45:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.17

Question 11.17

I'm trying to use the ANSI ``stringizing'' preprocessing operator `#' to insert the
value of a symbolic constant into a message, but it keeps stringizing the macro's
name rather than its value.

You can use something like the following two-step procedure to force a macro to be
expanded as well as stringized:

 #define Str(x) #x
 #define Xstr(x) Str(x)
 #define OP plus
 char *opname = Xstr(OP);

This code sets opname to "plus" rather than "OP".

An equivalent circumlocution is necessary with the token-pasting operator ## when
the values (rather than the names) of two macros are to be concatenated.

References: ANSI Sec. 3.8.3.2, Sec. 3.8.3.5 example
ISO Sec. 6.8.3.2, Sec. 6.8.3.5

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.17.html [26/03/2003 11:45:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.22

Question 10.22

Why is the macro

 #define TRACE(n) printf("TRACE: %d\n", n)

giving me the warning ``macro replacement within a string literal''? It seems to be
expanding

 TRACE(count);

as

 printf("TRACE: %d\count", count);

See question 11.18.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.22.html [26/03/2003 11:45:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.18

Question 11.18

What does the message ``warning: macro replacement within a string literal'' mean?

Some pre-ANSI compilers/preprocessors interpreted macro definitions like

 #define TRACE(var, fmt) printf("TRACE: var = fmt\n", var)

such that invocations like

 TRACE(i, %d);

were expanded as

 printf("TRACE: i = %d\n", i);

In other words, macro parameters were expanded even inside string literals and character
constants.

Macro expansion is not defined in this way by K&R or by Standard C. When you do want to turn
macro arguments into strings, you can use the new # preprocessing operator, along with string
literal concatenation (another new ANSI feature):

 #define TRACE(var, fmt) \
 printf("TRACE: " #var " = " #fmt "\n", var)

See also question 11.17.

References: H&S Sec. 3.3.8 p. 51

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.18.html [26/03/2003 11:45:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.23

Question 10.23

How can I use a macro argument inside a string literal in the macro expansion?

See question 11.18.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.23.html [26/03/2003 11:45:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 10.25

Question 10.25

I've got this tricky preprocessing I want to do and I can't figure out a way to do it.

C's preprocessor is not intended as a general-purpose tool. (Note also that it is not
guaranteed to be available as a separate program.) Rather than forcing it to do
something inappropriate, consider writing your own little special-purpose
preprocessing tool, instead. You can easily get a utility like make(1) to run it for you
automatically.

If you are trying to preprocess something other than C, consider using a general-
purpose preprocessor. (One older one available on most Unix systems is m4.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q10.25.html [26/03/2003 11:45:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.4

Question 15.4

How can I write a function that takes a variable number of arguments?

Use the facilities of the <stdarg.h> header.

Here is a function which concatenates an arbitrary number of strings into malloc'ed memory:

#include <stdlib.h> /* for malloc, NULL, size_t */
#include <stdarg.h> /* for va_ stuff */
#include <string.h> /* for strcat et al. */

char *vstrcat(char *first, ...)
{
 size_t len;
 char *retbuf;
 va_list argp;
 char *p;

 if(first == NULL)
 return NULL;

 len = strlen(first);

 va_start(argp, first);

 while((p = va_arg(argp, char *)) != NULL)
 len += strlen(p);

 va_end(argp);

 retbuf = malloc(len + 1); /* +1 for trailing \0 */

 if(retbuf == NULL)
 return NULL; /* error */

 (void)strcpy(retbuf, first);

 va_start(argp, first); /* restart for second scan */

 while((p = va_arg(argp, char *)) != NULL)
 (void)strcat(retbuf, p);

 va_end(argp);

 return retbuf;
}

Usage is something like

http://www.eskimo.com/~scs/C-faq/q15.4.html (1 of 2) [26/03/2003 11:45:15 p.m.]

Question 15.4

 char *str = vstrcat("Hello, ", "world!", (char *)NULL);

Note the cast on the last argument; see questions 5.2 and 15.3. (Also note that the caller must free the
returned, malloc'ed storage.)

See also question 15.7.

References: K&R2 Sec. 7.3 p. 155, Sec. B7 p. 254
ANSI Sec. 4.8
ISO Sec. 7.8
Rationale Sec. 4.8
H&S Sec. 11.4 pp. 296-9
CT&P Sec. A.3 pp. 139-141
PCS Sec. 11 pp. 184-5, Sec. 13 p. 242

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.4.html (2 of 2) [26/03/2003 11:45:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.5

Question 15.5

How can I write a function that takes a format string and a variable number of
arguments, like printf, and passes them to printf to do most of the work?

Use vprintf, vfprintf, or vsprintf.

Here is an error routine which prints an error message, preceded by the string
``error: '' and terminated with a newline:

#include <stdio.h>
#include <stdarg.h>

void error(char *fmt, ...)
{
 va_list argp;
 fprintf(stderr, "error: ");
 va_start(argp, fmt);
 vfprintf(stderr, fmt, argp);
 va_end(argp);
 fprintf(stderr, "\n");
}

See also question 15.7.

References: K&R2 Sec. 8.3 p. 174, Sec. B1.2 p. 245
ANSI Secs. 4.9.6.7,4.9.6.8,4.9.6.9
ISO Secs. 7.9.6.7,7.9.6.8,7.9.6.9
H&S Sec. 15.12 pp. 379-80
PCS Sec. 11 pp. 186-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.5.html [26/03/2003 11:45:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.1

Question 11.1

What is the ``ANSI C Standard?''

In 1983, the American National Standards Institute (ANSI) commissioned a
committee, X3J11, to standardize the C language. After a long, arduous process,
including several widespread public reviews, the committee's work was finally
ratified as ANS X3.159-1989 on December 14, 1989, and published in the spring of
1990. For the most part, ANSI C standardizes existing practice, with a few additions
from C++ (most notably function prototypes) and support for multinational character
sets (including the controversial trigraph sequences). The ANSI C standard also
formalizes the C run-time library support routines.

More recently, the Standard has been adopted as an international standard, ISO/IEC
9899:1990, and this ISO Standard replaces the earlier X3.159 even within the United
States. Its sections are numbered differently (briefly, ISO sections 5 through 7
correspond roughly to the old ANSI sections 2 through 4). As an ISO Standard, it is
subject to ongoing revision through the release of Technical Corrigenda and
Normative Addenda.

In 1994, Technical Corrigendum 1 amended the Standard in about 40 places, most of
them minor corrections or clarifications. More recently, Normative Addendum 1
added about 50 pages of new material, mostly specifying new library functions for
internationalization. The production of Technical Corrigenda is an ongoing process,
and a second one is expected in late 1995. In addition, both ANSI and ISO require
periodic review of their standards. This process is beginning in 1995, and will likely
result in a completely revised standard (nicknamed ``C9X'' on the assumption of
completion by 1999).

The original ANSI Standard included a ``Rationale,'' explaining many of its
decisions, and discussing a number of subtle points, including several of those
covered here. (The Rationale was ``not part of ANSI Standard X3.159-1989, but...
included for information only,'' and is not included with the ISO Standard.)

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q11.1.html (1 of 2) [26/03/2003 11:45:18 p.m.]

Question 11.1

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.1.html (2 of 2) [26/03/2003 11:45:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.4

Question 11.4

Can you mix old-style and new-style function syntax?

Doing so is perfectly legal, as long as you're careful (see especially question 11.3).
Note however that old-style syntax is marked as obsolescent, so official support for it
may be removed some day.

References: ANSI Sec. 3.7.1, Sec. 3.9.5
ISO Sec. 6.7.1, Sec. 6.9.5
H&S Sec. 9.2.2 pp. 265-7, Sec. 9.2.5 pp. 269-70

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.4.html [26/03/2003 11:45:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.2

Question 15.2

How can %f be used for both float and double arguments in printf? Aren't
they different types?

In the variable-length part of a variable-length argument list, the ``default argument
promotions'' apply: types char and short int are promoted to int, and float
is promoted to double. (These are the same promotions that apply to function calls
without a prototype in scope, also known as ``old style'' function calls; see question
11.3.) Therefore, printf's %f format always sees a double. (Similarly, %c
always sees an int, as does %hd.) See also questions 12.9 and 12.13.

References: ANSI Sec. 3.3.2.2
ISO Sec. 6.3.2.2
H&S Sec. 6.3.5 p. 177, Sec. 9.4 pp. 272-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.2.html [26/03/2003 11:45:20 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.5

Question 11.5

Why does the declaration

extern f(struct x *p);

give me an obscure warning message about ``struct x introduced in prototype
scope''?

In a quirk of C's normal block scoping rules, a structure declared (or even
mentioned) for the first time within a prototype cannot be compatible with other
structures declared in the same source file (it goes out of scope at the end of the
prototype).

To resolve the problem, precede the prototype with the vacuous-looking declaration

 struct x;

which places an (incomplete) declaration of struct x at file scope, so that all
following declarations involving struct x can at least be sure they're referring to
the same struct x.

References: ANSI Sec. 3.1.2.1, Sec. 3.1.2.6, Sec. 3.5.2.3
ISO Sec. 6.1.2.1, Sec. 6.1.2.6, Sec. 6.5.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.5.html [26/03/2003 11:45:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.8

Question 11.8

I don't understand why I can't use const values in initializers and array dimensions,
as in

 const int n = 5;
 int a[n];

The const qualifier really means ``read-only;'' an object so qualified is a run-time
object which cannot (normally) be assigned to. The value of a const-qualified
object is therefore not a constant expression in the full sense of the term. (C is unlike
C++ in this regard.) When you need a true compile-time constant, use a preprocessor
#define.

References: ANSI Sec. 3.4
ISO Sec. 6.4
H&S Secs. 7.11.2,7.11.3 pp. 226-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.8.html [26/03/2003 11:45:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.9

Question 11.9

What's the difference between const char *p and char * const p?

const char *p declares a pointer to a constant character (you can't change the
character); char * const p declares a constant pointer to a (variable) character
(i.e. you can't change the pointer).

Read these ``inside out'' to understand them; see also question 1.21.

References: ANSI Sec. 3.5.4.1 examples
ISO Sec. 6.5.4.1
Rationale Sec. 3.5.4.1
H&S Sec. 4.4.4 p. 81

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.9.html [26/03/2003 11:45:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.10

Question 11.10

Why can't I pass a char ** to a function which expects a const char **?

You can use a pointer-to-T (for any type T) where a pointer-to-const-T is expected.
However, the rule (an explicit exception) which permits slight mismatches in
qualified pointer types is not applied recursively, but only at the top level.

You must use explicit casts (e.g. (const char **) in this case) when assigning
(or passing) pointers which have qualifier mismatches at other than the first level of
indirection.

References: ANSI Sec. 3.1.2.6, Sec. 3.3.16.1, Sec. 3.5.3
ISO Sec. 6.1.2.6, Sec. 6.3.16.1, Sec. 6.5.3
H&S Sec. 7.9.1 pp. 221-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.10.html [26/03/2003 11:45:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.12

Question 11.12

Can I declare main as void, to shut off these annoying ``main returns no value''
messages?

No. main must be declared as returning an int, and as taking either zero or two
arguments, of the appropriate types. If you're calling exit() but still getting
warnings, you may have to insert a redundant return statement (or use some kind
of ``not reached'' directive, if available).

Declaring a function as void does not merely shut off or rearrange warnings: it may
also result in a different function call/return sequence, incompatible with what the
caller (in main's case, the C run-time startup code) expects.

(Note that this discussion of main pertains only to ``hosted'' implementations; none
of it applies to ``freestanding'' implementations, which may not even have main.
However, freestanding implementations are comparatively rare, and if you're using
one, you probably know it. If you've never heard of the distinction, you're probably
using a hosted implementation, and the above rules apply.)

References: ANSI Sec. 2.1.2.2.1, Sec. F.5.1
ISO Sec. 5.1.2.2.1, Sec. G.5.1
H&S Sec. 20.1 p. 416
CT&P Sec. 3.10 pp. 50-51

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.12.html [26/03/2003 11:45:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.13

Question 11.13

But what about main's third argument, envp?

It's a non-standard (though common) extension. If you really need to access the
environment in ways beyind what the standard getenv function provides, though,
the global variable environ is probably a better avenue (though it's equally non-
standard).

