
Programming in C
This is a set of notes on Programming in C. They were originally prepared as plain
ASCII files using a private set of nroff macros and have now been converted to
HTML.

Most of the small programming examples are available on-line. Just select the link
about the program and then use your WWW browser's ability to save pages in a
local file.

Chapter 1 Introduction1.

Chapter 2 Programming with Integers2.

Chapter 3 Arithmetic3.

Chapter 4 Data Types4.

Chapter 5 Loops and Conditions5.

Chapter 6 Addresses, Arrays, Pointers and Strings6.

Chapter 7 Functions and Storage Management7.

Chapter 8 The Pre-Processor and Standard Libraries8.

Chapter 9 Command Line Arguments and File Handling9.

Chapter 10 Structures, Unions and Typedefs10.

Chapter 11 Separate Compilation of C Modules11.

Chapter 12 Efficiency, Economy and Portability12.

There are various other sources of information available on-line. If you are really
interested in the C programming language you should

Read the comp.lang.c newsgroup1.

Obtain and read the comp.lang.c FAQ2.

Study the submissions to the International Obfuscated C Code Contest3.

If you are interested in systems programming especially in the Unix context there
are further notes on a wide range of topics.

Peter Burden jphb@scit.wlv.ac.uk

Programming in C

http://www.scit.wlv.ac.uk/~jphb/cbook/html/ [02/04/2002 09:18:37]

news:comp.lang.c
ftp://rtfm.mit.edu/pub/usenet/comp.lang.c/C-FAQ-list
http://reality.sgi.com/csp/ioccc/index.html
http://www.scit.wlv.ac.uk/~jphb/spos/catalogue.html
http://www.scit.wlv.ac.uk/~jphb/

Introduction to C Programming -
Introduction
Chapter chap1 section 1

By time-honoured convention the first C program anybody writes is known as the
"hello world" program. It is shown below.

main()
{
 printf("hello, world\n");
}

When this program is compiled and run the effect is to display

hello, world

on the screen.

See also

Basics of Programming●

The "hello world" Program●

Writing Strings●

Program Layout●

Programming Errors●

Standards and History●

C and C++●

Character Codes●

Exercises●

Review questions●

Programming with Integers

Introduction to C Programming - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.intro.html [02/04/2002 09:18:40]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw.c

Introduction to C Programming -
Basics of Programming
Chapter chap1 section 2

In order to run the program you need to go through several stages. These are

1. Type the text of the program into the computer●

2. Translate the program text into a form the computer can use●

3. Run the translated program●

If you make a mistake during step 1 then it is likely that the computer will not be
able to translate the program so you will never reach step 3.

The text of a program is known as the source of the program. The translation of the
program is known as compilation and is performed by a special program known as
a compiler. The result of the translation or compilation is the executable or binary
version of the program.

The program source is kept in a source file. You may use whatever method you
prefer to enter and modify the text in the source file. Usually this is done using some
sort of text editor program. The use of the word-processing software often found on
PCs can cause problems as such software often incorporates extra codes for
formatting and laying out text in the text file. Such extra codes will not be
understood by the compiler and will cause the compilation to fail.

If you are going to do a lot of programming it is well worth the effort to learn an
editor designed for use by programmers. vi and emacs are two such editors
frequently found on Unix based computer systems and not uncommon on PCs.

If you are going to store the source in a file for future alteration and development
then you will need to name the file in accordance with conventions understood by
your compiler. Practically all C compilers expect program source to be provided in
files with names ending in .c . C compilers also make use of files with names ending
in .h .

The compiler is a large complex program that is responsible for translating the
source program into a form that can be executed directly by the computer.
Compilers are either supplied with the rest of the standard programs provided on a
computer system or they may be purchased separately. There are even some public
domain (i.e. free) compilers.

The process of compilation involves the compiler breaking down the source
program in accordance with the published rules for the programming language being

Introduction to C Programming - Basics of Programming

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Basics.html (1 of 3) [02/04/2002 09:18:46]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+vi
http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+emacs

used and generating machine code that will cause the computer to execute the
programmer's intentions. Machine code is a sequence of 1s and 0s that control the
flow of data between the various internal parts of the computer. This is often called
the binary or executable version of the program.

Once a program has been compiled or translated into machine code the code may be
executed directly or may be saved in a file for future use. If it is saved in a file then
the compiled program may be run at any time by telling the host operating system
(Unix, MSDOS etc.,) the name of the file and the fact that it should copy the
program from the file into the computer memory and then start the program running.

Once you have prepared the source file you are ready to to try to compile the
program. Supposing that you were working on the hello world program then you
might well put the source in a file called hw.c . What you actually type to compile
the program depends on the particular compiler and operating system you are using.

Under Unix systems, it is almost always

cc hw.c

You may sometimes use gcc or acc . Assuming you don't get any error messages
you will now find a file called a.out has appeared in the current directory. This
contains the executable version of your program and it can now be executed by
typing the command

a.out

If you are familiar with Unix you can change the name of the file to hw by typing

mv a.out hw

or you can type

cc -o hw hw.c

to compile the program. Unix C compilers often have many options, consult the
manual for details.

If you are operating under MSDOS you will need to check your compiler manual
and, possibly, consult a local expert to find out what command to type. It may be
something like

CL HW.C

or

BCC HW.C

Most MSDOS C compilers will then generate an executable file called HW.EXE

Introduction to C Programming - Basics of Programming

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Basics.html (2 of 3) [02/04/2002 09:18:46]

which can be executed by typing

HW.EXE

Unix C compilers do not write any messages unless there are errors in your
program. If the compilation is successful the next thing you will see is the next
operating system prompt. MSDOS compilers often generate intermediate messages
concerning libraries and code phases, these are only of interest to more advanced
programmers.

It is usual to talk about a C program being executed, this means that the compiled
version of the C program is executed. Similarly when talking about how a particular
piece of C code is executed we are actually referring to the execution of the machine
code generated by compilation of the piece of C code in question.

The hello world program.

Introduction to C Programming - Basics of Programming

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Basics.html (3 of 3) [02/04/2002 09:18:46]

Introduction to C Programming -
Programming Errors
Chapter chap1 section 6

It is quite likely that your attempt to write a hello world program will be completely successful and will
work first time. It will probably be the only C program you ever write that works first time. There are
many different types of mistake you might make when writing C programs. These can result in messages
from the compiler, or sometimes the linker, programs that bring the computer grinding to a halt or
programs that simply produce the wrong answer to whatever problem they were trying to solve or
programs that get stuck in a never-ending loop. As a beginner you are more likely to encounter compiler
or linker error messages, particularly if you have already done some programming in another
programming language. The rest of this section illustrates some possible errors and their consequences.

In the first example the programmer has forgotten that the C programming language is case sensitive.

MAIN()
{
 printf("hello, world\n");
}

This error gave rise to some rather mysterious error messages from the linker. Typical examples are
shown below. The compiler on the IBM 6150 used to write these notes produced the following error
output.

ld: Undefined -
 .main
 _main
 _end

The compiler on a SUN Sparc Station produced the following messages.

ld: Undefined symbol
 _main
Compilation failed

The Turbo C integrated environment produced the following.

Linker Error: Undefined symbol _main in function main

And finally Microsoft C version 5.1 produced the following error messages.

hw.c

Microsoft (R) Overlay Linker Version 3.65
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Object Modules [.OBJ]: HW.OBJ
Run File [HW.EXE]: HW.EXE /NOI
List File [NUL.MAP]: NUL
Libraries [.LIB]: SLIBCEC.LIB

LINK : error L2029: Unresolved externals:

Introduction to C Programming - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.errors.html (1 of 5) [02/04/2002 09:18:55]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwe1.c

_main in file(s):
 C:\MSC\LIB\SLIBCEC.LIB(dos\crt0.asm)

There was 1 error detected

All these errors reflect the fact that the linker cannot put the program together properly. On Unix based
systems the linker is usually called "ld". Along with the user supplied main() function all C programs
include something often called the run-time support package which is actually the code that the
operating system kicks into life when starting up your program. The run-time support package then
expects to call the user supplied function main(), if there is no user supplied main() then the linker cannot
finish the installation of the run-time support package. In this case the user had supplied MAIN() rather
than main(). "MAIN" is a perfectly valid C function name but it isn't "main".

The rather extensive set of messages from Microsoft C 5.1 were partly generated by the compiler, which
translated the program without difficulty, and partly generated by the linker. The reference to "crt0" is, in
fact, a reference to the C Run Time package which tries to call main() to start the program running.

In the second example the programmer, probably confusing C with another programming language, had
used single quotes rather than double quotes to enclose the string passed to printf().

main()
{
 printf('hello, world\n');
}

On the IBM 6150 the compiler produced the following error messages. The reference to "hw.c" is to the
name of the source file that was being compiled.

"hw.c", line 3: too many characters in character constant
"hw.c", line 3: warning: Character constant contains more than one byte

The SUN Sparc Station compiler gave the following error messages.

"hw.c", line 3: too many characters in character constant
Compilation failed

The Turbo Integrated environment gave the following messages. C:\ISPTESTS\HW.C was the name of
the source file.

Error C:\ISPTESTS\HW.C 3:
Character constant too long in function main

Microsoft C version 5.1 gave the following messages.

hw.c
hw.c(3) : error C2015: too many chars in constant

In each case the error message referred clearly to the line number in error. The reference to character
constants appears because the C language uses single quotes for a different purpose (character constants).

In the third example the programmer, again possibly confused by another programming language, had
missed out the semi-colon on line 3.

main()
{

Introduction to C Programming - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.errors.html (2 of 5) [02/04/2002 09:18:55]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwe2.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwe3.c

 printf("hello, world\n")
}

The IBM 6150 compiler produced the following message.

"hw.c", line 4: syntax error

The SUN Sparc Station produced the following messages.

"hw.c", line 4: syntax error at or near symbol }
Compilation failed

Turbo C produced the following messages.

Error C:\ISPTESTS\HW.C 4:
Statement missing ; in function main

The Microsoft C version 5.1 compiler produced the following messages.

hw.c
hw.c(4) : error C2143: syntax error : missing ';' before '}'

In all cases the error message referred to line 4 although the error was actually on line 3. This often
happens when compilers detect errors in free-format languages such as C. Simply the compiler didn't
realise anything was wrong until it encountered the } on line 4. The first error message is particularly
unhelpful.

In the fourth example the programmer wrote print() rather than printf().

main()
{
 print("hello, world\n");
}

This, not surprisingly, produced the linker error messages shown in below. These are rather similar to the
error messages shown earlier when the effects of writing MAIN() rather than main() were shown. The
IBM 6150 compiler generated the following messages.

ld: Undefined -
 .print
 _print

The SUN Sparc Station compiler generated the following messages.

ld: Undefined symbol
 _print
Compilation failed

Turbo C generated the following messages.

Linking C:\ISPTESTS\HW.C 4:
Linker Error: Undefined symbol _print in module HW.C

The Microsoft C version 5.1 compiler produced the following messages.

hw.c

Microsoft (R) Overlay Linker Version 3.65

Introduction to C Programming - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.errors.html (3 of 5) [02/04/2002 09:18:55]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwe4.c

Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Object Modules [.OBJ]: HW.OBJ
Run File [HW.EXE]: HW.EXE /NOI
List File [NUL.MAP]: NUL
Libraries [.LIB]: SLIBCEC.LIB

LINK : error L2029: Unresolved externals:

_print in file(s):
 HW.OBJ(hw.c)

There was 1 error detected

In the final example the programmer left out the parentheses immediately after main.

main
{
 printf("hello, world\n");
}

The IBM 6150 compiler produced the following messages.

"hw.c", line 2: syntax error
"hw.c", line 3: illegal character: 134 (octal)
"hw.c", line 3: cannot recover from earlier errors: goodbye!

The SUN Sparc Station compiler produced the following messages.

"hw.c", line 2: syntax error at or near symbol {
"hw.c", line 2: unknown size
Compilation failed

Turbo C produced the following messages.

Error C:\ISPTESTS\HW.C 2: Declaration syntax error

The Microsoft C version 5.1 compiler produced the following messages.

hw.c
hw.c(2) : error C2054: expected '(' to follow 'main'

All of these messages are remarkably unhelpful and confusing except that from Microsoft C, particularly
that from the IBM 6150 compiler.

You may find it interesting to try the various erroneous versions of the "hello world" program on your
particular system. Do you think your compiler generates more helpful error messages?

If you are using Turbo C you will see the following message, even when compiling a correct version of
the hello world program

Warning C:\ISPTESTS\HW.C 4:
 Function should return a value in function main

A warning message means that there is something not quite right with the program but the compiler has
made assumptions that the compiler writer thought reasonable. You should never ignore warnings. The

Introduction to C Programming - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.errors.html (4 of 5) [02/04/2002 09:18:55]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwe5.c

ideal is to modify the program so that there are no warnings, however that would introduce extra
complications into the hello world program and this particular message can be ignored for the moment.

The message means that the user supplied function main() should return a value to the run-time support
package. There is no requirement to do so and most compilers recognise main() as a special case in this
respect. Returning a value to the run-time support package should not be confused with returning a value,
sometimes known as an exit code, to the host operating system.

Standards and History

Introduction to C Programming - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.errors.html (5 of 5) [02/04/2002 09:18:55]

Introduction to C Programming -
C Standards and History
Chapter chap1 section 7

The C programming language was developed in the years 1969 to 1973, although
the first published description did not appear until the book The C Programming
Language" written by Brian Kernighan and Dennis Ritchie was published in 1978.
The early versions of the C language were strongly influenced by a language called
BCPL which itself was a derviative of Algol.

The early development of C was closely linked to the development of the Unix
operating system. Large portions of the code of the Unix operating system were
eventually written in C and problems encountered in transferring Unix to various
computers were reflected into the design of the C language. The modest hardware
available to the Unix developers was also reflected in the language design, most
notably the use of separate library functions for operations such as input and output.
Until the early 1980s the language was almost exclusively associated with Unix.

The widespread introduction of microprocessor based computer systems in the early
1980s also saw a rapid growth in the use of C on such systems. C compilers were
known to be small and many of the start-up operations that produced the early
microprocessor based computer systems were staffed by ex-students who had
encountered the language whilst at university.

As early as 1982 it became clear that the informal description of the language in
Kernighan & Ritchie's book was not good enough. ANSI established a committee
known as X3J11 in 1983. This committee produced a report defining the language at
the end of 1989. The report was known as X3.159 but the standard was soon taken
over by ISO with the designation ISO/IEC 9899-1990. This version of the language
is known as ANSI-C to distinguish it from the earlier version of the language
described in Kernighan and Ritchie's book. The earlier version of the language is
known as K&R C. C++ and Objective-C are different languages developed from C.
The GNU C compiler, often known by the command that invokes it, gcc , is public
domain software available for both Unix and MSDOS based systems. It supports a
version of the language close to the ANSI standard.

All the code presented in these notes, unless specifically indicated otherwise,
confirms to the ANSI standard. Many compiler writers and vendors produce C
compilers that will compile code conforming to the ANSI standard but they also
provide a variety of extensions to suit the particular target environment. Such
extensions are ususally extra library routines for functions such as PC screen
handling and interfacing direct to MSDOS system functions. Sometimes the

Introduction to C Programming - C Standards and History

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.standards.html (1 of 2) [02/04/2002 09:19:01]

extensions include extra features introduced into the language, usually to cope with
some of the problems of memory management on MSDOS based systems. In the
Unix environment such extensions are less common, Unix systems are normally
supplied with a compiler and the extensions appear as extra libraries for functions
such as driving X-Windows displays or network communications.

All C programmers ought to be aware of what is and what isn't standard in their
particular environment. The better compiler writers usually make this fairly clear in
their manuals.

It is also often possible to obtain further special purpose application specific
libraries for use with C compilers to provide facilities such as database handling,
graphics, numerical analysis etc.

C and C++

Introduction to C Programming - C Standards and History

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.standards.html (2 of 2) [02/04/2002 09:19:01]

Introduction to C Programming -
The "hello world" Program
Chapter chap1 section 3

You may be wondering about the need for all the peculiar symbols in the "hello
world" program. They are all essential as can be demonstrated by leaving some of
them out, the consequences of such errors are discussed in more detail later. First,
however, let's take another look at the hello world program.

main()
{
 printf("hello, world\n");
}

This program, in fact, consists of a single piece or chunk of executable code known
as a function . Later on we will see programs consisting of many functions. All C
programs MUST include a function with the name main , execution of C programs
always starts with the execution of the function main , if it is missing the program
cannot run and most compilers will not be able to finish the translation process
properly without a function called main .