References: ANSI Sec. F.5.1
ISO Sec. G.5.1
H&S Sec. 20.1 pp. 416-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.13.html [26/03/2003 11:45:39 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.14

Question 11.14

I believe that declaring void main() can't fail, since I'm calling exit instead of
returning, and anyway my operating system ignores a program's exit/return status.

It doesn't matter whether main returns or not, or whether anyone looks at the status;
the problem is that when main is misdeclared, its caller (the runtime startup code)
may not even be able to call it correctly (due to the potential clash of calling
conventions; see question 11.12). Your operating system may ignore the exit status,
and void main() may work for you, but it is not portable and not correct.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.14.html [26/03/2003 11:45:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.15

Question 11.15

The book I've been using, C Programing for the Compleat Idiot, always uses void
main().

Perhaps its author counts himself among the target audience. Many books
unaccountably use void main() in examples. They're wrong.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.15.html [26/03/2003 11:45:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.16

Question 11.16

Is exit(status) truly equivalent to returning the same status from main?

Yes and no. The Standard says that they are equivalent. However, a few older,
nonconforming systems may have problems with one or the other form. Also, a
return from main cannot be expected to work if data local to main might be
needed during cleanup; see also question 16.4. (Finally, the two forms are obviously
not equivalent in a recursive call to main.)

References: K&R2 Sec. 7.6 pp. 163-4
ANSI Sec. 2.1.2.2.3
ISO Sec. 5.1.2.2.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.16.html [26/03/2003 11:45:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.19

Question 11.19

I'm getting strange syntax errors inside lines I've #ifdeffed out.

Under ANSI C, the text inside a ``turned off'' #if, #ifdef, or #ifndef must still
consist of ``valid preprocessing tokens.'' This means that there must be no newlines
inside quotes, and no unterminated comments or quotes (note particularly that an
apostrophe within a contracted word looks like the beginning of a character
constant). Therefore, natural-language comments and pseudocode should always be
written between the ``official'' comment delimiters /* and */. (But see question
20.20, and also 10.25.)

References: ANSI Sec. 2.1.1.2, Sec. 3.1
ISO Sec. 5.1.1.2, Sec. 6.1
H&S Sec. 3.2 p. 40

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.19.html [26/03/2003 11:45:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.21

Question 11.21

What does ``#pragma once'' mean? I found it in some header files.

It is an extension implemented by some preprocessors to help make header files
idempotent; it is essentially equivalent to the #ifndef trick mentioned in question
10.7.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.21.html [26/03/2003 11:45:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.22

Question 11.22

Is char a[3] = "abc"; legal? What does it mean?

It is legal in ANSI C (and perhaps in a few pre-ANSI systems), though useful only in
rare circumstances. It declares an array of size three, initialized with the three
characters 'a', 'b', and 'c', without the usual terminating '\0' character. The
array is therefore not a true C string and cannot be used with strcpy, printf %s,
etc.

Most of the time, you should let the compiler count the initializers when initializing
arrays (in the case of the initializer "abc", of course, the computed size will be 4).

References: ANSI Sec. 3.5.7
ISO Sec. 6.5.7
H&S Sec. 4.6.4 p. 98

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.22.html [26/03/2003 11:45:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.24

Question 11.24

Why can't I perform arithmetic on a void * pointer?

The compiler doesn't know the size of the pointed-to objects. Before performing
arithmetic, convert the pointer either to char * or to the pointer type you're trying
to manipulate (but see also question 4.5).

References: ANSI Sec. 3.1.2.5, Sec. 3.3.6
ISO Sec. 6.1.2.5, Sec. 6.3.6
H&S Sec. 7.6.2 p. 204

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.24.html [26/03/2003 11:45:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.25

Question 11.25

What's the difference between memcpy and memmove?

memmove offers guaranteed behavior if the source and destination arguments
overlap. memcpy makes no such guarantee, and may therefore be more efficiently
implementable. When in doubt, it's safer to use memmove.

References: K&R2 Sec. B3 p. 250
ANSI Sec. 4.11.2.1, Sec. 4.11.2.2
ISO Sec. 7.11.2.1, Sec. 7.11.2.2
Rationale Sec. 4.11.2
H&S Sec. 14.3 pp. 341-2
PCS Sec. 11 pp. 165-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.25.html [26/03/2003 11:45:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.26

Question 11.26

What should malloc(0) do? Return a null pointer or a pointer to 0 bytes?

The ANSI/ISO Standard says that it may do either; the behavior is implementation-
defined (see question 11.33).

References: ANSI Sec. 4.10.3
ISO Sec. 7.10.3
PCS Sec. 16.1 p. 386

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.26.html [26/03/2003 11:45:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.27

Question 11.27

Why does the ANSI Standard not guarantee more than six case-insensitive characters
of external identifier significance?

The problem is older linkers which are under the control of neither the ANSI/ISO
Standard nor the C compiler developers on the systems which have them. The
limitation is only that identifiers be significant in the first six characters, not that they
be restricted to six characters in length. This limitation is annoying, but certainly not
unbearable, and is marked in the Standard as ``obsolescent,'' i.e. a future revision will
likely relax it.

This concession to current, restrictive linkers really had to be made, no matter how
vehemently some people oppose it. (The Rationale notes that its retention was ``most
painful.'') If you disagree, or have thought of a trick by which a compiler burdened
with a restrictive linker could present the C programmer with the appearance of more
significance in external identifiers, read the excellently-worded section 3.1.2 in the
X3.159 Rationale (see question 11.1), which discusses several such schemes and
explains why they could not be mandated.

References: ANSI Sec. 3.1.2, Sec. 3.9.1
ISO Sec. 6.1.2, Sec. 6.9.1
Rationale Sec. 3.1.2
H&S Sec. 2.5 pp. 22-3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.27.html [26/03/2003 11:45:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.30

Question 11.30

Why are some ANSI/ISO Standard library routines showing up as undefined, even
though I've got an ANSI compiler?

It's possible to have a compiler available which accepts ANSI syntax, but not to have
ANSI-compatible header files or run-time libraries installed. (In fact, this situation is
rather common when using a non-vendor-supplied compiler such as gcc.) See also
questions 11.29, 13.25, and 13.26.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.30.html [26/03/2003 11:45:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.25

Question 13.25

I keep getting errors due to library functions being undefined, but I'm #including all
the right header files.

In some cases (especially if the functions are nonstandard) you may have to
explicitly ask for the correct libraries to be searched when you link the program. See
also questions 11.30, 13.26, and 14.3.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.25.html [26/03/2003 11:45:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.26

Question 13.26

I'm still getting errors due to library functions being undefined, even though I'm
explicitly requesting the right libraries while linking.

Many linkers make one pass over the list of object files and libraries you specify, and
extract from libraries only those modules which satisfy references which have so far
come up as undefined. Therefore, the order in which libraries are listed with respect
to object files (and each other) is significant; usually, you want to search the libraries
last. (For example, under Unix, put any -l options towards the end of the command
line.) See also question 13.28.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.26.html [26/03/2003 11:45:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.31

Question 11.31

Does anyone have a tool for converting old-style C programs to ANSI C, or vice
versa, or for automatically generating prototypes?

Two programs, protoize and unprotoize, convert back and forth between prototyped
and ``old style'' function definitions and declarations. (These programs do not handle
full-blown translation between ``Classic'' C and ANSI C.) These programs are part of
the FSF's GNU C compiler distribution; see question 18.3.

The unproto program (/pub/unix/unproto5.shar.Z on ftp.win.tue.nl) is a filter which
sits between the preprocessor and the next compiler pass, converting most of ANSI
C to traditional C on-the-fly.

The GNU GhostScript package comes with a little program called ansi2knr.

Before converting ANSI C back to old-style, beware that such a conversion cannot
always be made both safely and automatically. ANSI C introduces new features and
complexities not found in K&R C. You'll especially need to be careful of prototyped
function calls; you'll probably need to insert explicit casts. See also questions 11.3
and 11.29.

Several prototype generators exist, many as modifications to lint. A program
called CPROTO was posted to comp.sources.misc in March, 1992. There is another
program called ``cextract.'' Many vendors supply simple utilities like these with their
compilers. See also question 18.16. (But be careful when generating prototypes for
old functions with ``narrow'' parameters; see question 11.3.)

Finally, are you sure you really need to convert lots of old code to ANSI C? The old-
style function syntax is still acceptable, and a hasty conversion can easily introduce
bugs. (See question 11.3.)

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q11.31.html (1 of 2) [26/03/2003 11:45:56 p.m.]

Question 11.31

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.31.html (2 of 2) [26/03/2003 11:45:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.3

Question 18.3

What's a free or cheap C compiler I can use?

A popular and high-quality free C compiler is the FSF's GNU C compiler, or gcc. It
is available by anonymous ftp from prep.ai.mit.edu in directory pub/gnu, or at
several other FSF archive sites. An MS-DOS port, djgpp, is also available; it can be
found in the Simtel and Oakland archives and probably many others, usually in a
directory like pub/msdos/djgpp/ or simtel/msdos/djgpp/.

There is a shareware compiler called PCC, available as PCC12C.ZIP .

A very inexpensive MS-DOS compiler is Power C from Mix Software, 1132
Commerce Drive, Richardson, TX 75801, USA, 214-783-6001.

Another recently-developed compiler is lcc, available for anonymous ftp from
ftp.cs.princeton.edu in pub/lcc.

Archives associated with comp.compilers contain a great deal of information about
available compilers, interpreters, grammars, etc. (for many languages). The
comp.compilers archives (including an FAQ list), maintained by the moderator, John
R. Levine, are at iecc.com . A list of available compilers and related resources,
maintained by Mark Hopkins, Steven Robenalt, and David Muir Sharnoff, is at
ftp.idiom.com in pub/compilers-list/. (See also the comp.compilers directory in the
news.answers archives at rtfm.mit.edu and ftp.uu.net; see question 20.40.)

See also question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.3.html [26/03/2003 11:45:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.32

Question 11.32

Why won't the Frobozz Magic C Compiler, which claims to be ANSI compliant,
accept this code? I know that the code is ANSI, because gcc accepts it.

Many compilers support a few non-Standard extensions, gcc more so than most.
Are you sure that the code being rejected doesn't rely on such an extension? It is
usually a bad idea to perform experiments with a particular compiler to determine
properties of a language; the applicable standard may permit variations, or the
compiler may be wrong. See also question 11.35.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.32.html [26/03/2003 11:45:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 11.34

Question 11.34

I'm appalled that the ANSI Standard leaves so many issues undefined. Isn't a
Standard's whole job to standardize these things?

It has always been a characteristic of C that certain constructs behaved in whatever
way a particular compiler or a particular piece of hardware chose to implement them.
This deliberate imprecision often allows compilers to generate more efficient code
for common cases, without having to burden all programs with extra code to assure
well-defined behavior of cases deemed to be less reasonable. Therefore, the Standard
is simply codifying existing practice.

A programming language standard can be thought of as a treaty between the
language user and the compiler implementor. Parts of that treaty consist of features
which the compiler implementor agrees to provide, and which the user may assume
will be available. Other parts, however, consist of rules which the user agrees to
follow and which the implementor may assume will be followed. As long as both
sides uphold their guarantees, programs have a fighting chance of working correctly.
If either side reneges on any of its commitments, nothing is guaranteed to work.

See also question 11.35.

References: Rationale Sec. 1.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q11.34.html [26/03/2003 11:45:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.2

Question 12.2

Why does the code while(!feof(infp)) { fgets(buf, MAXLINE,
infp); fputs(buf, outfp); } copy the last line twice?

In C, EOF is only indicated after an input routine has tried to read, and has reached
end-of-file. (In other words, C's I/O is not like Pascal's.) Usually, you should just
check the return value of the input routine (fgets in this case); often, you don't
need to use feof at all.

References: K&R2 Sec. 7.6 p. 164
ANSI Sec. 4.9.3, Sec. 4.9.7.1, Sec. 4.9.10.2
ISO Sec. 7.9.3, Sec. 7.9.7.1, Sec. 7.9.10.2
H&S Sec. 15.14 p. 382

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.2.html [26/03/2003 11:45:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.4

Question 12.4

My program's prompts and intermediate output don't always show up on the screen,
especially when I pipe the output through another program.

It's best to use an explicit fflush(stdout) whenever output should definitely be
visible. Several mechanisms attempt to perform the fflush for you, at the ``right
time,'' but they tend to apply only when stdout is an interactive terminal. (See also
question 12.24.)