It is important to note that the required function is called main not MAIN . In the C
programming language the case of letters is always significant unlike many older
programming languages.

In the simple hello world program main appears on line 1. This is not essential,
program execution starts at main not at the first line of the source. However, it is
conventional in C programs, to put main at, or near, the start of the program.

The round brackets, or parentheses as they are known in computer jargon, on line 1
are essential to tell the compiler that when we wrote main we were introducing or
defining a function rather than something else. You might expect the compiler to
work out this sort of thing for itself but it does make the compiler writer's task much
easier if this extra clue is available to help in the translation of the program.

On lines 2 and 4 you will see curly brackets or braces. These serve to enclose the
body of the function main . They must be present in matched pairs. It is nice, but not
essential, to line them up in the fashion shown here.

Line 3 is the meat of this simple program. The word printf clearly has something to
do with printing. Here, of course, it is actually causing something to be displayed to
the screen, but the word print has been used in this context since the time before

Introduction to C Programming - The "hello world" Program

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.hello.world.html (1 of 3) [02/04/2002 09:19:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw.c

screens were generally used for computer output. The word printf was probably
derived from print formatted but that doesn't matter very much, all you need to
know is that this is the way to get something onto the screen.

In computer jargon printf is a library function. This means that the actual
instructions for displaying on the screen are copied into your program from a library
of already compiled useful functions. This process of putting together a program
from a collection of already compiled bits and pieces is known as linking and is
often done by a linker or loader program as distinct from a compiler. Most
compilation systems, sensibly, hide this complication from the user but you will see
references to linkage or linker errors from time to time. More advanced
programmers can build their own private libraries of useful things.

Line 3 is a statement. A statement tells the computer to do something. In computer
jargon we say that a statement is executed. This simple example consists of the use
of a library function to do something. In the C programming language a simple use
of a function (library or otherwise) is, technically, an expression, i.e. something that
has a value. In computer jargon we say that an expression is evaluated. To convert
an expression into a statement a semi-colon must follow the expression, this will be
seen at the end of line 3. The actual value of the expression is of no interest in this
case and no use is made of it.

A C function normally consists of a sequence of statements that are executed in the
order in which they are written. Each statement must, of course, be correctly written
before the sequence is acceptable to the compiler. The following version of the
"hello world" program shows the use of multiple statements.

main()
{
 printf("hello, ");
 printf("world");
 printf("\n");
}

Note that each one of the three statements is a printf expression converted to a
statement by a terminating semi-colon.

Officially the purpose of printf is to write things to the standard output or screen.
The list of things to be printed out are enclosed within parentheses immediately after
the word printf. They are known as the function parameters or arguments. We
sometimes say that the parameters are passed to the function. Incidentally when
talking about any function, a C programmer would refer to it, in writing, by its name
with the parentheses. We shall adopt this convention from now on.

In the hello world program printf() has only got a single parameter, this is the
sequence of characters

Introduction to C Programming - The "hello world" Program

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.hello.world.html (2 of 3) [02/04/2002 09:19:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwm1.c

hello, world\n

This sequence is identified as a single parameter by enclosing it in double quotes.
Such a sequence of characters enclosed in double quotes is known as a string.
Strings are discussed in more detail in the next section

Writing strings

Introduction to C Programming - The "hello world" Program

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.hello.world.html (3 of 3) [02/04/2002 09:19:09]

Introduction to C Programming -
Writing strings
Chapter chap1 section 4

In the previous section we have used the library function printf() with a single string as
parameter. This appeared as

printf("hello world\n");

The double quote character used to enclose strings should not be confused with a pair of
single quote characters.

If you have followed what has been said so far you may well be wondering why the
character \n was included in the string and why it didn't appear in the output. The answer is
that this pair of characters is converted by the compiler into a single new-line character that
is stored as part of the string. Actual new-line characters in the source of the program are
treated as if they were space characters by the compiler, so the escape convention is
necessary to get a new-line character into the string.

The program example used earlier to illustrate multiple statements also illustrates the
significance of the \n character in the strings. If the \n were left off the end of the last line of
program output then the effect would be that the next operating system prompt would appear
on the same line as the output of the program.

You can include as many \n's as you like within a string enabling multi-line output to be
produced with a single use of the printf() function. Here's an example.

main()
{
 printf("This is an\nexample of\nmulti-line output\n");
}

When the program was compiled and run it produced the following output.

This is an
example of
multi-line output

It would not be possible to include an actual new-line character in the string in the program
source because this would "mess-up" the source and the compiler would not be able to
translate the program properly.

However if the string is too long to fit comfortably on a single line of the source listing of
program then it is possible to spread a string over several lines by escaping the actual
new-line character at the end of a line by preceding it with a backslash. The string may then
be continued on the next line as the following example shows.

Introduction to C Programming - Writing strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.strings.html (1 of 3) [02/04/2002 09:19:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw2m.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/conts1.c

main()
{
 printf("hello, \
world\n");
}

Note that there are no characters after the backslash on the third line and also note that the
continuation string must start at the very start of the next line. The following nicely laid out
version of the above program.

main()
{
 printf("hello, \
 world\n");
}

produced the output

hello, world

the indenting spaces at the start of the string continuation being taken as part of the string.

An alternative, and probably nicer, approach is to make use of what is called string
concatenation. This simply means that two strings which are only separated by spaces are
regarded by the compiler as a single string. Actually the two strings can be separated by any
combination of spaces, newlines, tab characters and comments. In the jargon of C
programming all these things are collectively known as white space although perhaps we
should now say "content challenged space". The use of string concatenation is shown by the
following example.

main()
{
 printf("hello," /* space only */
 " world\n");
}

Programmers using MSDOS should note that versions of printf() supplied with MSDOS
compilers normally convert \n to a carriage return and line feed (new-line) character pair,
there is no need to try and include a carriage return character in a string. On Unix systems
this is the responsibility of the display driving software.

There are several other characters that cannot conveniently be included in a string but which
can be included using the \ notation. The complete list is

\a "BELL" - i.e. a beep
\b Backspace
\f Form Feed (new page)
\n New Line (line feed)
\r Real carriage return

Introduction to C Programming - Writing strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.strings.html (2 of 3) [02/04/2002 09:19:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/conts2.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/scat.c

\t Tab
\v Vertical Tab
\\ Backslash
\' Single Quote
\" Double Quote
\? Question Mark

It is not necessary to use the \ convention for all the above characters in strings but they will
always be understood.

It is also possible to include arbitrary characters in strings by including the three digit octal
representation of the character preceded by a \ symbol. For example the "hello world"
program could be written in this form.

main()
{
 printf("\150ello, world\n");
}

In case you didn't know, 150 is the octal code for "h". It is not, generally, possible to use
hexadecimal or decimal constants in this fashion. The use of \ in this way is known as
"escaping" and the \ is known as an "escape" character, it turns off the normal meaning of
the immediately following character.

The effect is actually to send the string of binary 1s and 0s equivalent to octal 150 to the
output device which should respond in the manner its designers intended it to. You can use
this convention to send all sorts of unusual special characters to all sorts of unusual output
devices.

Program Layout

Introduction to C Programming - Writing strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.strings.html (3 of 3) [02/04/2002 09:19:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hwo.c

Introduction to C Programming -
Program Layout
Chapter chap1 section 5

The hello world program listed at the start of this chapter is laid out in accordance
with normal C conventions and practice. The C programming language is "free
format" which means you can lay out the text of programs in whatever form takes
your fancy provided, of course, you don't run words together. The "hello world"
program could have been written in this form

main(){printf("hello, world\n");}

or even this

main
(
)
{
printf
(
"hello, world\n"
)
;
}

Neither of the above is recommended.

The indentation of the word printf in the original version of the hello world program
is achieved by the use of a single TAB character not a sequence of spaces. TAB
characters may be generated by hitting the TAB key on normal keyboards,
occasionally the TAB key carries a mysterious symbol consisting of 2 arrows.
Multiple TAB characters should be used to indent C programs in preference to
sequences of spaces. The use of TABs makes for smaller source files, less typing
and tidier layout. All C compilers understand the use of TABs. Unfortunately some
word processors and editors have strange ideas about standard TAB settings, for C
source TABs should be set every 8 characters.

All but the briefest programs will benefit from descriptive comments included in the
source. In the C programming language anything enclosed between the character
pair /* and the character pair */ is treated as a comment. The compiler treats any
comment, however long, as if it were a single space. Comments may appear in any
reasonable place in the source. A commented version of the "hello world" program

Introduction to C Programming - Program Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.layout.html (1 of 3) [02/04/2002 09:19:17]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw3.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw2.c

appears below.

/* This is the first C program

 Author : J.P.H.Burden
 Date : 22 September 1992
 System : IBM 6150 + AIX Version 2.1
*/
main()
{
 printf("hello, world\n");
}

Comments may stretch over several lines but may not be nested, i.e. you cannot
include comments within comments. This can cause difficulties if you wish to
"comment out" parts of a program during development. The following use of
comments is perfectly correct.

main()
{
 printf("hello, world\n");
/*
 some very clever code I haven't
 quite sorted out yet.
*/
 printf("the solution to the problem of \
life, the universe and everything is");
/*
 more very clever code still to be
 developed
*/
}

But the following attempt to "comment out" further parts of the program.

main()
{
 printf("hello, world\n");
/*
 OK let's stop pretending we can write
 really clever programs
 /*
 some very clever code I haven't
 quite sorted out yet.

Introduction to C Programming - Program Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.layout.html (2 of 3) [02/04/2002 09:19:17]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/comm1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/comm2.c

 */
 printf("the solution to the problem of \
 life, the universe and everything is");
 /*
 more very clever code still to be
 developed
 */
*/
}

Gave the following compiler error messages when using the SUN Sparc Station
compiler.

"comm2.c", line 17: syntax error before or at: /
Compilation failed

The error message refers to the final "*/" in the program.

Program Errors

Introduction to C Programming - Program Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.layout.html (3 of 3) [02/04/2002 09:19:17]

Introduction to C Programming -
C and C++
Chapter chap1 section 8

Although it is the intention of these notes to stick rigidly to the ANSI standard for C,
it is quite possible you will be using a compiler, such as Turbo C, that is really a
C++ compiler. This is possible because C++ is a strict superset of C which means
that any C program should be acceptable to a C++ compiler. In fact some C++
compilers operate by first converting the C++ code into C. As well as the ideas
associated with object-oriented programming, C++ introduces a few extra features
that the C programmer should be aware of, these include an alternative syntax for
comments, several extra keywords that cannot be used in normal programming and
a very simple form of input and output known as stream IO.

The alternative comment syntax uses the symbol // to mark the start of a comment
and the end of a line to indicate the end of a comment. This means that you cannot
have multi-line comments in C++ and it also means that you cannot have a comment
in the middle of a line of code. If you have ever programmed in assembler language
you'll be familiar with this style of commenting. The problem of nested comments
does not arise.

Of course, C++ compilers will still accept C style comments marked by symbols
"/*" and "*/". You shouldn't mix the two styles in the same program.

Here is an example of the hello world program written using C++ commenting style.

// A simple program to demonstrate
// C++ style comments
//
// The following line is essential
// in the C++ version of the hello
// world program
//
#include <stdio.h>
main()
{
 printf("hello, world\n"); // just like C
}

The C++ stream output facility is illustrated by the following program. The basic
syntax of C++ stream output is

Introduction to C Programming - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.C++.html (1 of 2) [02/04/2002 09:19:20]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw1.cpp
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap1/hw.cpp

cout << value-to-display

Note that the program, like the previous example, requires the use of "#include" and
a header file name. The meaning of "#include" will be discussed in a later chapter.

#include <iostream.h>
main()
{
 cout << "hello, world\n";
}

The "<<" symbol is read as "puts to" but may also be read as "shift to". This is really
C's left shift operator. C++ allows hexadecimal chraracter representations in strings
unlike ANSI C.

Character Codes

Introduction to C Programming - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.C++.html (2 of 2) [02/04/2002 09:19:20]

Introduction to C Programming -
Character Codes
Chapter chap1 section 9

Here is a list of ASCII character codes in octal and hexadecimal notation along with the
equivalent C escape sequence where relevant. This table is not comprehensive.

Octal
code

Hexadecimal
code

Escape
Sequence

Control
Sequence

Standard
Designation Function

000 00 - Ctrl-@ Null does nothing

001 01 - Ctrl-A SOH -

002 02 - Ctrl-B STX -

003 03 - Ctrl-C ETX
Sometimes
Break
Program

004 04 - Ctrl-D EOT
Sometimes
End of File

005 05 - Ctrl-E ENQ -

006 06 - Ctrl-F ACK -

007 07 \a Ctrl-G BEL
Audible
Signal

010 08 \b Ctrl-H BS Backspace

011 09 \t Ctrl-I HT TAB

012 0a \n Ctrl-J NL
Newline or
Linefeed

013 0b \v Ctrl-K VT Vertical TAB

014 0c \f Ctrl-L FF
New Page or
Clear Screen

015 0d \r Ctrl-M CR
Carriage
Return

016 0e - Ctrl-N SO -

017 0f - Ctrl-O SI -

020 10 - Ctrl-P DLE -

021 11 - Ctrl-Q DC1
Flow Control
- On

022 12 - Ctrl-R DC2 -

Introduction to C Programming - Character Codes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Codes.html (1 of 3) [02/04/2002 09:19:22]

023 13 - Ctrl-S DC3
Flow Control
- Off

024 14 - Ctrl-T DC4 -

025 15 - Ctrl-U NAK
Sometimes
Line Delete

026 16 - Ctrl-V SYN -

027 17 - Ctrl-W ETB -

030 18 - Ctrl-X CAN
Sometimes
Line Delete

031 19 - Ctrl-Y EM -

032 1a - Ctrl-Z SUB
Sometimes
End of File

033 1b - Ctrl-[ESC
Often Escape
for Screen
Control

034 1c - Ctrl-\ FS -

035 1d - Ctrl-] GS -

036 1e - Ctrl-^ RS -

037 1f - Ctrl-_ US -

040 20 - - SP
Space - Hit
the space bar

And the normal printing character codes with hexadecimal and octal equivalent values.

21 041 ! 22 042 " 23 043 # 24 044 $ 25 045 % 26 046 &
27 047 ' 28 050 (29 051) 2a 052 * 2b 053 + 2c 054 ,
2d 055 - 2e 056 . 2f 057 / 30 060 0 31 061 1 32 062 2
33 063 3 34 064 4 35 065 5 36 066 6 37 067 7 38 070 8
39 071 9 3a 072 : 3b 073 ; 3c 074 < 3d 075 = 3e 076 >
3f 077 ? 40 100 @ 41 101 A 42 102 B 43 103 C 44 104 D
45 105 E 46 106 F 47 107 G 48 110 H 49 111 I 4a 112 J
4b 113 K 4c 114 L 4d 115 M 4e 116 N 4f 117 O 50 120 P
51 121 Q 52 122 R 53 123 S 54 124 T 55 125 U 56 126 V
57 127 W 58 130 X 59 131 Y 5a 132 Z 5b 133 [5c 134 \
5d 135] 5e 136 ^ 5f 137 _ 60 140 ` 61 141 a 62 142 b
63 143 c 64 144 d 65 145 e 66 146 f 67 147 g 68 150 h
69 151 i 6a 152 j 6b 153 k 6c 154 l 6d 155 m 6e 156 n
6f 157 o 70 160 p 71 161 q 72 162 r 73 163 s 74 164 t
75 165 u 76 166 v 77 167 w 78 170 x 79 171 y 7a 172 z
7b 173 { 7c 174 | 7d 175 } 7e 176 ~

Introduction to C Programming - Character Codes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Codes.html (2 of 3) [02/04/2002 09:19:22]

Exercises

Introduction to C Programming - Character Codes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Codes.html (3 of 3) [02/04/2002 09:19:22]

Introduction to C Programming -
Exercises
Chapter chap1 section 10

Your first task, of course, is to enter, compile and run the hello world program
on your computer system. Note the commands you used to compile the
program, any messages produced and the names of any files generated.

1.

Now try some of the programs with errors. Note the error messages produced
by your compiler. Do you think they are more infomrative than those
described in the notes ?

2.

What is the effect of typing the hello world program using round brackets
(parentheses) rather than curly brackets (braces) ?

3.

Write a C program that produces the following output

 * hello world *

using multiple printf() calls.

4.

Write a C program that prints hello world vertically on the screen.5.

Write a C program that prints hello world on the screen and then "beeps".6.

On many displays the character sequence ESC [2 J causes the display to go
blank. Use this information to write a C program that clears the screen. (If
you are working on a PC running MSDOS you'll need to ensure that
ANSI.SYS is operational)

7.

Write a program that displays hello world in the centre of an otherwise blank
screen.

8.

Introduction to C Programming - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap1.Exercises.html [02/04/2002 09:19:23]

Chapter 1 review questions
C's output function printf() is

part of the 'C' language1.

a library function2.

a function users must write as part of every 'C' program3.

another name for the function print4.

1.

An escape character can be included in a 'C' string by including the following
characters in the string

\e1.

ESC2.

\0333.

\0x1B4.

2.

All 'C' programs must include

The keyword 'program'1.

A function called 'main'2.

The name of the author3.

A lest one use of the printf() function4.

3.

Conventionally 'C' source files have names ending in

.c1.

.cpp2.

.bas3.

.html4.

4.

The effect of writing print() rather than printf() is that

The program will not compile1.

The program will work as expected2.

The program will display "hello world" in inverse video3.

The program will not link correctly4.

5.

'C' programs

must be written with one statement per line1.

must be written entirely in lower case letters2.

can be laid out in any reasonable manner3.

6.

Chapter 1 review questions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/review.html (1 of 2) [02/04/2002 09:19:24]

can only be written using the editor 'edlin' (under MSDOS) or 'vi'
(under Unix)

4.

The 'C' program

main()
{
 printf("hello "
 "world" "\n");
}

will print out "hello world"1.

will print out "hello" on one line followed by "world" on the next line2.

will not compile correctly3.

will just print out "hello"4.

7.

Two strings are concatenated if they are separated by

the string "\040"1.

a TAB character2.

a comment3.

a newline character4.

8.

Much of the Unix operating system is written in 'C' because

'C' was developed along with Unix to ensure the portability of Unix1.

It was the only language available on the computers used for
developing Unix

2.

IBM wouldn't let the developers of Unix use PL/I3.

'C' provides the necessary low-level control and primitives for an
operating system

4.

MSDOS had already been written in 'C'5.

9.

Chapter 1 review questions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/review.html (2 of 2) [02/04/2002 09:19:24]

Wrong

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/1.1.html [02/04/2002 09:19:26]

Right

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/1.2.html [02/04/2002 09:19:27]

Wrong

print() is not a standard 'C' function.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/1.4.html [02/04/2002 09:19:29]

Wrong

It would be nice if \e could be used in this way and the ANSI standardisation effort
did consider the possibility but decided that the notion of Escape was not truly
portable (mainly to IBM mainframes).

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/2.1.html [02/04/2002 09:19:30]

Wrong

ESC is the conventional name for this character. It is not understood by any 'C'
compiler. Check the character codes information.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/2.2.html [02/04/2002 09:19:31]

http://www.scit.wlv.ac.uk/cbook/chap1.Codes.html

Wrong

Hexadecimal 1B is the same as Octal 33, the code for Escape. ANSI 'C' does not
allow hexadecimal constants within strings although this is a common (and
non-portable) extension.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/2.4.html [02/04/2002 09:19:33]

Wrong

There is no such keyword in 'C'. You may be thinking of the Pascal programming
language.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/3.1.html [02/04/2002 09:19:34]

Wrong

Including the author's name, within a comment is certainly desirable but, like
everything else within a comment, it is entirely optional.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/3.3.html [02/04/2002 09:19:35]

Wrong

There are many other ways of creating output in 'C'. A valid program need not
generate any output. In fact it need not do anything at all. The following is perfectly
OK, if rather pointless

 main()
 {
 }

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/3.4.html [02/04/2002 09:19:36]

Right

If your operating system is not sensitive to the case of letters in file names, then it
migt be 'C'.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/4.1.html [02/04/2002 09:19:38]

Wrong

This is used for C++ programs by some systems. Since all valid 'C' programs are
also, more or less, valid C++ programs .cpp may be acceptable.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/4.2.html [02/04/2002 09:19:39]

Wrong

Ridiculous.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/4.3.html [02/04/2002 09:19:40]

Wrong

Ridiculous

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/4.4.html [02/04/2002 09:19:41]

Wrong

The program will compile. Functions are incorporated at linkage time.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/5.1.html [02/04/2002 09:19:42]

Wrong

If, of course, print() were the name of a, non-standard, function with a similar
functionality to printf() then the program would work as expected.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/5.2.html [02/04/2002 09:19:43]

Wrong

Unless, of course, print() does this.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/5.3.html [02/04/2002 09:19:44]

Right

This would be the behaviour in a regular ANSI environment. If your libraries
included print() as a non-standard function then the program would link but the
results of running the program would depend on what the print() function actually
did.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/5.4.html [02/04/2002 09:19:45]

Wrong

See the notes on program layout.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/6.1.html [02/04/2002 09:19:46]

http://www.scit.wlv.ac.uk/cbook/chap1.layout.html

Wrong

Although 'C' function names, variable names and keywords are conventionally
lower case, this is only a convention. You can write in upper case if you really want
to but remember that standard library function names and keywords are in lower
case.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/6.2.html [02/04/2002 09:19:47]

Wrong

Any text editor can be used but beware of word processors which insert all sorts of
special mark-up characters in the text they are creating.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/6.4.html [02/04/2002 09:19:49]

Right

The three strings are concatenated into a single string. See the related notes.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/7.1.html [02/04/2002 09:19:50]

http://www.scit.wlv.ac.uk/cbook/chap1.strings.html#concat

Wrong

The strings are concatenated into a singel string. See the notes

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/7.2.html [02/04/2002 09:19:51]

http://www.scit.wlv.ac.uk/cbook/chap1.strings.html#concat

Wrong

String concatenation, i.e. the assembly of adjacent strings into a single string is part
of the ANSI standard. See the notes

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/7.3.html [02/04/2002 09:19:52]

http://www.scit.wlv.ac.uk/cbook/chap1.strings.html#concat

Wrong

Separating them by a further string simply results in the separating string being
included between them in the concatenated result. In this case the string actually
consists of a single space character. (See the codes). The result is that the strings are
concatenated but an extra space character appears at the concatenation point.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/8.1.html [02/04/2002 09:19:53]

http://www.scit.wlv.ac.uk/cbook/chap1.Codes.html

Right

It was also developed to include the necessary primitives and facilities.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/9.1.html [02/04/2002 09:19:56]

Wrong

Some form of assembly language would have been available.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/9.2.html [02/04/2002 09:19:57]

Wrong

They would, at a price ! More importantly PL/I was not available on the hardware in
use (early DEC machines) and was known to be a large and complex language.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/9.3.html [02/04/2002 09:19:58]

Right

Portability was another important consideration

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/9.4.html [02/04/2002 09:19:59]

Wrong

MSDOS was developed later than Unix and was written in Assembly language.

Chapter 1 Review Question Answer

http://www.scit.wlv.ac.uk/~jphb/cbook/html/review/chap1/9.5.html [02/04/2002 09:20:00]

Programming With Integers -
Introduction
Chapter chap2 section 1

All computers work internally with numbers. All the familiar things computers
appear to manipulate such as strings, characters, graphics, sound etc., are
represented inside the computer as numbers. In this chapter we will be looking at
various elementary techniques for reading in, storing and printing out numbers. We
will further confine our study to whole numbers or integers as they universally
called by computer scientists and mathematicians. We will also see how to make the
computer do some very simple calculations with numbers.

See Also

A simple program to add up two numbers●

Storing numbers●

Input of numbers●

Output of numbers●

Another program to read in two numbers●

Setting initial values●

Output layout control●

The effects of input errors●

The use of input layout control●

Programming errors●

Keywords●

C and C++●

Exercises●

Arithmetic

Programming With Integers - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.intro.html [02/04/2002 09:20:01]

Programming With Integers - A
Simple program to add up two
numbers
Chapter chap2 section 2

A simple C program that reads in two numbers, stores them and prints out the sum is
listed below.

/* A program to read in two numbers
 and print their sum
*/
main()
{
 int x,y; /* places to store numbers */
 printf("Enter x ");
 scanf("%d",&x);
 printf("Enter y ");
 scanf("%d",&y);
 printf("The sum of x and y was %d\n",x+y);
}

After compiling the program the following dialogue is typical of operation of the
program.

Enter x 4
Enter y 5
The sum of x and y was 9

There are a number of features of this program that require further explanation. If
you have had any experience of programming you will probably guess the following
points. The code on line 6 reserves and names places to store the numbers. The
library function scanf() used on lines 8 and 10 reads from the keyboard. The
addition of the two stored numbers is done on line 11 by calculating the value of
x+y. Even if you have had programming experience you may well be puzzled by the
percent (%) and ampersand (&) symbols appearing on lines 8, 10 and 11.

Storing Numbers

Programming With Integers - A Simple program to add up two numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.simple.html [02/04/2002 09:20:02]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum1.c

Programming With Integers -
Storing Numbers
Chapter chap2 section 3

The first task to be performed when writing any program that manipulates numbers
is to decide where to store them and tell the computer about it. Numbers are stored
in the computer's memory. Individual memory locations are known to the computer
by their reference number or address but programmers, being human beings, much
prefer to give the locations names that can be remembered easily. It is the compiler's
task to manage the relationship between the programmer chosen names of memory
locations and the internal reference numbers. This is done using a directory or
look-up table. A programmer is not normally in the least bit interested in the internal
reference numbers although, as we shall see in a later chapter, a C programmer can
determine and display these reference numbers or addresses should she or he want
to. The important thing about computer memory is simply that numbers, once stored
in a memory location, stay there until either the program finishes or some other
number is stored in that location or the computer is switched off.

The parts of a program that tell the compiler that memory locations are required and
should be referred to by certain names are known as declarations. In its simplest
form a declaration consists of a word describing what type of memory is required
followed by the names to be used to refer to the locations.

For example line 6 of the sum of two numbers program reads

int x,y;

This requests that the compiler reserves two memory locations of type int and that
they can be referred to as x and y .

At this stage in our study of the C programming language, we will only consider one
type of memory location known as int . Memory locations of type int are used to
store integers. There are many other types and variations which will be considered
in a later chapter.

The word int is special for the compiler. Whenever the compiler sees the word int in
a source program, the compiler assumes that it is processing the start of a
declaration which requests the reservation of one or more memory locations of type
int . In computer jargon we say that int is a keyword or reserved word. Most
programming languages have keywords and misuse of keywords can cause obscure
and puzzling error messages. A complete list of C programming language keywords
will be found at the end of this chapter. The meaning of them will be made clear in
due course, but, in the mean time, you must avoid using any of these words unless

Programming With Integers - Storing Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.storing.html (1 of 3) [02/04/2002 09:20:05]

you know what they mean.

The word int is followed by a list of names to be used. The names in the list are
separated by commas. As in all other programming languages there are rules for
acceptable names of memory locations. The rules for the C programming language
are

Names must start with a letter or underscore symbol. Names starting with
underscore symbols are often used for special internal purposes by compilers
and linkers and should be avoided in normal programming.

1.

Names must only consist of letters, numbers and underscore symbols. No
other characters are allowed within names.

2.

Names may be as long as the programmer wishes but any characters after the
first 31 may be ignored by the compiler, i.e. they are not significant. The
actual number of significant characters may vary between compilers, you may
rely on the first 31 characters being significant in all but the oldest
non-standard compilers.

3.

The fact that the C programming language is case sensitive means that names of
memory locations can be in upper case, lower case or a mixture of both. Most C
programmers use names constructed entirely from lower case letters as these are
easier to type and read.

You cannot declare the same name more than once. The name of a memory location
must not clash with the name of a function, i.e. you can't have memory locations
called main and printf in a program that uses these functions. All declarations are
terminated by a semi-colon. Declarations may be spread over several lines if you
wish. This is shown below.

 int x, /* first number */
 y; /* second number */

Multi-line declarations are probably preferable to declaring several names on a
single line because they allow descriptive comments to be placed after each
declaration. The following common alternative form is simply two declarations.

 int x; /* first number */
 int y; /* second number */

Memory locations used for holding numbers in this way are often referred to as
variables because it is always possible to change the number stored in the location.
The names associated with memory locations are known as identifiers. It is
common practice to talk about the variable x , this is, occasionally, misleading
because what is really meant is the number stored in the location whose address is x
. The circumlocution is, not surprisingly, not commonly used but you should
remember that this is what is really going on or you will get very confused when

Programming With Integers - Storing Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.storing.html (2 of 3) [02/04/2002 09:20:05]

addresses, as distinct from contents of addressed locations, are the subject of
arithmetic in more advanced programming.

All variables used in a program must be declared. All variable declarations must
appear before any executable statements.

The question of the initial values stored in memory locations will be discussed later.

Input of Numbers

Programming With Integers - Storing Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.storing.html (3 of 3) [02/04/2002 09:20:05]

Arithmetic and Data Types -
Introduction
Chapter chap4 section 1

In this chapter we will see how the C programming language handles a wider range
of numerical data types than the simple integers we have studied so far. For the
various data types we will see how to read them in, how to print them out, how to
write constant values and how expressions involving numbers of more than one type
are evaluated.

There are three basic data types. The notion of a data type reflects the possibility of
the 1s and 0s stored in a computer memory location being interpreted in different
ways. For full details an appropriate text on computer architecture should be
consulted.

The first basic data type we shall consider is the floating point number.
Floating point numbers provide a way of storing very large and very small
numbers including fractions. There are often several different ways of storing
floating point numbers offering a choice of precision or number of significant
digits. High precision storage of floating point numbers uses up more
computer memory and results in slower arithmetic. Floating point numbers
are sometimes called real numbers although mathematicians would object to
this usage, there being many numbers that cannot be stored exactly as floating
point numbers.

●

We have already discussed integers but here we shall see that, like floating
point numbers they can be stored in several different ways providing more or
fewer significant digits and also offering the option of storing them without a
sign.

●

Finally the character data type provides a way of storing and manipulating the
internal codes that represent the symbols that appear on output devices and
the symbols that are engraved on keyboard keytops.

●

The C programming language does not support the fixed point and binary coded
decimal data types widely used in commercial programming to store monetary
information.

See also

Floating Point Numbers●

Floating point data type mismatch in printf()●

Output Layout and Constant Formats for floating point numbers●

Arithmetic and Data Types - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.intro.html (1 of 2) [02/04/2002 09:20:06]

Accuracy of floating point arithmetic●

Integer Data Types●

The effect of precision specification on integer output●

Usigned Integers, Octal and Hexadecimal Conversions●

Bit-wise Operators●

Character Data Types●

Arithmetic with numbers of different data types●

Conversions and promotions between numbers of different types●

Use of casts for numeric conversions●

Operator precedence●

C and C++●

Exercises●

Arithmetic and Data Types - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.intro.html (2 of 2) [02/04/2002 09:20:06]

Programming With Integers -
Keyword List
Chapter chap2 section 12

The final part of this chapter is the promised list of keywords which is given below.
Do not use any of these words unless you know what they mean. This restriction
does not, of course, apply to text within strings.

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

If you have any previous experience of programming, you will recognise quite a
number of these. Some compilers may support various extra keywords. You will
need to consult your compiler manual carefully for details but the following list
includes some of the more likely ones. Remember that the use of these keywords
and the associated facilities constitute extensions but it is wise to avoid them as they
could cause problems when programs are moved to systems whose compilers
support such extensions.

asm* fortran near+ public*
catch* friend* new* readonly
cdecl generic operator* template*
class* globaldef pascal this*
defined globalref pragma throw*
delete* globalvalue private* try*
entry huge+ protected* virtual*
far+ inline*

The words indicated with an asterisk are keywords for the C++ programming
language. The words indicated with a plus sign are keywords used by many
MSDOS C compilers for extended memory operations.

C and C++

Programming With Integers - Keyword List

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.keyword.html [02/04/2002 09:20:08]

Programming With Integers -
Initial Values of Variables
Chapter chap2 section 7

You may have wondered what values are stored in the variables x and y in the sum
of two numbers programs before any values have been read in. The answer is that
the values are indeterminate, this means that you cannot make any assumptions
about what values are initially in any location. On many systems you will find that
the initial value is zero but you must not rely on this.