References: ANSI Sec. 4.9.5.2
ISO Sec. 7.9.5.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.4.html [26/03/2003 11:46:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.24

Question 12.24

Why does errno contain ENOTTY after a call to printf?

Many implementations of the stdio package adjust their behavior slightly if stdout
is a terminal. To make the determination, these implementations perform some
operation which happens to fail (with ENOTTY) if stdout is not a terminal.
Although the output operation goes on to complete successfully, errno still
contains ENOTTY. (Note that it is only meaningful for a program to inspect the
contents of errno after an error has been reported.)

References: ANSI Sec. 4.1.3, Sec. 4.9.10.3
ISO Sec. 7.1.4, Sec. 7.9.10.3
CT&P Sec. 5.4 p. 73
PCS Sec. 14 p. 254

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.24.html [26/03/2003 11:46:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.5

Question 12.5

How can I read one character at a time, without waiting for the RETURN key?

See question 19.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.5.html [26/03/2003 11:46:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.6

Question 12.6

How can I print a '%' character in a printf format string? I tried \%, but it didn't
work.

Simply double the percent sign: %% .

\% can't work, because the backslash \ is the compiler's escape character, while here
our problem is that the % is printf's escape character.

See also question 19.17.

References: K&R1 Sec. 7.3 p. 147
K&R2 Sec. 7.2 p. 154
ANSI Sec. 4.9.6.1
ISO Sec. 7.9.6.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.6.html [26/03/2003 11:46:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.17

Question 19.17

Why can't I open a file by its explicit path? The call

fopen("c:\newdir\file.dat", "r")

is failing.

The file you actually requested--with the characters \n and \f in its name--probably
doesn't exist, and isn't what you thought you were trying to open.

In character constants and string literals, the backslash \ is an escape character,
giving special meaning to the character following it. In order for literal backslashes
in a pathname to be passed through to fopen (or any other routine) correctly, they
have to be doubled, so that the first backslash in each pair quotes the second one:

 fopen("c:\\newdir\\file.dat", "r");

Alternatively, under MS-DOS, it turns out that forward slashes are also accepted as
directory separators, so you could use

 fopen("c:/newdir/file.dat", "r");

(Note, by the way, that header file names mentioned in preprocessor #include
directives are not string literals, so you may not have to worry about backslashes
there.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.17.html [26/03/2003 11:46:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.9

Question 12.9

Someone told me it was wrong to use %lf with printf. How can printf use %f
for type double, if scanf requires %lf?

It's true that printf's %f specifier works with both float and double
arguments. Due to the ``default argument promotions'' (which apply in variable-
length argument lists such as printf's, whether or not prototypes are in scope),
values of type float are promoted to double, and printf therefore sees only
doubles. See also questions 12.13 and 15.2.

References: K&R1 Sec. 7.3 pp. 145-47, Sec. 7.4 pp. 147-50
K&R2 Sec. 7.2 pp. 153-44, Sec. 7.4 pp. 157-59
ANSI Sec. 4.9.6.1, Sec. 4.9.6.2
ISO Sec. 7.9.6.1, Sec. 7.9.6.2
H&S Sec. 15.8 pp. 357-64, Sec. 15.11 pp. 366-78
CT&P Sec. A.1 pp. 121-33

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.9.html [26/03/2003 11:46:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.13

Question 12.13

Why doesn't this code:

double d;
scanf("%f", &d);

work?

Unlike printf, scanf uses %lf for values of type double, and %f for float.
See also question 12.9.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.13.html [26/03/2003 11:46:05 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.10

Question 12.10

How can I implement a variable field width with printf? That is, instead of %8d, I
want the width to be specified at run time.

printf("%*d", width, n) will do just what you want. See also question
12.15.

References: K&R1 Sec. 7.3
K&R2 Sec. 7.2
ANSI Sec. 4.9.6.1
ISO Sec. 7.9.6.1
H&S Sec. 15.11.6
CT&P Sec. A.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.10.html [26/03/2003 11:46:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.15

Question 12.15

How can I specify a variable width in a scanf format string?

You can't; an asterisk in a scanf format string means to suppress assignment. You
may be able to use ANSI stringizing and string concatenation to accomplish about
the same thing, or to construct a scanf format string on-the-fly.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.15.html [26/03/2003 11:46:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.11

Question 12.11

How can I print numbers with commas separating the thousands?
What about currency formatted numbers?

The routines in <locale.h> begin to provide some support for these operations,
but there is no standard routine for doing either task. (The only thing printf does
in response to a custom locale setting is to change its decimal-point character.)

References: ANSI Sec. 4.4
ISO Sec. 7.4
H&S Sec. 11.6 pp. 301-4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.11.html [26/03/2003 11:46:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.12

Question 12.12

Why doesn't the call scanf("%d", i) work?

The arguments you pass to scanf must always be pointers. To fix the fragment
above, change it to scanf("%d", &i) .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.12.html [26/03/2003 11:46:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.17

Question 12.17

When I read numbers from the keyboard with scanf "%d\n", it seems to hang
until I type one extra line of input.

Perhaps surprisingly, \n in a scanf format string does not mean to expect a
newline, but rather to read and discard characters as long as each is a whitespace
character. See also question 12.20.

References: K&R2 Sec. B1.3 pp. 245-6
ANSI Sec. 4.9.6.2
ISO Sec. 7.9.6.2
H&S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.17.html [26/03/2003 11:46:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.20

Question 12.20

Why does everyone say not to use scanf? What should I use instead?

scanf has a number of problems--see questions 12.17, 12.18, and 12.19. Also, its
%s format has the same problem that gets() has (see question 12.23)--it's hard to
guarantee that the receiving buffer won't overflow.

More generally, scanf is designed for relatively structured, formatted input (its
name is in fact derived from ``scan formatted''). If you pay attention, it will tell you
whether it succeeded or failed, but it can tell you only approximately where it failed,
and not at all how or why. It's nearly impossible to do decent error recovery with
scanf; usually it's far easier to read entire lines (with fgets or the like), then
interpret them, either using sscanf or some other techniques. (Routines like
strtol, strtok, and atoi are often useful; see also question 13.6.) If you do use
sscanf, don't forget to check the return value to make sure that the expected
number of items were found.

References: K&R2 Sec. 7.4 p. 159

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.20.html [26/03/2003 11:46:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.18

Question 12.18

I'm reading a number with scanf %d and then a string with gets(), but the
compiler seems to be skipping the call to gets()!

scanf %d won't consume a trailing newline. If the input number is immediately
followed by a newline, that newline will immediately satisfy the gets().

As a general rule, you shouldn't try to interlace calls to scanf with calls to gets()
(or any other input routines); scanf's peculiar treatment of newlines almost always
leads to trouble. Either use scanf to read everything or nothing.

See also questions 12.20 and 12.23.

References: ANSI Sec. 4.9.6.2
ISO Sec. 7.9.6.2
H&S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.18.html [26/03/2003 11:46:15 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.19

Question 12.19

I figured I could use scanf more safely if I checked its return value to make sure
that the user typed the numeric values I expect, but sometimes it seems to go into an
infinite loop.

When scanf is attempting to convert numbers, any non-numeric characters it
encounters terminate the conversion and are left on the input stream. Therefore,
unless some other steps are taken, unexpected non-numeric input ``jams'' scanf
again and again: scanf never gets past the bad character(s) to encounter later, valid
data. If the user types a character like `x' in response to a numeric scanf format
such as %d or %f, code that simply re-prompts and retries the same scanf call will
immediately reencounter the same `x'.

See also question 12.20.

References: ANSI Sec. 4.9.6.2
ISO Sec. 7.9.6.2
H&S Sec. 15.8 pp. 357-64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.19.html [26/03/2003 11:46:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.6

Question 13.6

How can I split up a string into whitespace-separated fields?
How can I duplicate the process by which main() is handed argc and argv?

The only Standard routine available for this kind of ``tokenizing'' is strtok,
although it can be tricky to use and it may not do everything you want it to. (For
instance, it does not handle quoting.)

References: K&R2 Sec. B3 p. 250
ANSI Sec. 4.11.5.8
ISO Sec. 7.11.5.8
H&S Sec. 13.7 pp. 333-4
PCS p. 178

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.6.html [26/03/2003 11:46:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.12

Question 19.12

How can I find out the size of a file, prior to reading it in?

If the ``size of a file'' is the number of characters you'll be able to read from it in C, it
is difficult or impossible to determine this number exactly).

Under Unix, the stat call will give you an exact answer. Several other systems
supply a Unix-like stat which will give an approximate answer. You can fseek
to the end and then use ftell, but these tend to have the same problems: fstat is
not portable, and generally tells you the same thing stat tells you; ftell is not
guaranteed to return a byte count except for binary files. Some systems provide
routines called filesize or filelength, but these are not portable, either.

Are you sure you have to determine the file's size in advance? Since the most
accurate way of determining the size of a file as a C program will see it is to open the
file and read it, perhaps you can rearrange the code to learn the size as it reads.

References: ANSI Sec. 4.9.9.4
ISO Sec. 7.9.9.4
H&S Sec. 15.5.1
PCS Sec. 12 p. 213
POSIX Sec. 5.6.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.12.html [26/03/2003 11:46:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.25

Question 12.25

What's the difference between fgetpos/fsetpos and ftell/fseek?
What are fgetpos and fsetpos good for?

fgetpos and fsetpos use a special typedef, fpos_t, for representing offsets
(positions) in a file. The type behind this typedef, if chosen appropriately, can
represent arbitrarily large offsets, allowing fgetpos and fsetpos to be used with
arbitrarily huge files. ftell and fseek, on the other hand, use long int, and
are therefore limited to offsets which can be represented in a long int. See also
question 1.4.

References: K&R2 Sec. B1.6 p. 248
ANSI Sec. 4.9.1, Secs. 4.9.9.1,4.9.9.3
ISO Sec. 7.9.1, Secs. 7.9.9.1,7.9.9.3
H&S Sec. 15.5 p. 252

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.25.html [26/03/2003 11:46:20 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.26

Question 12.26

How can I flush pending input so that a user's typeahead isn't read at the next
prompt? Will fflush(stdin) work?

fflush is defined only for output streams. Since its definition of ``flush'' is to
complete the writing of buffered characters (not to discard them), discarding unread
input would not be an analogous meaning for fflush on input streams.

There is no standard way to discard unread characters from a stdio input stream, nor
would such a way be sufficient unread characters can also accumulate in other, OS-
level input buffers.

References: ANSI Sec. 4.9.5.2
ISO Sec. 7.9.5.2
H&S Sec. 15.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.26.html [26/03/2003 11:46:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.30

Question 12.30

I'm trying to update a file in place, by using fopen mode "r+", reading a certain
string, and writing back a modified string, but it's not working.

Be sure to call fseek before you write, both to seek back to the beginning of the
string you're trying to overwrite, and because an fseek or fflush is always
required between reading and writing in the read/write "+" modes. Also, remember
that you can only overwrite characters with the same number of replacement
characters; see also question 19.14.

References: ANSI Sec. 4.9.5.3
ISO Sec. 7.9.5.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.30.html [26/03/2003 11:46:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.14

Question 19.14

How can I insert or delete a line (or record) in the middle of a file?

Short of rewriting the file, you probably can't. The usual solution is simply to rewrite
the file. (Instead of deleting records, you might consider simply marking them as
deleted, to avoid rewriting.) See also questions 12.30 and 19.13.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.14.html [26/03/2003 11:46:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.33

Question 12.33

How can I redirect stdin or stdout to a file from within a program?

Use freopen (but see question 12.34).

References: ANSI Sec. 4.9.5.4
ISO Sec. 7.9.5.4
H&S Sec. 15.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.33.html [26/03/2003 11:46:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 12.34

Question 12.34

Once I've used freopen, how can I get the original stdout (or stdin) back?

There isn't a good way. If you need to switch back, the best solution is not to have
used freopen in the first place. Try using your own explicit output (or input)
stream variable, which you can reassign at will, while leaving the original stdout
(or stdin) undisturbed.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q12.34.html [26/03/2003 11:46:33 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.1

Question 13.1

How can I convert numbers to strings (the opposite of atoi)? Is there an itoa
function?

Just use sprintf. (Don't worry that sprintf may be overkill, potentially wasting
run time or code space; it works well in practice.) See the examples in the answer to
question 7.5; see also question 12.21.