The following program demonstrates what happens if you do not set initial values.

main()
{
 int x;
 int y;
 printf("Initial value of x is %d\n",x);
 printf("Initial value of y is %d\n",y);
}

On the IBM 6150 it produced the following output.

Initial value of x is 0
Initial value of y is 0

On the SUN Sparc Station the result was

Initial value of x is 0
Initial value of y is 32

And finally Turbo C gave the following results

Initial value of x is 0
Initial value of y is 248

Should you want a variable to have some defined initial value then this can be
included within the declaration by following the variable name by an equals symbol
(=) and a value in the declaration. This is known as initialisation. The following
program shows the initialisation of variables.

main()
{

Programming With Integers - Initial Values of Variables

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.initial.html (1 of 2) [02/04/2002 09:20:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/unin.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum5.c

 int x=3,y=4;
 printf("The sum of %d and %d is %d\n",x,y,x+y);
}

When compiled and run it produced the following output.

The sum of 3 and 4 is 7

The initialisation is part of the declaration. Initialised and uninitialiased variables
can be mixed in the same declaration. For example

int x,y=7,z;

In fact a variable can be initialised to any expression whose value can be determined
by the compiler. This means that initialisations such as

int x=4+7;
int z=3,y=z+6;

are acceptable although rather pointless and not conventional programming.

Output Layout Control

Programming With Integers - Initial Values of Variables

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.initial.html (2 of 2) [02/04/2002 09:20:09]

Programming With Integers -
Input of Numbers
Chapter chap2 section 4

The library function scanf() performs several tasks. It determines which keys the
user has pressed, calculates, in the computer's internal form, the number that the
user has typed and finally stores the number in a particular memory location.

In many elementary programs scanf() will be used to read from the keyboard. In fact
scanf() reads from something called the standard input , this is usually the
keyboard but the host operating system has complete freedom to connect something
else to the standard input. This may, typically, be a stream of data read from a file.

The simple examples of the use of scanf() in the sum of two numbers program each
have two parameters. If a function is called with more than one parameter then the
parameters are supplied as a comma separated list.

The first parameter is a string of the sort we have already seen used with printf() as
will be seen from the enclosing double quotes. The purpose of the string is to tell
scanf() what rules to apply when converting from the set of keys pressed by the user
to the internal form of number storage used by the computer. This is necessary
because when you type a number such as 27 on the keyboard this causes the two
characters "2" and "7" to be sent to the computer. Internally computers store
numbers using the binary system, which is convenient for electronic manipulation
but totally unsuitable for human use. The library function scanf() will determine that
the keys pressed were "2" and "7" and use this information to generate the internal
binary number 0000000000011011. (The number of zeroes at the front varies from
computer to computer.)

Within the string %d means convert from external decimal form to an internal
binary integer. External decimal form is simply the way you normally write or type
integers. There are many other forms of conversion that will be described later. The
initial percent symbol (%) in the string means that the following "d" is a
conversion type specification rather than specifying that scanf() is expecting to find
a d in the input.

The second parameter is the address of the place to store the number read in and
converted. The ampersand (&) means "address of" and must not be left out.
Leaving out the ampersand almost always results in chaos. If you want to see what
sort of chaos results skip on towards the end of this chapter.

Output of Numbers

Programming With Integers - Input of Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.input.html [02/04/2002 09:20:11]

Programming With Integers -
Programming Errors
Chapter chap2 section 11

integer rather than int
As with the earlier hello world program it is quite possible to make a variety of errors
with the sum of 2 numbers programs. In the first example the programmer, possibly
confused by another programming language has written integer rather than int .

main()
{
 integer x,y;
 printf("Enter x ");
 scanf("%d",&x);
 printf("Enter y ");
 scanf("%d",&y);
 printf("The sum of x and y is %d\n",x+y);
}

This resulted in various error messages from the compilers. First the error messages
produced by the IBM 6150 compiler.

"sum2.c", line 3: integer undefined
"sum2.c", line 3: syntax error
"sum2.c", line 5: x undefined
"sum2.c", line 7: y undefined

The following error messages were produced by the SUN Sparc Station compiler.

"sum2.c", line 3: integer undefined
"sum2.c", line 3: syntax error at or near variable name "x"
"sum2.c", line 5: x undefined
"sum2.c", line 7: y undefined
Compilation failed

And finally the following error messages were produced by the Turbo C compiler.
These have been edited slightly by removing the file name that the Turbo C compiler
puts at the start of each line.

3: Undefined symbol "integer" in function main
3: Statement missing ; in function main

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (1 of 6) [02/04/2002 09:20:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum2e1.c

5: Undefined symbol 'x' in function main
7: Undefined symbol 'y' in function main

A variable called int
In the next example the programmer tried to use two variables called int and inp .
int is, of course, a keyword and, not surprisingly, the compilers gave various error
messages.

main()
{
 integer int,inp;
 printf("Enter int ");
 scanf("%d",&int);
 printf("Enter inp ");
 scanf("%d",&inp);
 printf("The sum of int and inp is %d\n",int+inp);
}

First the messages from the IBM 6150.

"sum2.c", line 3: illegal type combination
"sum2.c", line 3: syntax error
"sum2.c", line 5: syntax error
"sum2.c", line 8: syntax error

And now the SUN Sparc Station error messages.

"sum2.c", line 3: integer undefined
"sum2.c", line 3: syntax error at or near type word "int"
"sum2.c", line 5: syntax error at or near type word "int"
"sum2.c", line 7: inp undefined
"sum2.c", line 8: syntax error at or near type word "int"
Compilation failed

And finally the edited Turbo C error messages.

3: Too many types in declaration in function main
3: Need an identifier to delcare in function main
5: Expression syntax in function main
7: Undefined symbol 'inp' in function main
8: Expression syntax in function main

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (2 of 6) [02/04/2002 09:20:16]

Confused variable names
In the next example the programmer has declared variables called n1 and n2 but has
attempted to read into variables called x and y.

main()
{
 int n1,n2;
 printf("Enter x ");
 scanf("%d",&x);
 printf("Enter y ");
 scanf("%d",&y);
 printf("The sum of x and y is %d\n",n1+n2);
}

This, not surprisingly, resulted in messages about undefined symbols. First from the
IBM 6150.

"sum2.c", line 5: x undefined
"sum2.c", line 7: y undefined

Second, almost identically, from the SUN Sparc Station

"sum2.c", line 5: x undefined
"sum2.c", line 7: y undefined
Compilation failed

and finally from Turbo C

5: Undefined symbol 'x' in function main
7: Undefined symbol 'y' in function main

Misplaced declarations
In the next example the programmer has interleaved declarations and executable
statements.

main()
{
 int x;
 printf("Enter x ");
 scanf("%d",&x);
 int y;
 printf("Enter y ");
 scanf("%d",&y);

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (3 of 6) [02/04/2002 09:20:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum2e6.c

 printf("The sum of x and y was %d\n",x+y);
}

This resulted in the following error messages from the IBM 6150 compiler

"sum2.c", line 6: syntax error
"sum2.c", line 8: y undefined

and the following from the SUN Sparc Station compiler

"sum2.c", line 6: syntax error at or near type word "int"
"sum2.c", line 8: y undefined
Compilation failed

Surprisingly the Turbo C compiler accepted the program without complaint and it
worked quite happily and correctly. (See later notes on C++). The ANSI C standard
does not sanction this sort of coding. Cases where compiler writers allow things that are
not allowed by the published standard rules are called "extensions". If all your programs
are always going to be compiled by the same compiler then there is no harm in using
extensions and they are sometimes rather useful, so much so that they sometimes make
their way into new published standards. However if you intend to publish your program
in any way or anticipate it being moved from one computer system to another you must
avoid such extensions at all costs.

Missing ampersands in scanf()
In the next example of a faulty program the programmer has left out the ampersands in
the scanf() function calls.

/* A program to read in two numbers
 and print their sum
*/
main()
{
 int x,y; /* places to store the numbers */
 printf("Enter x ");
 scanf("%d",x);
 printf("Enter y ");
 scanf("%d",y);
 printf("The sum of x and y was %d\n",x+y);
}

As was promised various varieties of chaos resulted. On all three systems the program
compiled without any difficulty but attempts to run it had strange consequences. Both
the IBM 6150 and the SUN Sparc Station produced the following dialogue.

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (4 of 6) [02/04/2002 09:20:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum2dump.c

$ sum2
Enter x 3
Memory fault - core dumped
$

ls -l command) revealed the following state of affairs on the SUN Sparc Station.

total 105
-rw-r--r-- 1 jphb 8421808 Sep 23 14:47 core
-rwx------ 1 jphb 24576 Sep 23 14:47 sum2
-rw------- 1 jphb 138 Sep 23 14:47 sum2.c

The effects on the IBM 6150 were similar but the file called core . was much smaller.
The behaviour of Turbo C was quite different producing the following dialogue

Enter x 7
Enter y 6
The sum of x and y is 502
Null pointer assignment

To understand what has happened here it is necessary to remember that the values of the
second and third parameters of scanf() are required to be the addresses of the locations
that the converted numbers are stored in. In the C programming language the address of
a memory location can always be obtained by proceeding its name with an ampersand.
If the ampersand is omitted in the scanf() parameter list then the value passed to scanf()
is not the address of "x" but the value that happened to be stored in "x", however the
code of the scanf() library function knows nothing of this and assumes that the value it
has received is an address and attempts to store the converted number in that memory
location.

As was seen in an earlier example the initial value of "x" happened to be 0 on both the
IBM 6150 and the SUN Sparc Station so, when scanf() had converted 3 to internal form
it then attempted to store it in memory location 0. Unfortunately this memory location
was clearly used for something else important and the over-writing of this important
data has wrecked or, to use the jargon, crashed the program. The effects of such a crash
depend very much on the particular compiler and host operating system.

On Unix systems the effect is that the "event" is detected or caught by the operating
system which writes a program memory image to a file called, for historical reasons,
core . There are various debugging tools which can be used to examine such core files
in an attempt to find out what went wrong. Under MSDOS the effects are harder to
predict depending on the particular compiler you are using, you may well have to
re-boot the system.

The behaviour of the program compiled by the Turbo C compiler is particularly
puzzling, after producing an incorrect answer it then produced a message that nobody
other than a professional C programmer could reasonably be expected to understand. At
least the Unix systems produced a message that a reasonable user could take to indicate

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (5 of 6) [02/04/2002 09:20:16]

that something has gone wrong.

Missing printf() parameters
The final example shows the interesting consequences of a piece of gross carelessness
on the part of the programmer who has left out the "x+y" and the preceding comma in
the final call to printf() in the sum of two numbers program. (I've done this myself more
than once !)

main()
{
 int x,y;
 printf("Enter x ");
 scanf("%d",&x);
 printf("Enter y ");
 scanf("%d",&y);
 printf("The sum of x and y was %d\n");
}

When this program was compiled and run on a SUN Sparc Station the result was

Enter x 3
Enter y 4
The sum of x and y was -134218272

The effect on the IBM 6150 was similar only the result was quoted as 536872196 and
Turbo C gave the result 4.

The compiler did not generate any error messages on any of the systems, this is
because, as far as the compiler is concerned, there is nothing wrong with the final
printf(). The compiler does not check that the parameters after the format string match
up with the conversion specifications included within the format string, the difficulty
only shows up when the function printf() is executed.

This failure of C compilers to check that the parameters supplied to library function
calls are consistent with the layout specification is unfortunate but almost universal. In
the next chapter we shall see further examples of the consequences of such errors, it is
important to recognise them.

What is happening is that, once printf() has determined, from the format string, that it
needs an int , it expects one to have been provided in a standard place, unfortunately the
correct number has not been stored in that standard place.

Keyword List

Programming With Integers - Programming Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.errors.html (6 of 6) [02/04/2002 09:20:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/badp.c

Programming With Integers -
Output of Numbers
Chapter chap2 section 5

We have already encountered the library function printf(). Notice how the \n was
omitted from the strings on lines 7 and 9 of the sum of two numbers program so that
the prompt and the user response appeared on the same line when the program was
executed.

The parameters associated with printf() on line 11

printf("The sum of x and y was %d\n",x+y);

are more interesting. The string always associated with printf() is, in fact, a format
string or layout specification that consists of a mixture of things to be copied
directly to the output and output conversion specifications. The second parameter
and any subsequent parameters of printf() will be expressions whose values will be
converted from internal binary form to external form in accordance with the
conversion specifications in the format string.

As with scanf() there are a wide variety of possible conversion specifications. A
conversion specification within a format string is always introduced by a percent
symbol (%) and terminated by one of several key letters identifying a conversion
type. Within format strings you must write %% if you want an actual % symbol to
appear in the output. In this chapter we will only use the "d" conversion type. This
means convert from internal binary to external decimal.

The value of x+y is, as you might have expected, the sum of the values stored in
locations x and y. "x+y" is, technically, an expression. Whenever an expression
occurs in a program the effect is that the computer calculates the value of the
expression and leaves the value in a standard place. Expressions of arbitrary
complexity may be included as parameters of printf() as well as numbers and
variables which are special simple cases of expressions.

Another program to read in two numbers.

Programming With Integers - Output of Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.output.html [02/04/2002 09:20:18]

Programming With Integers -
Reading in Two Numbers
Chapter chap2 section 6

It is possible to use scanf() to read in two numbers from a single line of input. This
requires that scanf()' s conversion specification be modified to specify two
conversions and also that the addresses to store both numbers be supplied as
parameters to the scanf() function. A sum of two numbers program that works this
way is shown below.

/* Another sum of two numbers
 program
*/
main()
{
 int n1;
 int n2;
 printf("Enter two numbers ");
 scanf("%d%d",&n1,&n2);
 printf("The sum is %d\n",n1+n2);
}

Several runs of the program are shown below. The dollar symbol ($) is the
operating system (Unix) prompt. sum2 is the name of the file holding the executable
version of the program.

$ sum2
Enter two numbers 11 4
The sum is 15
$ sum2
Enter two numbers 21 73
The sum is 94
$ sum2
Enter two numbers 44 -10
The sum is 34
$ sum2
Enter two numbers 23
11
The sum is 34

Although the conversion specification is %d%d suggesting that the numbers should
be concatenated, scanf() will accept numbers with arbitrary intermediate space and

Programming With Integers - Reading in Two Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.two.numbers.html (1 of 2) [02/04/2002 09:20:20]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum2.c

will, in fact, not accept concatenated numbers. This works because scanf(), when
using d conversion rules, accepts an arbitrary amount of leading space. As far as
scanf() is concerned a space is generated by the user hitting the SPACE bar, the
TAB key or the RETURN key.

The final example is particularly interesting showing a slightly peculiar feature of
the operation of scanf(). The user had hit the keys 2 and 3 and then hit the RETURN
key. scanf(), quite properly, assumed that the first number the user had entered was
23 but the input specification required two decimal numbers so scanf() carried on
reading input until it had obtained another number. The user could have hit
RETURN many times before typing 11 and the program would have produced the
same result.

You will also notice that scanf(), not surprisingly, is quite happy with negative
numbers.

Initial values of variables

Programming With Integers - Reading in Two Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.two.numbers.html (2 of 2) [02/04/2002 09:20:20]

Programming With Integers -
Control of Output Layout
Chapter chap2 section 8

By including extra codes between the % symbol introducing an output conversion
specification and the conversion type letter it is possible to exercise considerable
control over the appearance of the output produced by printf().

When an internal value is converted to external form by printf() the set of printing
positions occupied by the external form is known as an output field . The number of
characters in such a field is the width of the field. The simple %d conversion
specification specifies an output field whose width is always just sufficient to
accommodate the required number of digits and, if required, a negative sign.

By incorporating a number between the "%" symbol and the "d" you can specify the
output field width. The output field width will never be less than the width you have
specified, leading spaces will be generated by printf() as necessary. If the number to
be converted is too big to fit in the output field then printf() will increase the size of
the output field so leading digits are not lost.

The specification of output field widths is useful and important if you are attempting
to print tidy columns of figures or print in particular positions on pre-printed
stationery. It is important to consider the maximum values you are going to have to
print out and define the output field width appropriately.

The following version of the sum of two numbers program shows the use of output
field width specification. >> and << are included in the layout specification so the
output field limits are clearly visible in the output.

main()
{
 int i,j;
 printf("Enter numbers ");
 scanf("%d%d",&i,&j);
 printf("The sum was >>%3d<<\n",i+j);
}

Here's the output produced by the program known as sum3 . In the first run note the
two leading spaces before the 7 and in the final run note that the output field width
has expanded to 4.

$ sum3

Programming With Integers - Control of Output Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.layout.html (1 of 2) [02/04/2002 09:20:22]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum3.c

Enter numbers 3 4
The sum was >> 7<<
$ sum3
Enter numbers 120 240
The sum was >>360<<
$ sum3
Enter numbers 999 999
The sum was >>1998<<

If the field width specification includes a leading zero then the leading spaces will
become leading zeroes in the output. This may be useful for displaying times using
the 24 hour clock or compass bearings. For example.

main()
{
 int i,j;
 printf("Enter numbers ");
 scanf("%d%d",&i,&j);
 printf("The sum was >>%06d<<\n",i+j);
}

A run of this program is shown.

$ sum4
Enter numbers 123 512
The sum was >>000635<<
$ sum4
Enter numbers 500000 1
The sum was >>500001<<

There are various other options associated with d output conversion. For further
information you should read the manual pages for the printf() function.

Input Errors

Programming With Integers - Control of Output Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.layout.html (2 of 2) [02/04/2002 09:20:22]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum4.c
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3S+printf

Programming With Integers -
Input Errors
Chapter chap2 section 9

When you write a program that takes input from human beings, you ought to
consider the possibility of the human being pressing the wrong key. At this stage in
our study of the C programming language we do not know enough to include
comprehensive checks and precautions in our programs and, anyway, such checks
would completely obscure the simple purpose of the programs.

However it is worth knowing what happens when the user does make a typing error.
The behaviour of scanf() is very simple and fairly well-defined, in the presence of
invalid input it simply gives up its attempt to convert from external to internal form.
The following sample dialogue, using the basic sum of two numbers program
demonstrates what happens. The program was called sum and was run on a SUN
Sparc Station. $ is the Unix operating system prompt.

$ sum
Enter x 3
Enter y two
The sum of x and y was 35
$ sum
Enter x one
Enter y The sum of x and y was 32
$ sum
Enter x 1.25
Enter y The sum of x and y was 33

In the first example, the first number (x) was read in satisfactorially but scanf() was
unable to process the second input value so gave up without altering the value of the
variable "y", which seems to have been 32. See earlier example.

The second example is rather more interesting. When scanf() failed to convert the
input one from external decimal to internal binary it left the characters "o", "n" and
"e" waiting to be processed. The second call to scanf(), after the second input
prompt, found these characters waiting to be processed and also failed to convert
them, it never got round to getting any more input from the user. This failure to get
more user input is the reason that the program result appears on the same line as the
second input prompt, the user never got a chance to type anything, in particular the
RETURN at the end of his line of input.

In computer jargon we might say that scanf() doesn't flush the input buffer.

Programming With Integers - Input Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.input.errors.html (1 of 2) [02/04/2002 09:20:24]

The third example shows the same sort of behaviour as the second example. When
scanf() attempts a %d conversion it does not expect to find a decimal point in the
input and gives up as soon as it finds the decimal point.

Input Layout

Programming With Integers - Input Errors

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.input.errors.html (2 of 2) [02/04/2002 09:20:24]

Programming With Integers -
Input Layout
Chapter chap2 section 10

The format specification strings used by a printf() are very similar to those used by
scanf(), however there are some differences.

A field width specfication in an input format defines the maximum number of
characters to be examined after leading spaces have been skipped. This may be
useful for reading fixed format numerical items, such as the output from other
programs but suffers from the disadvantage that any unread characters are left in the
input buffer. The following example shows the effects of input field width
specification.

main()
{
 int x,y;
 printf("Enter two 3 digit numbers ");
 scanf("%3d%3d",&x,&y);
 printf("The numbers were %d and %d\n",x,y);
}

And some typical runs of the program called inf.

bash$ inf
Enter two 3 digit numbers 123456
The numbers were 123 and 456
bash$ inf
Enter two 3 digit numbers 123 456
The numbers were 123 and 456
bash$ inf
Enter two 3 digit numbers 1234 567
The numbers were 123 and 4

In the final run note the effect of the character "4" left in the input buffer.

You can include further characters in the scanf() format string if they are not part of
a conversion specification. scanf() will then expect to find the relevant characters in
the input. The following program expects two numbers separated by a comma.

/* A program to read in two numbers
 and print their sum

Programming With Integers - Input Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.input.layout.html (1 of 2) [02/04/2002 09:20:26]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/inf.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum9.c

*/
main()
{
 int x,y; /* places to store the numbers */
 printf("Type two numbers in the form n1, n2 ");
 scanf("%d,%d",&x,&y);
 printf("The sum of x and y was %d\n",x+y);
}

Test runs of the program, known as sum9, are shown below.

$ sum9
Type two numbers in the form n1, n2 1, 3
The sum of x and y was 4
$ sum9
Type two numbers in the form n1, n2 100,200
The sum of x and y was 300
$ sum9
Type two numbers in the form n1, n2 1 , 2
The sum of x and y was 33
$ sum9
Type two numbers in the form n1, n2 200 400
The sum of x and y was 232

In the final two runs a spurious space was typed before the expected comma and, in
the final run, the comma was left out altogether. In both cases scanf() gave up as
soon as it found something other than the specified comma after the first number.
There are more complex ways of specifying optional input characters in scanf()
format specifications, they will be discussed later.

Input Errors

Programming With Integers - Input Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.input.layout.html (2 of 2) [02/04/2002 09:20:26]

Addresses, Pointers, Arrays and
Strings - Strings
Chapter chap6 section 7

It is possible to have aggregates of all sorts of things including aggregates, pointers
to anything including functions and user defined data types. In this section we will
look particularly at aggregates of characters which are so very widely used that they
have some special properties and there are special library functions for handling
such aggregates. Under certain circumstances an aggregate of characters may be
known as a string .

A string is a collection of characters terminated by a character all of whose bits are
zero, i.e. a NUL (not a NULL). It is entirely possible to initialise an aggregate to a
string by writing code such as

char msg[]={'H','e','l','l','o','\0'};

but this would never be done in practice as the C language allows the alternative
notation

char msg[] = "Hello";

which is always used in practice. The rules for writing string constants are exactly
the same as those that were discussed much earlier in the course when the use of
printf() was introduced. It should be noted that the size of the aggregate "msg" is 6
bytes, 5 for the letters and 1 for the terminating NUL.

There is an interesting and important difference between the following declarations
which may seem equivalent.

char msg[] = "Hello";

and

char *msg = "Hello";

The first declaration reserves an aggregate of 6 characters in the memory space
currently being allocated, the data space is initialised to the relevant set of character
values. This is only initialisation, the values and hence the text of the string can be
altered.

The second declaration reserves enough space to hold a pointer to a character, this
pointer is initialised to point to a "secret" system place within your program where

Addresses, Pointers, Arrays and Strings - Strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.strings.html (1 of 2) [02/04/2002 09:20:30]

the actual character string "Hello" is stored. This is likely to be the same general
place that is used for storing layout specification strings used by the printf() and
scanf() functions. The value stored in "msg", which is only a pointer to a character,
can be altered so it points to a different character. However, and this is encouraged
by the ANSI standard, the actual string constant should not be alterable, although
this restriction is seldom enforced.

The conversion type "s" may be used for the input and output of strings using
scanf() and printf(). Width and precision specifications may be used with the %s
conversion, the width specifies the minimum output field width, if the string is
shorter then space padding is generated, the precision specifies the maximum
number of characters to display. If the string is too long, it is truncated. A negative
width implies left justification of short strings rather than the default right
justification.

The following program illustrates the use of the "%s" conversion.

main()
{
 char *msg="Hello, World";
 printf(">>%s<<\n",msg);
 printf(">>%20s<<\n",msg);
 printf(">>%-20s<<\n",msg);
 printf(">>%.4s<<\n",msg);
 printf(">>%-20.4s<<\n",msg);
 printf(">>%20.4s<<\n",msg);
}

producing the output

>>Hello, World<<
>> Hello, World<<
>>Hello, World <<
>>Hell<<
>>Hell <<
>> Hell<<

The ">>" and "<<" symbols were included in this program so that the limits of the
output fields were clearly visible in the output.

String input using s conversion●

String input using scanset conversion●

String input using c conversion●

String input using the gets() function●

Addresses, Pointers, Arrays and Strings - Strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.strings.html (2 of 2) [02/04/2002 09:20:30]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str1.c

Programming With Integers - C
and C++
Chapter chap2 section 13 In the C++ programming language the restriction that all
declarations should appear before all executable statements is relaxed, this is why
the Turbo C compiler (which is really a C++ compiler) happily accepted the version
of the sum of two numbers program with the declaration of y after the input of x.

As well as the use of the library functions scanf() and printf() for input and output
the C++ language supports an alternative form of input and output known as an IO
stream. This uses the syntax

cout << value

for the output of a single value and the syntax

cin >> name-of-variable

for the input of a value to a variable. Note that, unlike scanf(), the IO stream input
requires just the name of the variable without any preceding "&". The symbol ">>"
is read as "gets from" and "<<" is read as "puts to". Before any IO stream operations
are performed you must put the header line

#include <iostream.h>

in the program. The sum of two numbers program can be re-written in C++ in this
form

// Sum of two numbers program in C++

#include <iostream.h>
main()
{
 int x,y;
 cout << "Enter first number ";
 cin >> x;
 cout << "Enter second number ";
 cin >> y;
 cout << "The sum of the two numbers was ";
 cout << x+y;
 cout << "\n";
}

Note that there is no need to provide conversion information, the C++ compiler

Programming With Integers - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.C++.html (1 of 3) [02/04/2002 09:20:33]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/sum1.cpp

inspects the values and variables associated with IO stream input and output and
arranges for the correct conversions. cout itself is a rather special sort of variable,
it is actually of type IO-stream. More interestingly the expression

cout << x+y

is also of type IO-stream so multiple outputs can be written in this fashion

 cout << "The sum of x and y was " << x+y << "\n"

To provide output width control there are several special functions associated with
cout. These include cout.width() and cout.fill() . The function cout.width() sets the
output field width for the next output operation only. It takes a single integer valued
parameter. The function cout.fill() specifies the character to be used to fill the
leading part of the next output field. It takes a single character constant as
parameter. This consists of an actual constant enclosed in single quotes. You may be
surprised that the names of these functions include a single dot, this does not mean
that C++ allows dots within variable names, this means that the width and fill
functions are associated with cout . The following two programs produce identical
output. The first program uses C style output layout control, the second uses C++
style control.

main()
{
 int x=25,y=50;
 printf("x = %5d, y = %05d\n",x,y);
}

The C++ version follows.

#include <iostream.h>
main()
{
 int x=25,y=50;
 cout << "x = ";
 cout.width(5);
 cout.fill(' ');
 cout << x << ", y = ";
 cout.width(5);
 cout.fill('0');
 cout << y << "\n";
}

Both programs produced the following single line of output

Programming With Integers - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.C++.html (2 of 3) [02/04/2002 09:20:33]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/xy.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap2/xy.cpp

x = 25, y = 00050

You will, almost certainly, think that the C version is simpler, it certainly involves a
lot less coding. The advantages of the C++ approach will only become clear in more
advanced and complex programs.

Exercises

Programming With Integers - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.C++.html (3 of 3) [02/04/2002 09:20:33]

Programming With Integers -
Exercises
Chapter chap2 section 14

Write a C program to print out the sum of two numbers in the form

The sum of 3 and 4 was 7

I.e. display the numbers as well as their sum.

1.

Modify the program of exercise 1 to obtain the two numbers interactively
from the user.

2.

By specifying a plus-sign in the scanf() format write a program that will read
in simple sums such as

12+34

and print the result.

3.

Write a program that declares at least three variables and initialises them to
fairly large values. By suitable use of the printf() layout print them out in a
neat column.

4.

If the symbol "-" appears immediately after the "%" in a d conversion
specification for use by printf() then the displayed number is left-justified
within the output field rather than the usual right justification. Write a
program to demonstrate this, can you think of any use for this facility ?

5.

If the symbol "+" appears immediately after the "%" in a d conversion
specification for use by printf() then the number displayed is always preceded
by a sign. Write a program to demonstrate this, can you think of any use for
this facility ?

6.

Programming With Integers - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap2.exercises.html [02/04/2002 09:20:35]

Arithmetic - Introduction
Chapter chap3 section 1

In this chapter we will explore the integer arithmetic capabilities of the C
programming language. We will also see another way of putting numbers in
memory locations. We will still only be concerned with integer arithmetic.

See also

Expressions●

Expression Evaluation●

Operator Precedence●

Operator Types●

Assignment Operators●

Increment and Decrement Operators●

Summary●

Program Layout●

Function parameter evaluation order●

Exercises●

Data Types

Arithmetic - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.intro.html [02/04/2002 09:20:37]

Arithmetic - Expressions
Chapter chap3 section 2

In the previous chapter we saw how we could the computer to add up two numbers by
writing the expression

x+y

The appearance of such an expression causes the computer to calculate the value of
the expression when executing the statement that includes the expression. It also
seems obvious that one can add up three numbers using an expression such as

x+y+z

In both these expressions are both variables such as "x", "y" and "z" and the symbol
"+". The symbol "+" means add up the two surrounding numbers. It is one of several
elementary operators .

+ meaning add
- meaning subtract
* meaning multiply
/ meaning divide

The reason that "*" is used for multiplication rather than an "X" or plain juxtaposition
of variables as is done in ordinary algebraic notation, is that an "X" could easily be
confused with the name of a variable and juxtapostion of two variable names looks
like a third variable name.

Strictly the operators shown above are binary operators which means that they
operate on two numbers. The values associated with an operator may be

actual numbers called constants1.

the names of variables, in which case the value of the variable is intended2.

expressions, in which case the value of the expression is intended3.

The following are all valid expressions assuming x,y and z are variables

x+231.

45002.

x+y*113.

z4.

The following program shows some simple examples of the use of the operators
shown above.

main()
{

Arithmetic - Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expressions.html (1 of 3) [02/04/2002 09:20:39]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/ops1.c

 int x = 3;
 int y = 2;
 int z = 6;
 printf("This is a constant -- %d\n",213);
 printf("The value of %d-%d is %d\n",x,y,x-y);
 printf("The value of %d*%d is %d\n",x,y,x*y);
 printf("The value of %d/%d is %d\n",z,y,z/y);
}

It produced the following output

This is a constant -- 213
The value of 3-2 is 1
The value of 3*2 is 6
The value of 6/2 is 3

The value of any expression involving integers will itself be an integer. This is
straightforward for addition, subtraction and multiplication but division requires
further consideration. Division of two integers results in an integer valued quotient
and a remainder that plays no further part in the proceedings.

Alternatively you can regard division as producing an answer including a fractional
part and the resultant number being truncated by discarding the fractional part. The
ANSI standard talks about truncation although all computers actually do integer
division and discard the remainder.

So when 20/7 is calculated, the result can be thought of either as 2 remainder 6 or as
2.85714..... In the first case discarding the remainder gives the result 2 and in the
second case truncating the result also gives the result 2.

The ANSI standard says that when two positive integers are divided, the result is
truncated towards zero. If the division involves negative numbers then the result
may be truncated up or down.

The following program shows the values of some actual quotients

main()
{
 int x = 5;
 int y = 8;
 int p = -3;
 int q = -5;
 printf("The value of %2d divided by %2d is %2d\n",
 y,x,y/x);
 printf("The value of %2d divided by %2d is %2d\n",
 y,p,y/p);

Arithmetic - Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expressions.html (2 of 3) [02/04/2002 09:20:39]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/ops2.c

 printf("The value of %2d divided by %2d is %2d\n",
 p,q,p/q);
 printf("The value of %2d divided by %2d is %2d\n",
 q,x,q/x);
}

When compiled and run the program produced the following output.

The value of 8 divided by 5 is 1
The value of 8 divided by -3 is -2
The value of -3 divided by -5 is 0
The value of -5 divided by 5 is -1

Although the ANSI standard allows computers to give either -2 or -3 as the value of
8/-3, all three systems tested, when writing these notes, gave the result -2.