You can obviously use sprintf to convert long or floating-point numbers to
strings as well (using %ld or %f).

References: K&R1 Sec. 3.6 p. 60
K&R2 Sec. 3.6 p. 64

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.1.html [26/03/2003 11:46:34 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.2

Question 13.2

Why does strncpy not always place a '\0' terminator in the destination string?

strncpy was first designed to handle a now-obsolete data structure, the fixed-
length, not-necessarily-\0-terminated ``string.'' (A related quirk of strncpy's is
that it pads short strings with multiple \0's, out to the specified length.) strncpy is
admittedly a bit cumbersome to use in other contexts, since you must often append a
'\0' to the destination string by hand. You can get around the problem by using
strncat instead of strncpy: if the destination string starts out empty, strncat
does what you probably wanted strncpy to do. Another possibility is
sprintf(dest, "%.*s", n, source) .

When arbitrary bytes (as opposed to strings) are being copied, memcpy is usually a
more appropriate routine to use than strncpy.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.2.html [26/03/2003 11:46:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.5

Question 13.5

Why do some versions of toupper act strangely if given an upper-case letter?
Why does some code call islower before toupper?

Older versions of toupper and tolower did not always work correctly on
arguments which did not need converting (i.e. on digits or punctuation or letters
already of the desired case). In ANSI/ISO Standard C, these functions are guaranteed
to work appropriately on all character arguments.

References: ANSI Sec. 4.3.2
ISO Sec. 7.3.2
H&S Sec. 12.9 pp. 320-1
PCS p. 182

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.5.html [26/03/2003 11:46:36 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.7

Question 13.7

I need some code to do regular expression and wildcard matching.

Make sure you recognize the difference between classic regular expressions (variants
of which are used in such Unix utilities as ed and grep), and filename wildcards
(variants of which are used by most operating systems).

There are a number of packages available for matching regular expressions. Most
packages use a pair of functions, one for ``compiling'' the regular expression, and one
for ``executing'' it (i.e. matching strings against it). Look for header files named
<regex.h> or <regexp.h>, and functions called regcmp/regex,
regcomp/regexec, or re_comp/re_exec. (These functions may exist in a
separate regexp library.) A popular, freely-redistributable regexp package by Henry
Spencer is available from ftp.cs.toronto.edu in pub/regexp.shar.Z or in several other
archives. The GNU project has a package called rx. See also question 18.16.

Filename wildcard matching (sometimes called ``globbing'') is done in a variety of
ways on different systems. On Unix, wildcards are automatically expanded by the
shell before a process is invoked, so programs rarely have to worry about them
explicitly. Under MS-DOS compilers, there is often a special object file which can
be linked in to a program to expand wildcards while argv is being built. Several
systems (including MS-DOS and VMS) provide system services for listing or
opening files specified by wildcards. Check your compiler/library documentation.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.7.html [26/03/2003 11:46:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.8

Question 13.8

I'm trying to sort an array of strings with qsort, using strcmp as the comparison function,
but it's not working.

By ``array of strings'' you probably mean ``array of pointers to char.'' The arguments to
qsort's comparison function are pointers to the objects being sorted, in this case, pointers to
pointers to char. strcmp, however, accepts simple pointers to char. Therefore, strcmp
can't be used directly. Write an intermediate comparison function like this:

/* compare strings via pointers */
int pstrcmp(const void *p1, const void *p2)
{
 return strcmp(*(char * const *)p1, *(char * const *)p2);
}

The comparison function's arguments are expressed as ``generic pointers,'' const void *.
They are converted back to what they ``really are'' (char **) and dereferenced, yielding
char *'s which can be passed to strcmp. (Under a pre-ANSI compiler, declare the pointer
parameters as char * instead of void *, and drop the consts.)

(Don't be misled by the discussion in K&R2 Sec. 5.11 pp. 119-20, which is not discussing the
Standard library's qsort).

References: ANSI Sec. 4.10.5.2
ISO Sec. 7.10.5.2
H&S Sec. 20.5 p. 419

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.8.html [26/03/2003 11:46:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.9

Question 13.9

Now I'm trying to sort an array of structures with qsort. My comparison function
takes pointers to structures, but the compiler complains that the function is of the wrong
type for qsort. How can I cast the function pointer to shut off the warning?

The conversions must be in the comparison function, which must be declared as
accepting ``generic pointers'' (const void *) as discussed in question 13.8 above.
The comparison function might look like

int mystructcmp(const void *p1, const void *p2)
{
 const struct mystruct *sp1 = p1;
 const struct mystruct *sp2 = p2;
 /* now compare sp1->whatever and sp2-> ... */

(The conversions from generic pointers to struct mystruct pointers happen in the
initializations sp1 = p1 and sp2 = p2; the compiler performs the conversions
implicitly since p1 and p2 are void pointers. Explicit casts, and char * pointers,
would be required under a pre-ANSI compiler. See also question 7.7.)

If, on the other hand, you're sorting pointers to structures, you'll need indirection, as in
question 13.8: sp1 = *(struct mystruct **)p1 .

In general, it is a bad idea to insert casts just to ``shut the compiler up.'' Compiler
warnings are usually trying to tell you something, and unless you really know what
you're doing, you ignore or muzzle them at your peril. See also question 4.9.

References: ANSI Sec. 4.10.5.2
ISO Sec. 7.10.5.2
H&S Sec. 20.5 p. 419

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.9.html [26/03/2003 11:46:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.10

Question 13.10

How can I sort a linked list?

Sometimes it's easier to keep the list in order as you build it (or perhaps to use a tree
instead). Algorithms like insertion sort and merge sort lend themselves ideally to use
with linked lists. If you want to use a standard library function, you can allocate a
temporary array of pointers, fill it in with pointers to all your list nodes, call qsort,
and finally rebuild the list pointers based on the sorted array.

References: Knuth Sec. 5.2.1 pp. 80-102, Sec. 5.2.4 pp. 159-168
Sedgewick Sec. 8 pp. 98-100, Sec. 12 pp. 163-175

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.10.html [26/03/2003 11:46:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.11

Question 13.11

How can I sort more data than will fit in memory?

You want an ``external sort,'' which you can read about in Knuth, Volume 3. The
basic idea is to sort the data in chunks (as much as will fit in memory at one time),
write each sorted chunk to a temporary file, and then merge the files. Your operating
system may provide a general-purpose sort utility, and if so, you can try invoking it
from within your program: see questions 19.27 and 19.30.

References: Knuth Sec. 5.4 pp. 247-378
Sedgewick Sec. 13 pp. 177-187

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.11.html [26/03/2003 11:46:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.27

Question 19.27

How can I invoke another program (a standalone executable, or an operating system
command) from within a C program?

Use the library function system, which does exactly that. Note that system's
return value is the command's exit status, and usually has nothing to do with the
output of the command. Note also that system accepts a single string representing
the command to be invoked; if you need to build up a complex command line, you
can use sprintf. See also question 19.30.

References: K&R1 Sec. 7.9 p. 157
K&R2 Sec. 7.8.4 p. 167, Sec. B6 p. 253
ANSI Sec. 4.10.4.5
ISO Sec. 7.10.4.5
H&S Sec. 19.2 p. 407
PCS Sec. 11 p. 179

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.27.html [26/03/2003 11:46:45 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.30

Question 19.30

How can I invoke another program or command and trap its output?

Unix and some other systems provide a popen routine, which sets up a stdio stream
on a pipe connected to the process running a command, so that the output can be read
(or the input supplied). (Also, remember to call pclose.)

If you can't use popen, you may be able to use system, with the output going to a
file which you then open and read.

If you're using Unix and popen isn't sufficient, you can learn about pipe, dup,
fork, and exec.

(One thing that probably would not work, by the way, would be to use freopen.)

References: PCS Sec. 11 p. 169

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.30.html [26/03/2003 11:46:46 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.13

Question 13.13

I know that the library routine localtime will convert a time_t into a broken-
down struct tm, and that ctime will convert a time_t to a printable string.
How can I perform the inverse operations of converting a struct tm or a string
into a time_t?

ANSI C specifies a library routine, mktime, which converts a struct tm to a
time_t.

Converting a string to a time_t is harder, because of the wide variety of date and
time formats which might be encountered. Some systems provide a strptime
function, which is basically the inverse of strftime. Other popular routines are
partime (widely distributed with the RCS package) and getdate (and a few
others, from the C news distribution). See question 18.16.

References: K&R2 Sec. B10 p. 256
ANSI Sec. 4.12.2.3
ISO Sec. 7.12.2.3
H&S Sec. 18.4 pp. 401-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.13.html [26/03/2003 11:46:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.14

Question 13.14

How can I add n days to a date? How can I find the difference between two dates?

The ANSI/ISO Standard C mktime and difftime functions provide some
support for both problems. mktime accepts non-normalized dates, so it is
straightforward to take a filled-in struct tm, add or subtract from the tm_mday
field, and call mktime to normalize the year, month, and day fields (and incidentally
convert to a time_t value). difftime computes the difference, in seconds,
between two time_t values; mktime can be used to compute time_t values for
two dates to be subtracted.

These solutions are only guaranteed to work correctly for dates in the range which
can be represented as time_t's. The tm_mday field is an int, so day offsets of
more than 32,736 or so may cause overflow. Note also that at daylight saving time
changeovers, local days are not 24 hours long.

Another approach to both problems is to use ``Julian day'' numbers. Implementations
of Julian day routines can be found in the file JULCAL10.ZIP from the
Simtel/Oakland archives (see question 18.16) and the ``Date conversions'' article
mentioned in the References.

See also questions 13.13, 20.31, and 20.32.

References: K&R2 Sec. B10 p. 256
ANSI Secs. 4.12.2.2,4.12.2.3
ISO Secs. 7.12.2.2,7.12.2.3
H&S Secs. 18.4,18.5 pp. 401-2
David Burki, ``Date Conversions''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.14.html [26/03/2003 11:46:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.15

Question 13.15

I need a random number generator.

The Standard C library has one: rand. The implementation on your system may not
be perfect, but writing a better one isn't necessarily easy, either.

If you do find yourself needing to implement your own random number generator,
there is plenty of literature out there; see the References. There are also any number
of packages on the net: look for r250, RANLIB, and FSULTRA (see question 18.16).

References: K&R2 Sec. 2.7 p. 46, Sec. 7.8.7 p. 168
ANSI Sec. 4.10.2.1
ISO Sec. 7.10.2.1
H&S Sec. 17.7 p. 393
PCS Sec. 11 p. 172
Knuth Vol. 2 Chap. 3 pp. 1-177
Park and Miller, ``Random Number Generators: Good Ones are hard to Find''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.15.html [26/03/2003 11:46:49 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.16

Question 13.16

How can I get random integers in a certain range?

The obvious way,

 rand() % N /* POOR */

(which tries to return numbers from 0 to N-1) is poor, because the low-order bits of
many random number generators are distressingly non-random. (See question 13.18.)
A better method is something like

 (int)((double)rand() / ((double)RAND_MAX + 1) * N)

If you're worried about using floating point, you could use

 rand() / (RAND_MAX / N + 1)

Both methods obviously require knowing RAND_MAX (which ANSI #defines in
<stdlib.h>), and assume that N is much less than RAND_MAX.

(Note, by the way, that RAND_MAX is a constant telling you what the fixed range of
the C library rand function is. You cannot set RAND_MAX to some other value, and
there is no way of requesting that rand return numbers in some other range.)

If you're starting with a random number generator which returns floating-point values
between 0 and 1, all you have to do to get integers from 0 to N-1 is multiply the
output of that generator by N.

References: K&R2 Sec. 7.8.7 p. 168
PCS Sec. 11 p. 172

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.16.html [26/03/2003 11:46:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.18

Question 13.18

I need a random true/false value, so I'm just taking rand() % 2, but it's alternating
0, 1, 0, 1, 0...

Poor pseudorandom number generators (such as the ones unfortunately supplied with
some systems) are not very random in the low-order bits. Try using the higher-order
bits: see question 13.16.

References: Knuth Sec. 3.2.1.1 pp. 12-14

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.18.html [26/03/2003 11:46:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.17

Question 13.17

Each time I run my program, I get the same sequence of numbers back from
rand().

You can call srand to seed the pseudo-random number generator with a truly
random initial value. Popular seed values are the time of day, or the elapsed time
before the user presses a key (although keypress times are hard to determine
portably; see question 19.37). (Note also that it's rarely useful to call srand more
than once during a run of a program; in particular, don't try calling srand before
each call to rand, in an attempt to get ``really random'' numbers.)

References: K&R2 Sec. 7.8.7 p. 168
ANSI Sec. 4.10.2.2
ISO Sec. 7.10.2.2
H&S Sec. 17.7 p. 393

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.17.html [26/03/2003 11:46:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.37

Question 19.37

How can I implement a delay, or time a user's response, with sub-second resolution?

Unfortunately, there is no portable way. V7 Unix, and derived systems, provided a
fairly useful ftime routine with resolution up to a millisecond, but it has
disappeared from System V and POSIX. Other routines you might look for on your
system include clock, delay, gettimeofday, msleep, nap, napms,
setitimer, sleep, times, and usleep. (A routine called wait, however, is at
least under Unix not what you want.) The select and poll calls (if available) can
be pressed into service to implement simple delays. On MS-DOS machines, it is
possible to reprogram the system timer and timer interrupts.

Of these, only clock is part of the ANSI Standard. The difference between two
calls to clock gives elapsed execution time, and if CLOCKS_PER_SEC is greater
than 1, the difference will have subsecond resolution. However, clock gives
elapsed processor time used by the current program, which on a multitasking system
may differ considerably from real time.

If you're trying to implement a delay and all you have available is a time-reporting
function, you can implement a CPU-intensive busy-wait, but this is only an option on
a single-user, single-tasking machine as it is terribly antisocial to any other
processes. Under a multitasking operating system, be sure to use a call which puts
your process to sleep for the duration, such as sleep or select, or pause in
conjunction with alarm or setitimer.

For really brief delays, it's tempting to use a do-nothing loop like

 long int i;
 for(i = 0; i < 1000000; i++)
 ;

but resist this temptation if at all possible! For one thing, your carefully-calculated
delay loops will stop working next month when a faster processor comes out.
Perhaps worse, a clever compiler may notice that the loop does nothing and optimize
it away completely.

References: H&S Sec. 18.1 pp. 398-9
PCS Sec. 12 pp. 197-8,215-6

http://www.eskimo.com/~scs/C-faq/q19.37.html (1 of 2) [26/03/2003 11:46:54 p.m.]

Question 19.37

POSIX Sec. 4.5.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.37.html (2 of 2) [26/03/2003 11:46:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.20

Question 13.20

How can I generate random numbers with a normal or Gaussian distribution?

Here is one method, by Box and Muller, and recommended by Knuth:

#include <stdlib.h>
#include <math.h>

double gaussrand()
{
 static double V1, V2, S;
 static int phase = 0;
 double X;

 if(phase == 0) {
 do {
 double U1 = (double)rand() / RAND_MAX;
 double U2 = (double)rand() / RAND_MAX;

 V1 = 2 * U1 - 1;
 V2 = 2 * U2 - 1;
 S = V1 * V1 + V2 * V2;
 } while(S >= 1 || S == 0);

 X = V1 * sqrt(-2 * log(S) / S);
 } else
 X = V2 * sqrt(-2 * log(S) / S);

 phase = 1 - phase;

 return X;
}

See the extended versions of this list (see question 20.40) for other ideas.

References: Knuth Sec. 3.4.1 p. 117
Box and Muller, ``A Note on the Generation of Random Normal Deviates''
Press et al., Numerical Recipes in C Sec. 7.2 pp. 288-290

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q13.20.html (1 of 2) [26/03/2003 11:46:55 p.m.]

Question 13.20

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.20.html (2 of 2) [26/03/2003 11:46:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.24

Question 13.24

I'm trying to port this old program. Why do I get ``undefined external'' errors for
some library functions?

Some old or semistandard functions have been renamed or replaced over the years;
if you need:/you should instead:

index
use strchr.

rindex
use strrchr.

bcopy
use memmove, after interchanging the first and second arguments (see also

question 11.25).
bcmp

use memcmp.
bzero

use memset, with a second argument of 0.

Contrariwise, if you're using an older system which is missing the functions in the
second column, you may be able to implement them in terms of, or substitute, the
functions in the first.

References: PCS Sec. 11

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.24.html [26/03/2003 11:46:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.3

Question 14.3

I'm trying to do some simple trig, and I am #including <math.h>, but I keep
getting ``undefined: sin'' compilation errors.

Make sure you're actually linking with the math library. For instance, under Unix,
you usually need to use the -lm option, at the end of the command line, when
compiling/linking. See also questions 13.25 and 13.26.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.3.html [26/03/2003 11:46:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 13.28

Question 13.28

What does it mean when the linker says that _end is undefined?

That message is a quirk of the old Unix linkers. You get an error about _end being
undefined only when other things are undefined, too--fix the others, and the error
about _end will disappear. (See also questions 13.25 and 13.26.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q13.28.html [26/03/2003 11:46:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.1

Question 14.1

When I set a float variable to, say, 3.1, why is printf printing it as 3.0999999?

Most computers use base 2 for floating-point numbers as well as for integers. In base
2, 1/1010 (that is, 1/10 decimal) is an infinitely-repeating fraction: its binary
representation is 0.0001100110011... . Depending on how carefully your compiler's
binary/decimal conversion routines (such as those used by printf) have been
written, you may see discrepancies when numbers (especially low-precision
floats) not exactly representable in base 2 are assigned or read in and then printed
(i.e. converted from base 10 to base 2 and back again). See also question 14.6.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.1.html [26/03/2003 11:46:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.6

Question 14.6

How do I round numbers?

The simplest and most straightforward way is with code like

(int)(x + 0.5)

This technique won't work properly for negative numbers, though.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.6.html [26/03/2003 11:47:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.2

Question 14.2

I'm trying to take some square roots, but I'm getting crazy numbers.

Make sure that you have #included <math.h>, and correctly declared other
functions returning double. (Another library routine to be careful with is atof,
which is declared in <stdlib.h>.) See also question 14.3.

References: CT&P Sec. 4.5 pp. 65-6

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.2.html [26/03/2003 11:47:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.4

Question 14.4

My floating-point calculations are acting strangely and giving me different answers
on different machines.

First, see question 14.2.

If the problem isn't that simple, recall that digital computers usually use floating-
point formats which provide a close but by no means exact simulation of real number
arithmetic. Underflow, cumulative precision loss, and other anomalies are often
troublesome.

Don't assume that floating-point results will be exact, and especially don't assume
that floating-point values can be compared for equality. (Don't throw haphazard
``fuzz factors'' in, either; see question 14.5.)

These problems are no worse for C than they are for any other computer language.
Certain aspects of floating-point are usually defined as ``however the processor does
them'' (see also question 11.34), otherwise a compiler for a machine without the
``right'' model would have to do prohibitively expensive emulations.

This article cannot begin to list the pitfalls associated with, and workarounds
appropriate for, floating-point work. A good numerical programming text should
cover the basics; see also the references below.

References: Kernighan and Plauger, The Elements of Programming Style Sec. 6 pp.
115-8
Knuth, Volume 2 chapter 4
David Goldberg, ``What Every Computer Scientist Should Know about Floating-
Point Arithmetic''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.4.html [26/03/2003 11:47:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.5

Question 14.5

What's a good way to check for ``close enough'' floating-point equality?

Since the absolute accuracy of floating point values varies, by definition, with their
magnitude, the best way of comparing two floating point values is to use an accuracy
threshold which is relative to the magnitude of the numbers being compared. Rather
than

 double a, b;
 ...
 if(a == b) /* WRONG */

use something like

 #include <math.h>

 if(fabs(a - b) <= epsilon * fabs(a))

for some suitably-chosen epsilon.

References: Knuth Sec. 4.2.2 pp. 217-8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.5.html [26/03/2003 11:47:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.7

Question 14.7

Why doesn't C have an exponentiation operator?

Because few processors have an exponentiation instruction. C has a pow function,
declared in <math.h>, although explicit multiplication is often better for small
positive integral exponents.

References: ANSI Sec. 4.5.5.1
ISO Sec. 7.5.5.1
H&S Sec. 17.6 p. 393

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.7.html [26/03/2003 11:47:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.8

Question 14.8

The pre-#defined constant M_PI seems to be missing from my machine's copy of
<math.h>.

That constant (which is apparently supposed to be the value of pi, accurate to the
machine's precision), is not standard. If you need pi, you'll have to #define it
yourself.

References: PCS Sec. 13 p. 237

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.8.html [26/03/2003 11:47:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.9

Question 14.9

How do I test for IEEE NaN and other special values?

Many systems with high-quality IEEE floating-point implementations provide
facilities (e.g. predefined constants, and functions like isnan(), either as
nonstandard extensions in <math.h> or perhaps in <ieee.h> or <nan.h>) to
deal with these values cleanly, and work is being done to formally standardize such
facilities. A crude but usually effective test for NaN is exemplified by

 #define isnan(x) ((x) != (x))

although non-IEEE-aware compilers may optimize the test away.

Another possibility is to format the value in question using sprintf: on many
systems it generates strings like "NaN" and "Inf" which you could compare for in
a pinch.

See also question 19.39.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.9.html [26/03/2003 11:47:09 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.39

Question 19.39

How can I handle floating-point exceptions gracefully?

On many systems, you can define a routine matherr which will be called when
there are certain floating-point errors, such as errors in the math routines in
<math.h>. You may also be able to use signal (see question 19.38) to catch
SIGFPE. See also question 14.9.

References: Rationale Sec. 4.5.1

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.39.html [26/03/2003 11:47:10 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 14.13

Question 14.13

I'm having trouble with a Turbo C program which crashes and says something like
``floating point formats not linked.''

Some compilers for small machines, including Borland's (and Ritchie's original PDP-
11 compiler), leave out certain floating point support if it looks like it will not be
needed. In particular, the non-floating-point versions of printf and scanf save
space by not including code to handle %e, %f, and %g. It happens that Borland's
heuristics for determining whether the program uses floating point are insufficient,
and the programmer must sometimes insert an extra, explicit call to a floating-point
library routine to force loading of floating-point support. (See the
comp.os.msdos.programmer FAQ list for more information.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q14.13.html [26/03/2003 11:47:11 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.7

Question 15.7

I have a pre-ANSI compiler, without <stdarg.h>. What can I do?

There's an older header, <varargs.h>, which offers about the same functionality.

References: H&S Sec. 11.4 pp. 296-9
CT&P Sec. A.2 pp. 134-139
PCS Sec. 11 pp. 184-5, Sec. 13 p. 250

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.7.html [26/03/2003 11:47:12 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.6

Question 15.6

How can I write a function analogous to scanf, that calls scanf to do most of the
work?

Unfortunately, vscanf and the like are not standard. You're on your own.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.6.html [26/03/2003 11:47:13 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.8

Question 15.8

How can I discover how many arguments a function was actually called with?

This information is not available to a portable program. Some old systems provided a
nonstandard nargs function, but its use was always questionable, since it typically
returned the number of words passed, not the number of arguments. (Structures,
long ints, and floating point values are usually passed as several words.)

Any function which takes a variable number of arguments must be able to determine
from the arguments themselves how many of them there are. printf-like functions
do this by looking for formatting specifiers (%d and the like) in the format string
(which is why these functions fail badly if the format string does not match the
argument list). Another common technique, applicable when the arguments are all of
the same type, is to use a sentinel value (often 0, -1, or an appropriately-cast null
pointer) at the end of the list (see the execl and vstrcat examples in questions
5.2 and 15.4). Finally, if their types are predictable, you can pass an explicit count of
the number of variable arguments (although it's usually a nuisance for the caller to
generate).

References: PCS Sec. 11 pp. 167-8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.8.html [26/03/2003 11:47:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.9

Question 15.9

My compiler isn't letting me declare a function

 int f(...)
 {
 }

i.e. with no fixed arguments.

Standard C requires at least one fixed argument, in part so that you can hand it to
va_start.

References: ANSI Sec. 3.5.4, Sec. 3.5.4.3, Sec. 4.8.1.1
ISO Sec. 6.5.4, Sec. 6.5.4.3, Sec. 7.8.1.1
H&S Sec. 9.2 p. 263

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.9.html [26/03/2003 11:47:14 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.10

Question 15.10

I have a varargs function which accepts a float parameter. Why isn't

va_arg(argp, float)

working?