The effects of attempting to divide by zero are officially undefined . The ANSI
standard does not require compiler writers to do anything special, so anything might
happen. Of course we tried this by changing the value of x to zero in the previous
program. Turbo C spotted what was going on and displayed the message

Divide error

The Unix systems were slightly less informative producing the following messages

Arithmetic exception (core dumped)
Breakpoint - core dumped

on the SUN Sparc station and IBM 6150 respectively. Both Unix systems produced
the core file described in the previous chapter.

Whether it is reasonable to expect the computer to check every division operation by
examining the divisor before actually executing the division is a debatable point,
unless there is special hardware for detecting the condition it can slow programs
down.

Evaluation of Expressions

Arithmetic - Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expressions.html (3 of 3) [02/04/2002 09:20:39]

Arithmetic - Evaluation of
Expressions
Chapter chap3 section 3

The expression

x+y+z

appeared earlier. This expression looks innocent but illustrates an important point.
Since the operator "+" is a binary operator this expression has to be evaluated in 2
steps. These could be either

Evaluate the expression x+y
Add z to the result of the previous evaluation

or

Evaluate the expression y+z
Add x to the result of the previous evaluation

The ANSI standard allows computers to do it either way and it clearly makes no
difference to the result. However for the expression

x-y+z

it clearly does make a difference as the following quick calculation shows.

First assume x has the value 1, y has the value 2 and z has the value 3. Evaluating
x-y and then adding z to the result gives the value +2 whereas evaluating y+z and
then subtracting the result from x gives the value -4.

The ANSI standard is quite definite about what should happen. It states that the "+"
and "-" operators group or associate left-to-right. This means that an expression
such as x-y+z is evaluated from left to right corresponding to the first alternative
described above. If we weren't certain what this meant, a quick program confirms
that our compiler writer interpreted it the same way as we did.

main()
{
 int x=1,y=2,z=3;
 printf("Value of \"%d-%d+%d\" is %d\n",
 x,y,z,x-y+z);
 printf("value of \"%d+%d-%d\" is %d\n",
 x,y,z,x+y-z);

Arithmetic - Evaluation of Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expression.evaluation.html (1 of 3) [02/04/2002 09:20:42]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op3.c

}

Giving the following output

Value of "1-2+3" is 2
value of "1+2-3" is 0

Suppose now that we did want to calculate y+z first and then subtract the result from
x. This problem can be solved by using an extra piece of notation and writing the
expression as

x-(y+z)

The parentheses (jargon for round brackets) enclose an expression and expressions
enclosed within parentheses are evaluated before other expressions according to the
standard. Further expressions contained within parentheses can be enclosed within
parentheses to an arbitrary depth, this is called expression nesting. Expressions
enclosed within parentheses are sometimes called sub-expressions but this isn't
really very helpful as they are proper expressions in their own right. Again a simple
programming example is sufficient to convince ourselves that parentheses work as
advertised.

main()
{
 int x=1,y=2,z=3;
 printf("Value of \"%d-(%d+%d)\" is %d\n",
 x,y,z,x-(y+z));
}

Resulting in the output

Value of "1-(2+3)" is -4

Notice how we used escaped double quotes within the printf() layout specification
to ensure that actual double quotes appeared in the output.

The ANSI standard rather grandly calls parentheses primary grouping operators.

There is an important difference between the "+" and the "-" operators. The jargon
says that "+" operator is a commutative operator whereas - is not. The adjective
commutative applied to a binary operator means that it doesn't matter which order it
takes its operators in. In other words

value1 operator value2

has exactly the same value as

value2 operator value1

Arithmetic - Evaluation of Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expression.evaluation.html (2 of 3) [02/04/2002 09:20:42]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op4.c

This is clearly true for "+" and equally clearly false for "-".

The ANSI standard says that expressions involving only one of the commutative
and associative operators can be evaluated in any order. An associative operator is
an operator which has the property

value1 operator (value2 operator value3)

has the same value as

(value1 operator value2) operator value3

allowing one to write, unambiguously,

value1 operator value2 operator value3

The only associative and commutative operators we have met so far are "+" and "*".

You may wonder if it could possibly matter how x+y+z is calculated. The answer is
that it might matter if an arithmetic overflow occurred during the calculation, the
problems of arithmetic overflow will be discussed, briefly, later in this chapter.

Operator Precedence

Arithmetic - Evaluation of Expressions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.expression.evaluation.html (3 of 3) [02/04/2002 09:20:42]

Arithmetic - Operator
Precedence
Chapter chap3 section 4

The expressions

x+y*z and x*y+z

suffer from the same potential ambiguity as

x+y-z and x-y+z

however the problem is handled in a different way. The normal mathematical
expectation is that multiplication is performed before addition. There are various
ways of saying this, we could say that the "*" operator binds more tightly or we
could say, and will say, that the "*" operator has a higher precedence than the "+"
operator. Again a simple programming example confirms this point.

main()
{
 int x=2,y=7,z=5;
 printf("The value of \"%d*%d+%d\" is %d\n",
 x,y,z,x*y+z);
 printf("The value of \"%d+%d*%d\" is %d\n",
 z,x,y,z+x*y);
}

resulting in the output

The value of "2*7+5" is 19
The value of "5+2*7" is 19

Of course, we could use parentheses if we actually wanted addition performed
before multiplication as the following example shows.

main()
{
 int x=2,y=7,z=5;
 printf("The value of \"%d*(%d+%d)\" is %d\n",
 x,y,z,x*(y+z));
 printf("The value of \"(%d+%d)*%d\" is %d\n",
 z,x,y,(z+x)*y);
}

Arithmetic - Operator Precedence

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.precedence.html (1 of 2) [02/04/2002 09:20:43]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op5.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op6.c

resulting in the output

The value of "2*(7+5)" is 24
The value of "(5+2)*7" is 49

Operator Types

Arithmetic - Operator Precedence

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.precedence.html (2 of 2) [02/04/2002 09:20:43]

Arithmetic - Types of Operators
Chapter chap3 section 5

The operators "+" and "-" are called additive operators. The operators "*" and "/" are
called multiplicative operators. There is one further multiplicative operator, this is "%"
which is a remaindering or modulo operator. The value of

value1 % value2

is the remainder when value1 is divided by value2. It is guaranteed by the ANSI
standard that the value of an expression such as

(a/b)*b + a%b

is equal to a. A programming example is in order.

main()
{
 int x=20,y=6;
 printf("The quotient of %d divided by %d is %d\n",
 x,y,x/y);
 printf("The remainder of %d divided by %d is %d\n",
 x,y,x%y);
}

resulting in the output

The quotient of 20 divided by 6 is 3
The remainder of 20 divided by 6 is 2

The behaviour of both the "/" and "%" operators is, officially, undefined, if the second
operator is zero.

All the multiplicative operators associate or group left-to-right and have the same
precedence. This is demonstrated by considering the output of the following program.

main()
{
 int x=20;
 int y=3;
 int z=5;
 printf("Value of \"%d/%d*%d\" is %d\n",
 x,y,z,x/y*z);
 printf("Value of \"%d/%d/%d\" is %d\n",
 x,y,z,x/y/z);
 printf("Value of \"%d%%%d*%d\" is %d\n",

Arithmetic - Types of Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.operator.types.html (1 of 2) [02/04/2002 09:20:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op7.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op7a.c

 x,y,z,x%y*z);
}

which produced the output

Value of "20/3*5" is 30
Value of "20/3/5" is 1
Value of "20%3*5" is 10

In the first line of output "20/3" is first calculated giving 6 by the rules of integer
division, the result is multiplied by 5. In the second line of output the value of "20/3" is
calculated and the result is divided by 5 giving the value 1. In the final line of output the
value of "20%3" is calculated, its value is 2 which is then multiplied by 5.

The C programming language has a particularly large set of operators compared with
many other programming languages, it is important to keep track of the precedence and
grouping of operators when writing complicated expressions.

Assignment Operators

Arithmetic - Types of Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.operator.types.html (2 of 2) [02/04/2002 09:20:45]

Arithmetic - Assignment
Operators
Chapter chap3 section 6

Another useful set of elementary operators are the assignment operators. The
simplest of these is "=". Unlike the operators we have seen so far the choice of first
operand is restricted to the name of a variable. A typical example would be

x=7

The value of this expression is 7 but as a side effect the value 7 is stored in the
variable x. The side effect is often more important than the value of the expression.
Again a programming example is in order.

main()
{
 int x=4;
 printf("The value of x is %d\n",x);
 printf("The value of \"x=8\" is %d\n",x=8);
 printf("The value of x is %d\n",x);
}

resulting in the output

The value of x is 4
The value of "x=8" is 8
The value of x is 8

Another example underlines the point

main()
{
 int x=2,y=3;
 printf("x = %d, y = %d\n",x,y);
 printf("Value of \"(y+(x=8))\" is %d\n",
 y+(x=8));
 printf("x = %d, y = %d\n",x,y);
}

producing the output

x = 2, y = 3

Arithmetic - Assignment Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.assignment.html (1 of 5) [02/04/2002 09:20:50]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op8.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op8a.c

Value of "(y+(x=8))" is 11
x = 8, y = 3

These examples might look a little odd to those familiar with other programming
languages who might be happier with the following program.

main()
{
 int x=4;
 printf("The value of x is %d\n",x);
 x=8;
 printf("The value of x is %d\n",x);
}

which produced exactly the same first and last lines of output. The line between the
two printf() function calls is a single statement consisting of the expression

x=8

The final semi-colon is necessary to ensure that this line is a statement. There are
several good reasons, mainly concerned with keeping compiler design simple, for
treating "=" as an operator rather than treating assignment as a special sort of
statement, the technique adopted by many other programming languages.

Technically the thing that appears at the left hand side of an assignment expression
must be an lvalue , this means the address of a memory location in which a value
can be stored. In the simple assignment expression

x=x+1

the "x" on the left hand side represents the address of a memory location whereas
the "x" on the right hand side of the "=" symbol represents the value stored in the
location with the address "x". This confusion is common to nearly all programming
languages.

The expression

x=x+1

repays further examination. This expression includes the two operators "=" and "+"
and it is proper to ask whether it means

evaluate the expression x=x
add 1 to the result of the first evaluation

or

evaluate the expression x+1

Arithmetic - Assignment Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.assignment.html (2 of 5) [02/04/2002 09:20:50]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op9.c

assign the result to x

We have already seen that problems of this nature can be resolved by considering
the relative precedence of the operators. The ANSI standard states that all the
assignment operators have a lower priority or precedence than any other operator
except the rather bizarre comma operator which we won't meet for some time. This
means that the second interpretation of "x=x+1" is the correct interpretation.

The value of an assignment expression may, of course, be assigned to a variable.
This leads to constructs such as

x = y = z = p+3

Unlike the arithmetic operators discussed earlier assignment operators associate or
group right to left. This means that, in the above example, the first step is the
evaluation of the expression p+3 followed by assignment of its value to z. The value
of the expression

z = p+3

is then assigned to y and so on.

There are several more assignment operators that provide a short-hand way of
writing

variable = variable operator expression

The following are based on the arithmetic operators we have discussed so far

+= -= *= /= %=

There are others which will be discussed later in the course. The economy of writing

count_so_far += input_value

compared with

count_so_far = count_so_far + input_value

is obvious and these assignment operators are widely used by C programmers. In all
cases the value of the assignment expression is the value assigned to variable whose
name is the first operand of the expression. The following program exercises the
assignment operators. Note the "%%" in the penultimate output printf() format.

main()
{
 int x=4;
 int n1=2,n2=1,n3=4,n4=5,n5=3;
 printf("Initial value of x is %d\n",x);

Arithmetic - Assignment Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.assignment.html (3 of 5) [02/04/2002 09:20:50]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op10.c

 printf("Value of x += %d is %d\n",n1,x+=n1);
 printf("Value of x -= %d is %d\n",n2,x-=n2);
 printf("Value of x *= %d is %d\n",n3,x*=n3);
 printf("Value of x /= %d is %d\n",n4,x/=n4);
 printf("Value of x %%= %d is %d\n",n5,x%=n5);
 printf("Final value of x is %d\n",x);
}

The output is shown below. It is an interesting exercise to try and follow through the
execution of the program and predict the values that are printed out.

Initial value of x is 4
Value of x += 2 is 6
Value of x -= 1 is 5
Value of x *= 4 is 20
Value of x /= 5 is 4
Value of x %= 3 is 1
Final value of x is 1

If you peeked, try changing the initial values, predicting the results and then try it on
a computer.

If you couldn't figure out what was going on in the previous example let's go
through it step by step.

When the second printf() is executed it is necessary to calculate the value of
"x+=n1", since n1 has the value 2 and x has the value 4 the value of "x+n1" is 6 and
remembering that

x+=n1

is equivalent to

x = x + n1

it is now clear that x takes the value 6 and that this is also the value of the
assignment expression.

On the next line the value of "x-=n2" is required. As n2 has the value 1 and x was
changed to 6 on the previous line the value of this is 5 which value is assigned to x.

On the fourth printf() line the value of x*=n3 is required, since n3 is 4 and x is now
5 this is 20. On the fifth line is value of "x/=n4" is the same as "x=x/n4" which is 4.

Finally "x%=n5" is calculated, remembering that x is now 4 and n5 is 3 and that the
expression is equivalent to "x=x%n5", it is easy to see that the value is 1, the
remainder when 4 is divided by 3.

Arithmetic - Assignment Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.assignment.html (4 of 5) [02/04/2002 09:20:50]

The ++ and -- operators

Arithmetic - Assignment Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.assignment.html (5 of 5) [02/04/2002 09:20:50]

Arithmetic - The ++ and --
Operators
Chapter chap3 section 7

The final operators considered in this chapter are the "++" and "--" operators. These
provide a handy way of incrementing or decrementing the value of a variable, a very
common programming requirement. Each operator comes in two flavours known as
prefix and postfix. The difference concerns whether the value of the expression is
the new value of the variable or the old value of the variable. If the operator
precedes the name of the variable then the value of the expression is the new value,
otherwise it is the original value. Note that these operators can only be associated
with variables, they cannot be associated with constants or expressions. The jingles
use and increment or increment and use may be helpful here and, of course,
another programming example is called for.

main()
{
 int x=3;
 int y=4;
 printf("Value of x++ is %d\n",x++);
 printf("Value of ++y is %d\n",++y);
 printf("Value of y++ is %d\n",y++);
 printf("Value of ++x is %d\n",++x);
 printf("Final value of x is %d, y is %d\n",x,y);
}

Producing the output

Value of x++ is 3
Value of ++y is 5
Value of y++ is 5
Value of ++x is 5
Final value of x is 5, y is 6

Again careful consideration of the output will be rewarded by greater understanding
of what is actually going on.

The first statement displays the value of x++. This is the postfix flavour meaning
use-and-increment so the value of the expression x++ is the original value (3) but as
a side effect of evaluating x++ the value of x is changed to 4, however this will not
be apparent until the next use of x.

Arithmetic - The ++ and -- Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.++.html (1 of 2) [02/04/2002 09:20:54]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op11.c

The next statement displays the value of ++y. This is the prefix or
increment-and-use flavour so the value of the expression is the value after
incrementation of the original value. The net effect is that the value of y is changed
to 5.

The next statement works in exactly the same way as the first statement showing the
value of y before performing the incrementation implied by y++. During the
execution of the previous statement the value of y had been incremented to 5, it, of
course, retains this value when the execution of the next statement starts. After the
execution the value of y will be 6.

The final statement takes the current value of x, which had been changed to 4 during
the execution of the first statement, and increments it further. The postfix "++"
means increment-and-use so the value displayed is 5. The "--" operator is totally
analagous to the "++" operator only it decrements rather than increments.

Fairly obviously, the "++" and "--" operators can only be applied to variables (or
more properly lvalues).

The "++" and "--" operators are very widely used in programming loops and other
iterative constructs which we will be using shortly.

The so-called side-effects associated with both the increment and decrement
operators and the assignment operators are often confusing to programmers who are
familiar with other languages or who have attended courses on software engineering
where such things are deprecated as confusing and mysterious. The widespread use
of and reliance on side-effects is, however, very typical of normal C programming.
It can, in the wrong hands, give rise to very obscure code, in the right hands in can
result in remarkably terse programs that will be small and efficient when compiled.

"++" and "--" are examples of unary operators which means that they are associated
with a single operand rather than two operands. Other examples are "+" and "-" used
in contexts such as

x = -y

and

y = +z

The unary "+" operator doesn't actually do anything useful, it is there for
completeness.