In the variable-length part of variable-length argument lists, the old ``default
argument promotions'' apply: arguments of type float are always promoted
(widened) to type double, and types char and short int are promoted to int.
Therefore, it is never correct to invoke va_arg(argp, float); instead you
should always use va_arg(argp, double). Similarly, use va_arg(argp,
int) to retrieve arguments which were originally char, short, or int. See also
questions 11.3 and 15.2.

References: ANSI Sec. 3.3.2.2
ISO Sec. 6.3.2.2
Rationale Sec. 4.8.1.2
H&S Sec. 11.4 p. 297

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.10.html [26/03/2003 11:47:16 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.11

Question 15.11

I can't get va_arg to pull in an argument of type pointer-to-function.

The type-rewriting games which the va_arg macro typically plays are stymied by
overly-complicated types such as pointer-to-function. If you use a typedef for the
function pointer type, however, all will be well. See also question 1.21.

References: ANSI Sec. 4.8.1.2
ISO Sec. 7.8.1.2
Rationale Sec. 4.8.1.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.11.html [26/03/2003 11:47:17 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.12

Question 15.12

How can I write a function which takes a variable number of arguments and passes
them to some other function (which takes a variable number of arguments)?

In general, you cannot. Ideally, you should provide a version of that other function
which accepts a va_list pointer (analogous to vfprintf; see question 15.5). If
the arguments must be passed directly as actual arguments, or if you do not have the
option of rewriting the second function to accept a va_list (in other words, if the
second, called function must accept a variable number of arguments, not a
va_list), no portable solution is possible. (The problem could perhaps be solved
by resorting to machine-specific assembly language; see also question 15.13.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.12.html [26/03/2003 11:47:18 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 15.13

Question 15.13

How can I call a function with an argument list built up at run time?

There is no guaranteed or portable way to do this. If you're curious, however, this
list's editor has a few wacky ideas you could try...

Instead of an actual argument list, you might consider passing an array of generic
(void *) pointers. The called function can then step through the array, much like
main() might step through argv. (Obviously this works only if you have control
over all the called functions.)

(See also question 19.36.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q15.13.html [26/03/2003 11:47:19 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

"wacky ideas" (on the "inverse varargs problem")

Somehow I've never gotten around to writing the definitive essay on those "wacky
ideas". Here are several messages I've written at various times on the subject of what
I call the "inverse varargs problem"; they summarize most of the ideas, and should at
least get you started. (There is some overlap, because some of the later ones were
written when I didn't have copies of the earlier ones handy.)

article posted to comp.unix.wizards and comp.lang.c 1989-06-04
article posted to comp.lang.c 1992-07-14
mail message sent 1993-03-07 to someone asking about the "wacky ideas"
more recent ideas (1997-06-28)
most recent ideas (2001-05-27)

http://www.eskimo.com/~scs/C-faq/varargs/wackyideas.html [26/03/2003 11:47:20 p.m.]

http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19890604.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19920714.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19930307.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.19970628.html
http://www.eskimo.com/~scs/C-faq/varargs/invvarargs.20010527.html

Question 19.36

Question 19.36

How can I read in an object file and jump to routines in it?

You want a dynamic linker or loader. It may be possible to malloc some space and
read in object files, but you have to know an awful lot about object file formats,
relocation, etc. Under BSD Unix, you could use system and ld -A to do the
linking for you. Many versions of SunOS and System V have the -ldl library which
allows object files to be dynamically loaded. Under VMS, use
LIB$FIND_IMAGE_SYMBOL. GNU has a package called ``dld''. See also question
15.13.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.36.html [26/03/2003 11:47:21 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.3

Question 16.3

This program crashes before it even runs! (When single-stepping with a debugger, it
dies before the first statement in main.)

You probably have one or more very large (kilobyte or more) local arrays. Many
systems have fixed-size stacks, and those which perform dynamic stack allocation
automatically (e.g. Unix) can be confused when the stack tries to grow by a huge
chunk all at once. It is often better to declare large arrays with static duration
(unless of course you need a fresh set with each recursive call, in which case you
could dynamically allocate them with malloc; see also question 1.31).

(See also questions 11.12, 16.4, 16.5, and 18.4.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q16.3.html [26/03/2003 11:47:22 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 16.5

Question 16.5

This program runs perfectly on one machine, but I get weird results on another.
Stranger still, adding or removing debugging printouts changes the symptoms...

Lots of things could be going wrong; here are a few of the more common things to
check:

● uninitialized local variables (see also question 7.1)
● integer overflow, especially on 16-bit machines, especially of an intermediate

result when doing things like a * b / c (see also question 3.14)
● undefined evaluation order (see questions 3.1 through 3.4)
● omitted declaration of external functions, especially those which return

something other than int (see questions 1.25 and 14.2)
● dereferenced null pointers (see section 5)
● improper malloc/free use: assuming malloced memory contains 0,

assuming freed storage persists, freeing something twice (see also
questions 7.20 and 7.19)

● pointer problems in general (see also question 16.8)
● mismatch between printf format and arguments, especially trying to print
long ints using %d (see question 12.9)

● trying to malloc(256 * 256 * sizeof(double)), especially on
machines with limited memory (see also questions 7.16 and 19.23)

● array bounds problems, especially of small, temporary buffers, perhaps used
for constructing strings with sprintf (see also questions 7.1 and 12.21)

● invalid assumptions about the mapping of typedefs, especially size_t
● floating point problems (see questions 14.1 and 14.4)
● anything you thought was a clever exploitation of the way you believe code is

generated for your specific system

Proper use of function prototypes can catch several of these problems; lint would
catch several more. See also questions 16.3, 16.4, and 18.4.

Read sequentially: prev next up top

http://www.eskimo.com/~scs/C-faq/q16.5.html (1 of 2) [26/03/2003 11:47:23 p.m.]

Question 16.5

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q16.5.html (2 of 2) [26/03/2003 11:47:23 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.4

Question 18.4

I just typed in this program, and it's acting strangely. Can you see anything wrong
with it?

See if you can run lint first (perhaps with the -a, -c, -h, -p or other options).
Many C compilers are really only half-compilers, electing not to diagnose numerous
source code difficulties which would not actively preclude code generation.

See also questions 16.5 and 16.8.

References: Ian Darwin, Checking C Programs with lint

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.4.html [26/03/2003 11:47:24 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.1

Question 17.1

What's the best style for code layout in C?

K&R, while providing the example most often copied, also supply a good excuse for
disregarding it:

The position of braces is less important, although people hold
passionate beliefs. We have chosen one of several popular styles. Pick
a style that suits you, then use it consistently.

It is more important that the layout chosen be consistent (with itself, and with nearby
or common code) than that it be ``perfect.'' If your coding environment (i.e. local
custom or company policy) does not suggest a style, and you don't feel like inventing
your own, just copy K&R. (The tradeoffs between various indenting and brace
placement options can be exhaustively and minutely examined, but don't warrant
repetition here. See also the Indian Hill Style Guide.)

The elusive quality of ``good style'' involves much more than mere code layout
details; don't spend time on formatting to the exclusion of more substantive code
quality issues.

See also question 10.6.

References: K&R1 Sec. 1.2 p. 10
K&R2 Sec. 1.2 p. 10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.1.html [26/03/2003 11:47:25 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.3

Question 17.3

Here's a neat trick for checking whether two strings are equal:

if(!strcmp(s1, s2))

Is this good style?

It is not particularly good style, although it is a popular idiom. The test succeeds if
the two strings are equal, but the use of ! (``not'') suggests that it tests for inequality.

A better option is to use a macro:

 #define Streq(s1, s2) (strcmp((s1), (s2)) == 0)

Opinions on code style, like those on religion, can be debated endlessly. Though
good style is a worthy goal, and can usually be recognized, it cannot be rigorously
codified. See also question 17.10.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.3.html [26/03/2003 11:47:26 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.4

Question 17.4

Why do some people write if(0 == x) instead of if(x == 0)?

It's a trick to guard against the common error of writing

if(x = 0)

If you're in the habit of writing the constant before the ==, the compiler will
complain if you accidentally type

 if(0 = x)

Evidently it can be easier to remember to reverse the test than it is to remember to
type the doubled = sign.

References: H&S Sec. 7.6.5 pp. 209-10

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.4.html [26/03/2003 11:47:27 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.5

Question 17.5

I came across some code that puts a (void) cast before each call to printf.
Why?

printf does return a value, though few programs bother to check the return values
from each call. Since some compilers (and lint) will warn about discarded return
values, an explicit cast to (void) is a way of saying ``Yes, I've decided to ignore
the return value from this call, but please continue to warn me about other (perhaps
inadvertently) ignored return values.'' It's also common to use void casts on calls to
strcpy and strcat, since the return value is never surprising.

References: K&R2 Sec. A6.7 p. 199
Rationale Sec. 3.3.4
H&S Sec. 6.2.9 p. 172, Sec. 7.13 pp. 229-30

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.5.html [26/03/2003 11:47:28 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 17.8

Question 17.8

What is Hungarian Notation''? Is it worthwhile?

Hungarian Notation is a naming convention, invented by Charles Simonyi, which
encodes things about a variable's type (and perhaps its intended use) in its name. It is
well-loved in some circles and roundly castigated in others. Its chief advantage is
that it makes a variable's type or intended use obvious from its name; its chief
disadvantage is that type information is not necessarily a worthwhile thing to carry
around in the name of a variable.

References: Simonyi and Heller, ``The Hungarian Revolution''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q17.8.html [26/03/2003 11:47:29 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.9

Question 18.9

Are there any C tutorials or other resources on the net?

There are several of them:

``Notes for C programmers,'' by Christopher Sawtell, are available from ftp.funet.fi
in pub/languages/C/tutorials/sawtell_C.tar.gz.

Tim Love's ``C for Programmers'' is at
http://www.eng.cam.ac.uk/help/tpl/languages/C/teaching_C/teaching_C.html .

The Coronado Enterprises C tutorials are available on Simtel mirrors in pub/msdos/c/
or on the web at http://www.swcp.com/~dodrill/controlled/cdoc/cmain.html.

Rick Rowe has a tutorial which is available from ftp.netcom.com as
pub/rowe/tutorde.zip or ftp.wustl.edu as
pub/MSDOS_UPLOADS/programming/c_language/ctutorde.zip .

There is evidently a web-based course at
http://www.strath.ac.uk/IT/Docs/Ccourse/ccourse.html .

Finally, on some Unix machines you can try typing learn c at the shell prompt.

[Disclaimer: I have not reviewed these tutorials; I have heard that at least one of
them contains a number of errors. Also, this sort of information rapidly becomes out-
of-date; these addresses may not work by the time you read this and try them.]

Several of these tutorials, plus a great deal of other information about C, are
accessible via the web at http://www.lysator.liu.se/c/index.html .

Vinit Carpenter maintains a list of resources for learning C and C++; it is posted to
comp.lang.c and comp.lang.c++, and archived where this FAQ list is (see question
20.40), or on the web at http://www.cyberdiem.com/vin/learn.html .

See also question 18.10.

http://www.eskimo.com/~scs/C-faq/q18.9.html (1 of 2) [26/03/2003 11:47:30 p.m.]

ftp://ftp.funet.fi/pub/languages/C/tutorials/sawtell_C.tar.gz
ftp://ftp.funet.fi/pub/languages/C/tutorials/sawtell_C.tar.gz
http://www.eng.cam.ac.uk/help/tpl/languages/C/teaching_C/teaching_C.html
http://www.swcp.com/~dodrill/controlled/cdoc/cmain.html
http://www.strath.ac.uk/IT/Docs/Ccourse/ccourse.html
http://www.lysator.liu.se/c/index.html
http://www.cyberdiem.com/vin/learn.html

Question 18.9

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.9.html (2 of 2) [26/03/2003 11:47:30 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.7

Question 18.7

Where can I get an ANSI-compatible lint?

Products called PC-Lint and FlexeLint (in ``shrouded source form,'' for compilation
on 'most any system) are available from

Gimpel Software
3207 Hogarth Lane
Collegeville, PA 19426 USA
(+1) 610 584 4261
gimpel@netaxs.com

The Unix System V release 4 lint is ANSI-compatible, and is available separately
(bundled with other C tools) from UNIX Support Labs or from System V resellers.

Another ANSI-compatible lint (which can also perform higher-level formal
verification) is LCLint, available via anonymous ftp from larch.lcs.mit.edu in
pub/Larch/lclint/.