Summary of Arithmetic Operators

Arithmetic - The ++ and -- Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.++.html (2 of 2) [02/04/2002 09:20:54]

Arithmetic - Summary of
Arithmetic Operators
Chapter chap3 section 8

We can now summarise the operators we have seen so far. These are, in order of
decreasing precedence

Symbol Type

() Primary Grouping

- + Unary

-- ++ Unary

* / % Binary Multiplicative

+ - Binary Additive

= += -= *= /= %= Assignment Operators

Program Layout

Arithmetic - Summary of Arithmetic Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.summary.html [02/04/2002 09:20:55]

Arithmetic - Program Layout
Chapter chap3 section 9

You may have noticed that, in some of the programs listed earlier, the statements
involving printf() spread over two lines. For example.

printf("The value of \"%d+%d*%d\" is %d\n",
 z,x,y,z+x*y);

This is possible because the C language is a free format language, which means
that statements and expressions may be written in any way to improve readability.
This freedom also applies to the list of parameters for a function such as printf() and
was used earlier to avoid long lines spoiling the appearance of the printed text.

In general, C compilers regard any sequence of TAB characters, space characters
and newline characters as equivalent to a single space. These are collectively known
as white-space characters. Sequences of characters enclosed within the character
pairs /* and */ are also equivalent to a single space. None of this applies to
characters enclosed within double quotes.

It is also not permissible to write things such as

p r i n t f

rather than

printf

The reason is both interesting and important. As part of the compilation process the
source program you have typed in is converted into a sequence of items known as
tokens which might be names of variables, names of functions, keywords, operators
or constants. The rules for identifying tokens are rather complicated to state but the
effect is fairly obvious. The following example shows the "hello world" program
listed one token per line

main
(
)
{
printf
(
"hello, world\n"
)
;

Arithmetic - Program Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.layout.html (1 of 2) [02/04/2002 09:20:57]

}

This was given as an example of how not to lay out programs in chapter 1. Breaking
the name of a variable into separate pieces causes the compiler to see each piece as a
separate token. Some equally bizarre looking examples of code can be understood
by considering tokenisation. For example

x-=-3

would be split into the token stream "x", "-=", "-" and "3", there being no other valid
way of splitting it into tokens. It would have been better if the programmer had
written

x -= -3

Oddities such as

x+++++y

can probably only be validly tokenised as

x ++ + ++ y

but it is much better to write the second form rather than the first.

Order of Evaluation of Functional Parameters

Arithmetic - Program Layout

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.layout.html (2 of 2) [02/04/2002 09:20:57]

Arithmetic - Order of Evaluation
of Functional Parameters
Chapter chap3 section 10

A final important point in this chapter is to consider the output produced by the
following program

main()
{
 int x=5;
 printf("Values are %d and %d\n",x++,++x);
}

Before revealing the results let's see if we can work out what the output of the
program will be. You might typically argue along the following lines.

We need to consider the values passed to the printf() function. The first of these is
the value of the expression "x++". This is the use-and-increment (prefix) flavour of
"++" so the value of the expression is 5 and as a side effect of evaluating the
expression the value of x is increased to 6. The value of the expression "++x" is now
calculated, this is the "increment-and-use" flavour of "++" so the value of the
expression is clearly 7. Thus the expected output is

Values are 5 and 7

and compiling and running the program on the SUN Sparc Station produced exactly
the expected output. What problem could there possibly be with this simple program
? Trying the same program using the Turbo C compiler resulted in the output

Values are 6 and 6

This is rather surprising but what has happened is actually quite easy to understand,
if rather inconvenient. The C programming language standard rules quite
specifically allow the parameters to be passed to a function to be evaluated in any
convenient order. The SUN Sparc station compiler worked left to right, which
seems more natural, whereas the Turbo C Compiler worked right to left which may
be more efficient in some circumstances.

This must be remembered when writing programs that are to be compiled on many
different machines. Some compilers provide flags or options to allow the user to
control the order of functional parameter evaluation.

Arithmetic - Order of Evaluation of Functional Parameters

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.order.html (1 of 2) [02/04/2002 09:20:59]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/op15.c

A similar difficulty arises when considering the output of a program such as

main()
{
 int x = 4;
 printf("Result = %d\n",x++ + x);
}

Since the standard allows expressions involving commutative associative operators
such as "+" to be evaluated in any order a moment's thought shows that the value
printed out would be 8 for right-to-left evaluation and 9 for left-to-right evaluation.
On the SPARC system the output was

Result = 8

whereas the Turbo C compiler gave the result

Result = 9

Strictly the behaviour of the program is undefined, which means that anything
might happen.

Exercises

Arithmetic - Order of Evaluation of Functional Parameters

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.order.html (2 of 2) [02/04/2002 09:20:59]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap3/tprec.c

Arithmetic - Exercises
Chapter chap3 section 11

Write a program to read in 3 integers and print their sum.1.

Write a program to read in two integers and display both the quotient and the
remainder when they are divided. How does your computer treat the results of
division by a negative number? What happens when you try and divide by
zero?

2.

What error message does your compiler give when you write

x+1=x

in a program?

3.

Write a program to test the behaviour of your computer system when it
processes

printf("%d %d\n",x++,++x);

4.

How do you think the computer will evaluate

x+=x++

Try and calculate the value for a particular value of x, then write a program to
see what really happens. Do you think any other computer might come up
with a different result?

5.

Does

x-=x

make any sense? What do you think it means?

6.

How would

x%y%z

be evaluated? Write a program to find out what happens.

7.

Write a program to read in two integers and display one as a percentage of the
other. Typically your output should look like

20 is 50% of 40

assuming that the numbers read in where 20 and 40

8.

Arithmetic - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap3.exercises.html [02/04/2002 09:21:00]

Arithmetic and Data Types -
Floating Point Numbers
Chapter chap4 section 2

The floating point data type provides the means to store and manipulate numbers
with fractional parts and a very large range of sizes. The ANSI standard describes
three types of floating point storage known as float , double and long double .
Different C compilers running on different computer systems are allowed by the
ANSI standard to implement the various types of floating point numbers in different
ways but certain minimum standards must be met. The basic characteristics are
summarised in the following table.

Type Maximum Value Significant Digits Context

float 1.0 X 1037 6
ANSI specified minimum
acceptabledouble 1.0 X 1037 10

long double 1.0 X 1037 10

float 3.403 X 1038 6
Actual characteristics on SUN
Sparc stationdouble 1.798 X 10308 15

long double 1.798 X 10308 15

float 3.4 X 1038 7
Actual characteristics on a PC
using the Turbo compilerdouble 1.7 X 10308 15

long double 1.1 X 104932 19

For example a double variable on the SUN Sparc Station ANSI compiler will store
numbers up to 1.798 X 10308 (that's 308 zeroes) to an accuracy of about 15
decimal places.

It will be noted that double and long double are the same on the SUN Sparc station,
this is clearly allowed by the standard which equally clearly allows long double to
support a larger maximum value and more significant digits if the compiler writer so
wishes and the underlying hardware can manipulate such numbers. It should be
noted that most C programmers tend to use the double floating point data type rather
than float or long double for largely historical reasons.

Memory locations of any of the floating point data types can be declared by giving
the type name and a list of identifiers. Floating point locations can be initialised as
part of the declaration. There are no special rules for naming floating point data
locations. Declarations for memory locations of different data types must be
separate declarations but as many memory locations of a single type as required can

Arithmetic and Data Types - Floating Point Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.float.html (1 of 4) [02/04/2002 09:21:03]

be declared in a single declaration. The names of memory locations of all the
various types must be distinct.

The values of floating point numbers can be written using the conventional notation
involving a decimal point. A notation such as 3.7 implies a constant of type double.
In the unlikely circumstances that a constant of a particular type is needed then one
of the letters "f" or "F" for a float constant or "l" or "L" for a long double constant
can be written as the last character of the constant. There are other notations which
will be described later.

Floating point numbers can be converted to external form using the printf() function
with the following conversion specifications

f float

lf double

Lf long double

Between the % that introduces the conversion specification in the printf() format
string and the f , lf or Lf that terminates the conversion there will usually be a field
specification of the form

w.d

where w specifies the overall field width and d is the precision specification which
tells printf() how many digits to print after the decimal point. If the precision is not
specified then a default of 6 is used. For the use of precision specifications with
integers see later. The technique for adjusting the field width and precision while the
program is running is also discussed later.

The following program illustrates the declaration, initialisation and output of
floating point numbers.

main()
{
 double x=213.5671435;
 double y=0.000007234;
 printf("x = %10.5lf\n",x);
 printf("y = %10.5lf\n",y);
 printf("x = %5.2lf\n",x);
 printf("y = %10lf\n",y);
 printf("x = %3.1lf\n",x);
}

It produced the following output.

Arithmetic and Data Types - Floating Point Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.float.html (2 of 4) [02/04/2002 09:21:03]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp1.c

x = 213.56714
y = 0.00001
x = 213.57
y = 0.000007
x = 213.6

There are several interesting points to notice here. On the second, third and fifth
lines notice that the output has been rounded. On the fourth line note the default
precision and on the fifth line note the output field width has expanded to
accommodate the actual data.

It is, of course, quite admissible to omit the field width entirely and just quote a
precision with preceding period, then the required number of digits will be displayed
and the field width will expand suitably.

All the arithmetic operations described in the previous chapter with the exception of
those involving the modulo operator ("%") may be applied to floating point
numbers. The division operator applied to floating point numbers yields a floating
point quotient, there are no complications with remainders or truncation. The effect
of applying any of the operators to a mixture of floating point data types or a
mixture of floating point and integer data types will be discussed later. There are no
extra arithmetic operators for floating point data types, in particular there is no
operator for raising a floating point number to a power or taking its square root. The
ANSI standard defines library functions for these and many other common
mathematical functions such as sines, cosines etc.

Floating point numbers may be read in using the scanf() library function in exactly
the same way as integers were read in, only you need to use the appropriate floating
point conversion specification. Any normal way of writing a floating point value
may be used externally including integers which are properly converted to the
equivalent floating point number.

Floating point arithmetic is illustrated by the following program.

main()
{
 double data;
 double x=490;
 data = (2.0*x)/3.5;
 printf("data = %20.10lf\n",data);
 x = 1.0/data;
 printf(" x = %20.10lf\n",x);
}

which produced the output

Arithmetic and Data Types - Floating Point Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.float.html (3 of 4) [02/04/2002 09:21:03]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp2.c

data = 280.0000000000
 x = 0.0035714286

And finally the following program called fp3 illustrates floating point input.

main()
{
 double x,y;
 printf("Enter values for x and y ");
 scanf("%lf%lf",&x,&y);
 printf("The sum of x and y is %10.5lf\n",x+y);
}

which proceeded as follows

$ fp3
Enter values for x and y 234.567 987.654321
The sum of x and y is 1222.22132
$ fp3
Enter values for x and y 1 2
The sum of x and y is 3.00000

floating point data type mismatch in printf()●

display of floating point numbers●

Accuracy of floating point arithmetic●

integer data types●

Arithmetic and Data Types - Floating Point Numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.float.html (4 of 4) [02/04/2002 09:21:03]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp3.c

Arithmetic and Data Types -
Floating point data type
mismatch in printf()
Chapter chap4 section 3

It is essential that the data types in printf() and scanf() parameter lists match up, in
type and number of items, with the conversion specifications in the function format
string. The effects of errors are illustrated in the following examples. First an
attempt to display an integer using floating-point conversion.

main()
{
 printf("The number was %10.5lf\n",2445);
 printf("The number was %10.5lf\n",-2445);
}

Which produced the output

The number was 0.00000
The number was -NaN

The behaviour of this program may differ on different computers. On a PC using
Turbo C, the computer just hung and had to be rebooted. What has gone wrong here
is fairly easy to understand. The printf() function, when it saw a floating point
conversion specified in the format string, expected a floating point number as the
first parameter and attempted to interpret the set of bits it found as if they were a
floating point number. In the first case it simply produced a wrong result, in the
second case the symbols NaN mean not a number which means that the string of
bits representing -2445 cannot be interpreted as a floating point number.

There are also problems with trying to mix the floating point types as the following
example illustrates.

main()
{
 float x = 4.5;
 double xx = 4.5;
 long double xxx = 4.5;
 printf(" x as a double %10.5lf\n",x);
 printf("xxx as a double %10.5lf\n",xxx);

Arithmetic and Data Types - Floating point data type mismatch in printf()

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.dio.html (1 of 3) [02/04/2002 09:21:05]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp4.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp5.c

 printf(" xx as a float %10.5f\n",xx);
 printf("xxx as a float %10.5f\n",xxx);
 printf(" x as a long double %10.5Lf\n",x);
 printf(" xx as a long double %10.5Lf\n",xx);
}

Producing the following output which has been slightly rearranged to fit it all on one
page. Each of the long sequences of digits was actually a single line of output.

 x as a double 4.50000
xxx as a double -10560771802106750553398
2096423699136116217666493230020800324921
4912735106858866710700289811217622935490
4090954051838156513573918189866268647291
1431518496733949893763566106655226622410
6346315206950304034682546775452344161447
0053554697053546159686477391079668453299
14986496.00000
 xx as a float 4.50000
xxx as a float -10560771802106750553398
2096423699136116217666493230020800324921
4912735106858866710700289811217622935490
4090954051838156513573918189866268647291
1431518496733949893763566106655226622410
6346315206950304034682546775452344161447
0053554697053546159686477391079668453299
14986496.00000
Segmentation fault (core dumped)

which should be enough to encourage anyone to be careful with type matching when
using printf(). The above spectacular results were obtained using the standard
compiler on a SUN Sparc station. Other compilers may give up or produce weird
results in different ways.

Before the program crashed it produced 4 lines of output. On the first line there was
no particular problem and printf() was quite happy to interpret the value of of the
float variable x as if it were a double . Actually the value of printf()' s second
parameter has been automatically converted from float to double , this is known as
function parameter promotion and is part of the ANSI standard. It is discussed
later.

When generating the second line of output printf() expected a double value and
mis-interpreted the supplied long double bit pattern.

On the third line printf() was expecting a float but knew that all float parameters are

Arithmetic and Data Types - Floating point data type mismatch in printf()

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.dio.html (2 of 3) [02/04/2002 09:21:05]

promoted to double so correctly interpreted the supplied bit pattern, unfortunately
this didn't work when a long double was supplied.

The effects of the fifth executable line were rather different, printf() expected a long
double and in trying to get it something went dramatically wrong causing the
program to crash. The actual crash shown here was recorded on a Unix system, the
message Segmentation fault means that the program attempted to access a part of
the computer memory that had been allocated to a different program. It does suggest
that code such as

printf("x=%10.5Lf\n",2.5)

is likely to cause a disaster. (It did !). The problem is that "2.5" is seen as constant of
type double rather than as a constant of type long double . A constant can, of course,
be forced to be of a particular type as described earlier. The program

main()
{
 printf("x = %10.5Lf\n",2.5L);
}

was perfectly well behaved producing the output

x = 2.50000

Display of floating point numbers●

Arithmetic and Data Types - Floating point data type mismatch in printf()

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.dio.html (3 of 3) [02/04/2002 09:21:05]

Arithmetic and Data Types - Display of
floating point numbers
Chapter chap4 section 4

All the floating point values we have seen so far have been written using the conventional integral
part/decimal point/fractional part notation. The C programming language also supports the well-known
"e" notation which is handy for very large or very small floating point numbers.