In the absence of lint, many modern compilers do attempt to diagnose almost as
many problems as lint does.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.7.html [26/03/2003 11:47:31 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.5

Question 18.5

How can I shut off the ``warning: possible pointer alignment problem'' message
which lint gives me for each call to malloc?

The problem is that traditional versions of lint do not know, and cannot be told,
that malloc ``returns a pointer to space suitably aligned for storage of any type of
object.'' It is possible to provide a pseudoimplementation of malloc, using a
#define inside of #ifdef lint, which effectively shuts this warning off, but a
simpleminded definition will also suppress meaningful messages about truly
incorrect invocations. It may be easier simply to ignore the message, perhaps in an
automated way with grep -v. (But don't get in the habit of ignoring too many
lint messages, otherwise one day you'll overlook a significant one.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.5.html [26/03/2003 11:47:32 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.13

Question 18.13

Where can I find the sources of the standard C libraries?

One source (though not public domain) is The Standard C Library, by P.J. Plauger
(see the Bibliography). Implementations of all or part of the C library have been
written and are readily available as part of the netBSD and GNU (also Linux)
projects. See also question 18.16.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.13.html [26/03/2003 11:47:35 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.14

Question 18.14

I need code to parse and evaluate expressions.

Two available packages are ``defunc,'' posted to comp.sources.misc in December,
1993 (V41 i32,33), to alt.sources in January, 1994, and available from
sunsite.unc.edu in pub/packages/development/libraries/defunc-1.3.tar.Z, and ``parse,''
at lamont.ldgo.columbia.edu. Other options include the S-Lang interpreter, available
via anonymous ftp from amy.tch.harvard.edu in pub/slang, and the shareware Cmm
(``C-minus-minus'' or ``C minus the hard stuff''). See also question 18.16.

There is also some parsing/evaluation code in Software Solutions in C (chapter 12,
pp. 235-55).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.14.html [26/03/2003 11:47:37 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 18.15

Question 18.15

Where can I get a BNF or YACC grammar for C?

The definitive grammar is of course the one in the ANSI standard; see question 11.2.
Another grammar (along with one for C++) by Jim Roskind is in
pub/c++grammar1.1.tar.Z at ics.uci.edu . A fleshed-out, working instance of the
ANSI grammar (due to Jeff Lee) is on ftp.uu.net (see question 18.16) in
usenet/net.sources/ansi.c.grammar.Z (including a companion lexer). The FSF's GNU
C compiler contains a grammar, as does the appendix to K&R2.

The comp.compilers archives contain more information about grammars; see
question 18.3.

References: K&R1 Sec. A18 pp. 214-219
K&R2 Sec. A13 pp. 234-239
ANSI Sec. A.2
ISO Sec. B.2
H&S pp. 423-435 Appendix B

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q18.15.html [26/03/2003 11:47:38 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.2

Question 19.2

How can I find out if there are characters available for reading (and if so, how
many)? Alternatively, how can I do a read that will not block if there are no
characters available?

These, too, are entirely operating-system-specific. Some versions of curses have a
nodelay function. Depending on your system, you may also be able to use
``nonblocking I/O'', or a system call named select or poll, or the FIONREAD
ioctl, c_cc[VTIME], or kbhit, or rdchk, or the O_NDELAY option to open or
fcntl. See also question 19.1.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.2.html [26/03/2003 11:47:40 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.3

Question 19.3

How can I display a percentage-done indication that updates itself in place, or show
one of those ``twirling baton'' progress indicators?

These simple things, at least, you can do fairly portably. Printing the character '\r'
will usually give you a carriage return without a line feed, so that you can overwrite
the current line. The character '\b' is a backspace, and will usually move the
cursor one position to the left.

References: ANSI Sec. 2.2.2
ISO Sec. 5.2.2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.3.html [26/03/2003 11:47:41 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.4

Question 19.4

How can I clear the screen?
How can I print things in inverse video?
How can I move the cursor to a specific x, y position?

Such things depend on the terminal type (or display) you're using. You will have to
use a library such as termcap, terminfo, or curses, or some system-specific routines,
to perform these operations.

For clearing the screen, a halfway portable solution is to print a form-feed character
('\f'), which will cause some displays to clear. Even more portable would be to
print enough newlines to scroll everything away. As a last resort, you could use
system (see question 19.27) to invoke an operating system clear-screen command.

References: PCS Sec. 5.1.4 pp. 54-60, Sec. 5.1.5 pp. 60-62

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.4.html [26/03/2003 11:47:42 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.5

Question 19.5

How do I read the arrow keys? What about function keys?

Terminfo, some versions of termcap, and some versions of curses have support for
these non-ASCII keys. Typically, a special key sends a multicharacter sequence
(usually beginning with ESC, '\033'); parsing these can be tricky. (curses will do
the parsing for you, if you call keypad first.)

Under MS-DOS, if you receive a character with value 0 (not '0'!) while reading the
keyboard, it's a flag indicating that the next character read will be a code indicating a
special key. See any DOS programming guide for lists of keyboard codes. (Very
briefly: the up, left, right, and down arrow keys are 72, 75, 77, and 80, and the
function keys are 59 through 68.)

References: PCS Sec. 5.1.4 pp. 56-7

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.5.html [26/03/2003 11:47:43 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.6

Question 19.6

How do I read the mouse?

Consult your system documentation, or ask on an appropriate system-specific
newsgroup (but check its FAQ list first). Mouse handling is completely different
under the X window system, MS-DOS, the Macintosh, and probably every other
system.

References: PCS Sec. 5.5 pp. 78-80

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.6.html [26/03/2003 11:47:44 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.7

Question 19.7

How can I do serial (``comm'') port I/O?

It's system-dependent. Under Unix, you typically open, read, and write a device file
in /dev, and use the facilities of the terminal driver to adjust its characteristics. (See
also questions 19.1 and 19.2.) Under MS-DOS, you can use the predefined stream
stdaux, or a special file like COM1, or some primitive BIOS interrupts, or (if you
require decent performance) any number of interrupt-driven serial I/O packages.
Several netters recommend the book C Programmer's Guide to Serial
Communications, by Joe Campbell.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.7.html [26/03/2003 11:47:47 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.8

Question 19.8

How can I direct output to the printer?

Under Unix, either use popen (see question 19.30) to write to the lp or lpr
program, or perhaps open a special file like /dev/lp. Under MS-DOS, write to the
(nonstandard) predefined stdio stream stdprn, or open the special files PRN or
LPT1.

References: PCS Sec. 5.3 pp. 72-74

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.8.html [26/03/2003 11:47:48 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.9

Question 19.9

How do I send escape sequences to control a terminal or other device?

If you can figure out how to send characters to the device at all (see question 19.8),
it's easy enough to send escape sequences. In ASCII, the ESC code is 033 (27
decimal), so code like

 fprintf(ofd, "\033[J");

sends the sequence ESC [J .

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.9.html [26/03/2003 11:47:50 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.10

Question 19.10

How can I do graphics?

Once upon a time, Unix had a fairly nice little set of device-independent plot routines
described in plot(3) and plot(5), but they've largely fallen into disuse.

If you're programming for MS-DOS, you'll probably want to use libraries
conforming to the VESA or BGI standards.

If you're trying to talk to a particular plotter, making it draw is usually a matter of
sending it the appropriate escape sequences; see also question 19.9. The vendor may
supply a C-callable library, or you may be able to find one on the net.

If you're programming for a particular window system (Macintosh, X windows,
Microsoft Windows), you will use its facilities; see the relevant documentation or
newsgroup or FAQ list.

References: PCS Sec. 5.4 pp. 75-77

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.10.html [26/03/2003 11:47:51 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.11

Question 19.11

How can I check whether a file exists? I want to warn the user if a requested input
file is missing.

It's surprisingly difficult to make this determination reliably and portably. Any test
you make can be invalidated if the file is created or deleted (i.e. by some other
process) between the time you make the test and the time you try to open the file.

Three possible test routines are stat, access, and fopen. (To make an
approximate test for file existence with fopen, just open for reading and close
immediately.) Of these, only fopen is widely portable, and access, where it
exists, must be used carefully if the program uses the Unix set-UID feature.

Rather than trying to predict in advance whether an operation such as opening a file
will succeed, it's often better to try it, check the return value, and complain if it fails.
(Obviously, this approach won't work if you're trying to avoid overwriting an
existing file, unless you've got something like the O_EXCL file opening option
available, which does just what you want in this case.)

References: PCS Sec. 12 pp. 189,213
POSIX Sec. 5.3.1, Sec. 5.6.2, Sec. 5.6.3

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.11.html [26/03/2003 11:47:52 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.13

Question 19.13

How can a file be shortened in-place without completely clearing or rewriting it?

BSD systems provide ftruncate, several others supply chsize, and a few may
provide a (possibly undocumented) fcntl option F_FREESP. Under MS-DOS, you
can sometimes use write(fd, "", 0). However, there is no portable solution,
nor a way to delete blocks at the beginning. See also question 19.14.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.13.html [26/03/2003 11:47:53 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.15

Question 19.15

How can I recover the file name given an open stream or file descriptor?

This problem is, in general, insoluble. Under Unix, for instance, a scan of the entire
disk (perhaps involving special permissions) would theoretically be required, and
would fail if the descriptor were connected to a pipe or referred to a deleted file (and
could give a misleading answer for a file with multiple links). It is best to remember
the names of files yourself when you open them (perhaps with a wrapper function
around fopen).

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.15.html [26/03/2003 11:47:54 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.16

Question 19.16

How can I delete a file?

The Standard C Library function is remove. (This is therefore one of the few
questions in this section for which the answer is not ``It's system-dependent.'') On
older, pre-ANSI Unix systems, remove may not exist, in which case you can try
unlink.

References: K&R2 Sec. B1.1 p. 242
ANSI Sec. 4.9.4.1
ISO Sec. 7.9.4.1
H&S Sec. 15.15 p. 382
PCS Sec. 12 pp. 208,220-221
POSIX Sec. 5.5.1, Sec. 8.2.4

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.16.html [26/03/2003 11:47:55 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.18

Question 19.18

I'm getting an error, ``Too many open files''. How can I increase the allowable
number of simultaneously open files?

There are actually at least two resource limitations on the number of simultaneously
open files: the number of low-level ``file descriptors'' or ``file handles'' available in
the operating system, and the number of FILE structures available in the stdio
library. Both must be sufficient. Under MS-DOS systems, you can control the
number of operating system file handles with a line in CONFIG.SYS. Some
compilers come with instructions (and perhaps a source file or two) for increasing
the number of stdio FILE structures.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.18.html [26/03/2003 11:47:56 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.20

Question 19.20

How can I read a directory in a C program?

See if you can use the opendir and readdir routines, which are part of the
POSIX standard and are available on most Unix variants. Implementations also exist
for MS-DOS, VMS, and other systems. (MS-DOS also has FINDFIRST and
FINDNEXT routines which do essentially the same thing.) readdir only returns
file names; if you need more information about the file, try calling stat. To match
filenames to some wildcard pattern, see question 13.7.

References: K&R2 Sec. 8.6 pp. 179-184
PCS Sec. 13 pp. 230-1
POSIX Sec. 5.1
Schumacher, ed., Software Solutions in C Sec. 8

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.20.html [26/03/2003 11:47:57 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.22

Question 19.22

How can I find out how much memory is available?

Your operating system may provide a routine which returns this information, but it's
quite system-dependent.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.22.html [26/03/2003 11:47:58 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.24

Question 19.24

What does the error message ``DGROUP data allocation exceeds 64K'' mean, and
what can I do about it? I thought that using large model meant that I could use more
than 64K of data!

Even in large memory models, MS-DOS compilers apparently toss certain data
(strings, some initialized global or static variables) into a default data segment,
and it's this segment that is overflowing. Either use less global data, or, if you're
already limiting yourself to reasonable amounts (and if the problem is due to
something like the number of strings), you may be able to coax the compiler into not
using the default data segment for so much. Some compilers place only ``small'' data
objects in the default data segment, and give you a way (e.g. the /Gt option under
Microsoft compilers) to configure the threshold for ``small.''

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.24.html [26/03/2003 11:47:59 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.25

Question 19.25

How can I access memory (a memory-mapped device, or graphics memory) located at a
certain address?

Set a pointer, of the appropriate type, to the right number (using an explicit cast to assure
the compiler that you really do intend this nonportable conversion):

 unsigned int *magicloc = (unsigned int *)0x12345678;

Then, *magicloc refers to the location you want. (Under MS-DOS, you may find a
macro like MK_FP() handy for working with segments and offsets.)

References: K&R1 Sec. A14.4 p. 210
K&R2 Sec. A6.6 p. 199
ANSI Sec. 3.3.4
ISO Sec. 6.3.4
Rationale Sec. 3.3.4
H&S Sec. 6.2.7 pp. 171-2

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.25.html [26/03/2003 11:48:01 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.31

Question 19.31

How can my program discover the complete pathname to the executable from which
it was invoked?

argv[0] may contain all or part of the pathname, or it may contain nothing. You
may be able to duplicate the command language interpreter's search path logic to
locate the executable if the name in argv[0] is present but incomplete. However,
there is no guaranteed solution.

References: K&R1 Sec. 5.11 p. 111
K&R2 Sec. 5.10 p. 115
ANSI Sec. 2.1.2.2.1
ISO Sec. 5.1.2.2.1
H&S Sec. 20.1 p. 416

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.31.html [26/03/2003 11:48:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.32

Question 19.32

How can I automatically locate a program's configuration files in the same directory
as the executable?

It's hard; see also question 19.31. Even if you can figure out a workable way to do it,
you might want to consider making the program's auxiliary (library) directory
configurable, perhaps with an environment variable. (It's especially important to
allow variable placement of a program's configuration files when the program will be
used by several people, e.g. on a multiuser system.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.32.html [26/03/2003 11:48:02 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.33

Question 19.33

How can a process change an environment variable in its caller?

It may or may not be possible to do so at all. Different operating systems implement
global name/value functionality similar to the Unix environment in different ways.
Whether the ``environment'' can be usefully altered by a running program, and if so,
how, is system-dependent.

Under Unix, a process can modify its own environment (some systems provide
setenv or putenv functions for the purpose), and the modified environment is
generally passed on to child processes, but it is not propagated back to the parent
process.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.33.html [26/03/2003 11:48:03 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.38

Question 19.38

How can I trap or ignore keyboard interrupts like control-C?

The basic step is to call signal, either as

 #include <signal.h>
 signal(SIGINT, SIG_IGN);

to ignore the interrupt signal, or as

 extern void func(int);
 signal(SIGINT, func);

to cause control to transfer to function func on receipt of an interrupt signal.

On a multi-tasking system such as Unix, it's best to use a slightly more involved
technique:

 extern void func(int);
 if(signal(SIGINT, SIG_IGN) != SIG_IGN)
 signal(SIGINT, func);

The test and extra call ensure that a keyboard interrupt typed in the foreground won't
inadvertently interrupt a program running in the background (and it doesn't hurt to
code calls to signal this way on any system).

On some systems, keyboard interrupt handling is also a function of the mode of the
terminal-input subsystem; see question 19.1. On some systems, checking for
keyboard interrupts is only performed when the program is reading input, and
keyboard interrupt handling may therefore depend on which input routines are being
called (and whether any input routines are active at all). On MS-DOS systems,
setcbrk or ctrlbrk functions may also be involved.

References: ANSI Secs. 4.7,4.7.1
ISO Secs. 7.7,7.7.1
H&S Sec. 19.6 pp. 411-3
PCS Sec. 12 pp. 210-2
POSIX Secs. 3.3.1,3.3.4

http://www.eskimo.com/~scs/C-faq/q19.38.html (1 of 2) [26/03/2003 11:48:04 p.m.]

Question 19.38

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.38.html (2 of 2) [26/03/2003 11:48:04 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.40

Question 19.40

How do I... Use sockets? Do networking? Write client/server applications?

All of these questions are outside of the scope of this list and have much more to do
with the networking facilities which you have available than they do with C. Good
books on the subject are Douglas Comer's three-volume Internetworking with
TCP/IP and W. R. Stevens's UNIX Network Programming. (There is also plenty of
information out on the net itself.)

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.40.html [26/03/2003 11:48:06 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.40b

Question 19.40b

How do I use BIOS calls? How can I write ISR's? How can I create TSR's?

These are very particular to specific systems (PC compatibles running MS-DOS,
most likely). You'll get much better information in a specific newsgroup such as
comp.os.msdos.programmer or its FAQ list; another excellent resource is Ralf
Brown's interrupt list.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.40b.html [26/03/2003 11:48:07 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

Question 19.41

Question 19.41

But I can't use all these nonstandard, system-dependent functions, because my
program has to be ANSI compatible!

You're out of luck. Either you misunderstood your requirement, or it's an impossible
one to meet. ANSI/ISO Standard C simply does not define ways of doing these
things. (POSIX defines a few.) It is possible, and desirable, for most of a program to
be ANSI-compatible, deferring the system-dependent functionality to a few routines
in a few files which are rewritten for each system ported to.

Read sequentially: prev next up top

This page by Steve Summit // Copyright 1995 // mail feedback

http://www.eskimo.com/~scs/C-faq/q19.41.html [26/03/2003 11:48:08 p.m.]

http://www.eskimo.com/~scs
mailto:scs@eskimo.com

	eskimo.com
	comp.lang.c Frequently Asked Questions
	versions of comp.lang.c FAQ list
	C Programming FAQs Errata
	Question 20.40
	Question 18.16
	Question 14.12
	Question 18.15a
	Question 19.1
	Tools and Resources
	Copyright
	Question 20.39
	Question 20.38
	Miscellaneous
	Bibliography
	Question 11.2
	Question 17.9
	Question 18.10
	Question 20.1
	Question 20.3
	Question 20.5
	Question 20.6
	Question 20.8
	Question 20.9
	Question 20.10
	Question 20.11
	Question 20.12
	Question 20.13
	Question 20.14
	Question 20.17
	Question 20.18
	Question 20.19
	Question 20.20
	Question 20.24
	Question 20.25
	Question 20.26
	Question 20.27
	Question 20.28
	Question 20.29
	Question 20.31
	Question 20.32
	Question 20.34
	Question 20.35
	Question 20.36
	Question 20.37
	Declarations and Initializations
	Structures, Unions, and Enumerations
	Expressions
	Pointers
	Null Pointers
	Arrays and Pointers
	Memory Allocation
	Characters and Strings
	Boolean Expressions and Variables
	C Preprocessor
	ANSI/ISO Standard C
	Stdio
	Library Functions
	Floating Point
	Variable-Length Argument Lists
	Strange Problems
	Style
	System Dependencies
	Acknowledgements
	Questions
	Question 1.1
	Question 12.1
	Question 1.4
	Question 1.7
	Question 10.6
	Question 18.8
	Question 1.11
	Question 1.12
	Question 1.14
	Question 2.1
	Question 1.21
	Question 1.22
	Question 1.25
	Question 11.3
	Question 15.1
	Question 1.30
	Question 7.31
	Question 1.31
	Question 1.32
	Question 11.29
	Question 6.1
	Question 6.2
	Question 6.8
	Question 1.34
	Question 4.12
	Question 2.2
	Question 2.3
	Question 2.4
	Question 2.6
	Question 2.7
	Footnote 1
	Question 2.8
	Question 2.12
	Question 2.9
	Question 2.10
	Question 14.11
	Question 4.10
	Question 2.11
	Question 12.38
	Question 11.20
	Question 2.13
	Question 2.14
	Question 2.15
	Question 2.18
	Question 10.9
	Question 16.4
	Question 2.20
	Question 2.22
	Question 2.24
	Question 3.1
	Question 11.33
	Question 3.2
	Question 3.8
	Question 3.3
	Question 3.9
	Question 3.12
	Question 3.4
	Question 3.5
	Question 11.35
	Question 3.14
	Question 3.16
	Question 4.2
	Question 7.1
	Question 8.3
	Question 4.3
	Question 4.5
	Question 4.8
	Question 4.9
	Question 4.11
	Question 6.4
	Question 5.1
	http://www.eskimo.com/~scs/C-faq/q5.2.html
	Question 5.5
	Question 5.6
	Question 5.3
	Question 15.3
	Question 17.10
	Question 9.2
	Question 5.4
	Question 5.9
	Question 5.10
	Question 5.17
	Question 5.12
	Question 9.1
	Question 10.2
	Question 5.13
	Question 5.14
	Question 5.15
	Question 5.16
	Question 5.20
	Question 16.8
	Question 6.3
	Question 6.21
	Question 6.7
	Question 6.14
	Question 6.16
	Question 6.9
	Question 6.11
	Question 6.12
	Question 6.13
	Question 6.18
	Question 6.15
	Question 6.19
	Question 7.22
	Question 7.32
	Question 7.23
	Question 6.20
	Question 6.17
	Question 12.23
	Question 7.2
	Question 7.3
	Question 13.12
	Question 7.5
	Question 12.21
	Question 7.6
	Question 7.7
	Question 7.8
	Question 8.9
	Question 7.14
	Question 7.16
	Question 19.23
	Question 7.17
	Question 7.19
	Question 7.30
	Question 7.26
	Question 18.2
	Question 7.20
	Question 7.21
	Question 7.24
	Question 7.25
	Question 7.27
	Question 8.1
	Question 8.6
	Question 16.6
	Question 8.2
	Question 9.3
	Question 10.3
	Question 10.4
	http://www.eskimo.com/~scs/C-faq/q10.26.html
	Question 10.7
	Question 18.1
	Question 10.8
	Question 10.11
	Question 10.12
	Question 10.13
	Question 10.14
	Question 10.15
	Question 10.16
	Question 10.18
	Question 10.19
	Question 10.20
	Question 11.17
	Question 10.22
	Question 11.18
	Question 10.23
	Question 10.25
	Question 15.4
	Question 15.5
	Question 11.1
	Question 11.4
	Question 15.2
	Question 11.5
	Question 11.8
	Question 11.9
	Question 11.10
	Question 11.12
	Question 11.13
	Question 11.14
	Question 11.15
	Question 11.16
	Question 11.19
	Question 11.21
	Question 11.22
	Question 11.24
	Question 11.25
	Question 11.26
	Question 11.27
	Question 11.30
	Question 13.25
	Question 13.26
	Question 11.31
	Question 18.3
	Question 11.32
	Question 11.34
	Question 12.2
	Question 12.4
	Question 12.24
	Question 12.5
	Question 12.6
	Question 19.17
	Question 12.9
	Question 12.13
	Question 12.10
	Question 12.15
	Question 12.11
	Question 12.12
	Question 12.17
	Question 12.20
	Question 12.18
	Question 12.19
	Question 13.6
	Question 19.12
	Question 12.25
	Question 12.26
	Question 12.30
	Question 19.14
	Question 12.33
	Question 12.34
	Question 13.1
	Question 13.2
	Question 13.5
	Question 13.7
	Question 13.8
	Question 13.9
	Question 13.10
	Question 13.11
	Question 19.27
	Question 19.30
	Question 13.13
	Question 13.14
	Question 13.15
	Question 13.16
	Question 13.18
	Question 13.17
	Question 19.37
	Question 13.20
	Question 13.24
	Question 14.3
	Question 13.28
	Question 14.1
	Question 14.6
	Question 14.2
	Question 14.4
	Question 14.5
	Question 14.7
	Question 14.8
	Question 14.9
	Question 19.39
	Question 14.13
	Question 15.7
	Question 15.6
	Question 15.8
	Question 15.9
	Question 15.10
	Question 15.11
	Question 15.12
	Question 15.13
	"wacky ideas" (on the "inverse varargs problem")
	Question 19.36
	Question 16.3
	Question 16.5
	Question 18.4
	Question 17.1
	Question 17.3
	Question 17.4
	Question 17.5
	Question 17.8
	Question 18.9
	Question 18.7
	Question 18.5
	Question 18.13
	Question 18.14
	Question 18.15
	Question 19.2
	Question 19.3
	Question 19.4
	Question 19.5
	Question 19.6
	Question 19.7
	Question 19.8
	Question 19.9
	Question 19.10
	Question 19.11
	Question 19.13
	Question 19.15
	Question 19.16
	Question 19.18
	Question 19.20
	Question 19.22
	Question 19.24
	Question 19.25
	Question 19.31
	Question 19.32
	Question 19.33
	Question 19.38
	Question 19.40
	Question 19.40b
	Question 19.41