A floating point number can be written in the form

 "number" e "exponent"

without any internal spaces meaning simply number X 10exponent E may be used instead of e if
preferred. Constants written using the "e" notation are normally of type double, they may be forced to
other floating point types by appending a suitable letter as described earlier. The output e conversion
displays a floating point number in the form shown above. The precision specification specifies the
number of digits to appear after the decimal point in the output. Here are some examples in a program

main()
{
 double x = 1.23456789e+15;
 double y = 100;
 double z = 0.5e-15;
 /* shows e format - width=10, precision=5 */
 printf(" x = %10.5le\n y = %10.5le\n z = %10.5le\n",x,y,z);
 /* shows e format - width=20, precision=10 */
 printf(" x = %20.10le\n y = %20.10le\n z = %20.10le\n",x,y,z);
 /* f format with default options */
 printf(" x = %lf\n y = %lf\n z = %lf\n",x,y,z);
}

producing the output

 x = 1.23457e+15
 y = 1.00000e+02
 z = 5.00000e-16
 x = 1.2345678900e+15
 y = 1.0000000000e+02
 z = 5.0000000000e-16
 x = 1234567890000000.000000
 y = 100.000000
 z = 0.000000

printf() also supports the g and G conversions for floating point numbers. These provide "f" conversion
style output if the results fit in the field and "e" or "E" style output otherwise. With "g" conversions the
precision specification in the field specifies the total number of significant digits to display rather than
the number after the decimal point. The following program illustrates the use of the "g" conversion.

main()
{
 double x = 12.3456789;

Arithmetic and Data Types - Display of floating point numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.display.fp.html (1 of 2) [02/04/2002 09:21:07]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp6.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp7.c

 printf("%10.4lg\n",x);
 printf("%10.4lg\n",x*x);
 printf("%10.4lg\n",x*x*x);
 printf("%10.4lg\n",x*x*x*x);
}

producing the output

 12.35
 152.4
 1882
 2.323e+04

For input via scanf() any of the floating point conversion styles can be specified in a scanf() input
specification string and any style of floating point number will be accepted and converted.

Accuracy of floating point arithmetic●

Integer data types●

Arithmetic and Data Types - Display of floating point numbers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.display.fp.html (2 of 2) [02/04/2002 09:21:07]

Arithmetic and Data Types -
Accuracy of floating point
arithmetic
Chapter chap4 section 5

As a final point concerning floating point numbers, it is worth remembering that not
all numbers can be stored exactly using floating point representation, as the
following program shows.

main()
{
 double z,y;
 z = 1.0/3.0; /* one third */
 y = 1.0 - z - z - z; /* should be zero */
 printf("%20.18le\n",y);
}

producing the output

1.110223024625156540e-16

This, clearly, isn't the expected zero. You will probably get different results on
different computers. Of course, it is no great surprise that 1/3 cannot be represented
exactly, in conventional decimal notation 0.3333.... is only ever an approximation.
However it is less widely realised that fractions that can be expressed exactly in
decimal notation (such as 1/10) cannot be stored exactly using computer floating
point formats. The reason is that computers use an underlying binary notation rather
than a decimal notation and only fractions with powers of 2 in the denominator
(such 376/1024) can be represented exactly.

The following example illustrates the effects of precision. The program repeatedly
adds smaller and smaller numbers to a variable originally holding 50000.0.

First the example using double variables

main()
{
 double x = 50000.0;
 double y = 0.01;
 x += y; /* adds 0.01 */
 printf("x = %30.15lf\n",x);

Arithmetic and Data Types - Accuracy of floating point arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.fp.accuracy.html (1 of 3) [02/04/2002 09:21:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fpx.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp11.c

 y /= 100;
 x += y; /* adds 0.0001 */
 printf("x = %30.15lf\n",x);
 y /= 100;
 x += y; /* adds 0.000001 */
 printf("x = %30.15lf\n",x);
 y /= 100;
 x += y; /* adds 0.00000001 */
 printf("x = %30.15lf\n",x);
 y /= 100;
 x += y; /* adds 0.0000000001 */
 printf("x = %30.15lf\n",x);
 y /= 100;
 x += y; /* adds 0.000000000001 */
 printf("x = %30.15lf\n",x);
}

producing the output

x = 50000.010000000002037
x = 50000.010099999999511
x = 50000.010100999999850
x = 50000.010101009997015
x = 50000.010101010098879
x = 50000.010101010098879

The results aren't quite what a mathematician would expect, we've got 15 signifcant
digits of accuracy guaranteed by our compiler but we've displayed the results to 20
significant figures, the last 5 should, of course, be regarded with suspicion. Notice
that the final addition has made no difference to the stored number.

Modifying the program by changing the variables to float and the output conversion
from "lf" to "f" and recompiling gave the following results.

x = 50000.011718750000000
x = 50000.011718750000000
x = 50000.011718750000000
x = 50000.011718750000000
x = 50000.011718750000000
x = 50000.011718750000000

Detailed comment hardly seems necessary. However this simple example does
underline the fact that care needs to be taken with any program that performs
floating point calculations, for fuller details a textbook on numerical analysis should
be consulted.

Arithmetic and Data Types - Accuracy of floating point arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.fp.accuracy.html (2 of 3) [02/04/2002 09:21:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/fp12.c

Integer Data Types●

Arithmetic and Data Types - Accuracy of floating point arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.fp.accuracy.html (3 of 3) [02/04/2002 09:21:09]

Arithmetic and Data Types - Integer
Data Types
Chapter chap4 section 6

The C programming language supports a variety of integer data types. These are

short int
int
long int

The data type int may correspond to either short int or long int . All the above data types may
also be either signed (the default) or unsigned .

Declarations may be preceded by the keywords signed or unsigned . short and long may be
written instead of short int and long int . If an integer data type is described as unsigned it
means that the contents of a memory location of that type will always be interpreted as a
positive number. If you are familiar with binary number representations this is equivalent to
saying that the most significant bit is taken as part of the number rather than being taken as
the sign bit.

The ANSI standard requires, indirectly, that a short int occupy at least 16 bits of computer
memory and that a long int occupy at least 32 bits of computer memory. These limits are
usually those actually in operation on most computers. On PC's an unqualified int is usually
equivalent to a short int and on Unix based systems an unqualified int is usually equivalent to
a long int .

If you are uncertain whether your compiler's int defaults to short or long, try the following
simple program.

main()
{
 int x = 30000;
 int y;
 y = x+x;
 printf("twice x is %d\n",y);
}

On a system with long default int, such as the SUN Sparc Station the output would be

twice x is 60000

On a system with short default int, such as the Turbo C compiler running on a PC the output
is likely to be

twice x is -5536

The problem here is that the number 60000 is simply too big to be stored in 16 bits of

Arithmetic and Data Types - Integer Data Types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.integer.types.html (1 of 3) [02/04/2002 09:21:12]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/int1.c

computer memory. When the arithmetic circuits of the computer generated 60000 the result
was simply too big to fit into the memory locations set aside for the purpose, this is known as
an arithmetic overflow. The ANSI standard says that behaviour is undefined under such
circumstances, which means that anything might happen. It would, perhaps, be better if
the arithmetic overflow were detected in the same way as division by zero but practically
all computer systems simply truncate the generated sequence of bits giving wildly
inaccurate results. If you are interested in computer architecture you might care to note
that -5536 is 60000 - 2 X 32768.

It is equally possible to make the SUN Sparc Station compiler give erroneous results by
replacing 30000 by 2000000000 (that's 2 followed by 9 zeroes) in the previous program.
Some PC compilers have options to force int to default to long rather than short , check
the relevant manuals for details.

Input and output conversions for signed integers are

conversion data type

hd short int

d int

ld long int

Field width specifications work exactly the same way for all three conversions. As with
floating point numbers, it is important to ensure that the conversion specification types
match up with the variable types. The following program

main()
{
 short int si = 400;
 long int li = 400;
 printf(" si = %ld\n",si); /* short converted as long */
 printf(" li = %hd\n",li); /* long converted as short */
}

producing the output

 si = 26214800
 li = 400

shows what happens when you get it wrong. The above output was produced using
Turbo C on a PC, the SUN Sparc station compiler gave completely correct results. It
also shows that functional parameters of type short int are promoted to the system
default int type, such promotion has no effect on a PC but on the SUN Sparc station
accounts for the correct operation of the program.

It is clearly important, when designing and coding programs, to understand the
limitations of the int data types in the environment being used. Problems are, not
surprisingly, most commonly encountered when moving functional programs from a
32-bit int environment to a 16-bit int environment. It might be thought that portability
problems could be avoided by declaring all integer variables as explicitly long . This is
wrong because many library functions simply take int parameters using the local default

Arithmetic and Data Types - Integer Data Types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.integer.types.html (2 of 3) [02/04/2002 09:21:12]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/intop.c

and unwise because it means that programs running in 16-bit environments will occupy
more memory and take longer to do arithmetic than necessary.

The effect of precision specification on integer output●

Unsigned integers●

Bit-wise operators●

Arithmetic and Data Types - Integer Data Types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.integer.types.html (3 of 3) [02/04/2002 09:21:12]

Arithmetic and Data Types - The
effect of precision specification on
integer output
Chapter chap4 section 7

The "%d" conversion which has been described earlier as well as including a
field-width specification may also include a precision specification similar to that used
with the floating point specifications. With a "%d" specification the precision specifies
the minimum number of output digits to appear. This may include leading zero
padding. A precision specification of zero will result in a totally blank output field when
displaying the value 0, this is sometimes useful when printing large tables. The
following program illustrates the effect of precision on integer output.

main()
{
 int x=5,y=0,z=25;
 /* output always has at least 2 non-blank digits */
 printf(" x = %4.2d y = %4.2d z = %4.2d\n",x,y,z);
 /* complete suppression of zero value */
 printf(" x = %4.0d y = %4.0d z = %4.0d\n",x,y,z);
}

producing the output

 x = 05 y = 00 z = 25
 x = 5 y = z = 25

Unsigned Integer Data Types

Arithmetic and Data Types - The effect of precision specification on integer output

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.integer.output.html [02/04/2002 09:21:13]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/int1a.c

Arithmetic and Data Types - Unsigned
Integer Data Types
Chapter chap4 section 8

The unsigned integer data types are

unsigned short int
unsigned int
unsigned long int

unsigned may be written instead of unsigned int . When an integer is declared as unsigned the
meaning is that the most significant bit in the internal representation is taken as significant data
rather than a sign. All previous comments on signed integers apply. The rules of arithmetic are
slightly different for unsigned integers in an obvious way. The main differences concern different
input and output conversion codes and the existence of a number of extra operators available to
manipulate unsigned values.

The main use of unsigned integers is to provide a convenient way to access the underlying sequence
of bits in computer memory. This is important when the bit values are used to control output
devices or to determine the status of input devices. Under these circumstances it is common for a
program to need to determine the value of a particular bit or to need to set a particular bit or group
of bits to particular values. Such operations are sometimes called bit-twiddling.

For input and output the unsigned int conversions u , o , x and X are used. They may be preceded by
"l" or "h" for long or short unsigned integers. The "u" conversion is for conversion to or from an
unsigned decimal form. The "o" conversion is for conversion to or from an octal representation of a
value. The "x" and "X" conversions are for conversion to or from a hexadecimal representation of a
value. The "X" conversion uses capital letters to represent the hexadecimal digits greater than 9, the
"x" conversion uses lower case letters. Octal representation is widely used in the Unix environment
for historical reasons. In the Unix environment the "x" conversion is used in preference to the "X"
conversion. These conversions may be used with field specifications in exactly the same way as the
"d" conversion seen earlier.

There is no output conversion for binary notation. The library functions strtol() and strtoul() which
are discussed later provide facilities for input of binary values via strings. There is no way of
writing a binary constant. You have to accept the grouping of bits in threes or fours implicit in octal
or hexadecimal notation.

Where appropriate numerical values or constants can be written using octal or hexadecimal
notation. Such constants are always unsigned but may be included in normal arithmetic expressions
as a consequence of the rules for evaluating expressions involving objects of different data types.

An octal constant is a sequence of the digits 0-7 with an initial 0. A hexadecimal constant is a
sequence of the characters 0-9,A-F,a-f with an initial 0x or 0X. Note that this means that any
numerical constant with an initial or leading zero is not interpreted as a decimal constant. An
unsigned decimal constant may be written by putting a "U" or "u" symbol at the end of the constant.

The following program shows the use of octal and hexadecimal constants and conversions.

main()

Arithmetic and Data Types - Unsigned Integer Data Types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.unsigned.integer.html (1 of 2) [02/04/2002 09:21:15]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/int2a.c

{
 unsigned int x = 0300; /* octal constant */
 unsigned int y = 300U; /* decimal constant */
 unsigned int z = 0x300; /* hexadecimal constant */
 /* output using unsigned decimal conversion */
 printf("unsigned decimal x = %4u y = %4u z = %4u\n",x,y,z);
 /* output using octal conversion */
 printf(" octal x = %4o y = %4o z = %4o\n",x,y,z);
 /* output using hexadecimal conversion */
 printf(" hexadecimal x = %4x y = %4x z = %4x\n",x,y,z);
}

producing the output

unsigned decimal x = 192 y = 300 z = 768
 octal x = 300 y = 454 z = 1400
 hexadecimal x = c0 y = 12c z = 300

Bitwise Operations●

Conversions and promotions between data types●

Arithmetic and Data Types - Unsigned Integer Data Types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.unsigned.integer.html (2 of 2) [02/04/2002 09:21:15]

Arithmetic and Data Types - Bitwise
Operations
Chapter chap4 section 9

To manipulate individual bits there are a number of "bit-wise" operators.

Operator Meaning

| Or

& And

^ Exclusive Or

>> Right Shift

<< left Shift

~ Complement

They may only be sensibly applied to unsigned integers. "~" is a unary operator, the others are
binary operators (i.e have two operands). The following corresponding assignment operators are
also available

|=
&=
^=
>>=
<<=

The "|", "&" and "^" operators perform the OR, AND and EXCLUSIVE OR functions between
the bits of the two operands. The ">>" and "<<" operators shift the bit patterns to the left or right
by the indicated number of places. 1s or 0s that are shifted to the end of a word simply disappear
whilst 0s are generated and inserted at the other end. There is no way of rotating a bit pattern in
C.

x<<1

is a lazy and obscure way of saying two times "x". The unary operator "~" flips or complements
all the bits of its operand. Technically this is a 1's complement not a 2's complement.

For details of bitwise operator precedence see the table at the end of this chapter.

The following program, called int3, enables the user to enter a value and determine the value (1
or 0) of a particular bit.

main()
{
 /* Notation used here is that Bit 0 is the
 least significant bit
 */
 unsigned x;
 int n;

Arithmetic and Data Types - Bitwise Operations

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.bit.ops.html (1 of 3) [02/04/2002 09:21:18]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/int3.c

 printf("Enter a number ");
 scanf("%u",&x);
 printf("Which bit do you want to see ");
 scanf("%d",&n);
 printf("It was %u\n",(x>>n)&01);
}

A typical dialogue is shown below

$ int3
Enter a number 4
Which bit do you want to see 2
It was 1
$ int3
Enter a number 27
Which bit do you want to see 5
It was 0

The expression

(x>>n)&01

is evaluated by first shifting the number x n positions to the right so that the required bit is in the
least significant position. The parentheses are necessary because the "&" operator has a higher
precedence than the ">>" operator. There is a list of operator precedences at the end of this
chapter. After shifting, all the bits other than the least significant are set to zero by ANDing the
shifted pattern with the binary bit pattern 0.........0001, here represented by the octal constant 01.

The next example, int4, sets a particular bit to the value 1.

main()
{
 unsigned x;
 int n;
 printf("Enter a number ");
 scanf("%u",&x);
 printf("Which bit do you want to set ");
 scanf("%d",&n);
 x |= 01<<n;
 printf("After setting bit %d value is %o (Octal)\n",n,x);
 printf(" and %d (decimal)\n",x);
}

Again, a typical dialogue

$ int4
Enter a number 27
Which bit do you want to set 4
After setting bit 4 value is 33 (Octal)
 and 27 (decimal)
$ int4
Enter a number 27

Arithmetic and Data Types - Bitwise Operations

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.bit.ops.html (2 of 3) [02/04/2002 09:21:18]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/int4.c

Which bit do you want to set 5
After setting bit 5 value is 73 (Octal)
 and 59 (decimal)

The expression "01 << n" constructs a bit pattern with the relevant bit set. The assignment
operator "|=" performs the setting of the particular bit by ORing 1 with whatever was already in
that position. In all other positions in the variable x, 0 is ORed with whatever is already there.

To set a specific bit to 0 rather than 1, the program could be modified to include the following
expression

x &= ~(01 << n)

The character data type●

Operator precedence●

Arithmetic and Data Types - Bitwise Operations

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.bit.ops.html (3 of 3) [02/04/2002 09:21:18]

Arithmetic and Data Types - The
character Data Type
Chapter chap4 section 10

The character data type invariably corresponds to a single byte or 8 bits of
computer memory. A variable of character data type is declared using the keyword
char . Input and output conversions are performed using the %c conversion code.
This doesn't actually cause any conversion to take place, the bits in the variable are
sent to the output or read from the input device unaltered. Character constants can
be written by enclosing the character symbol in single quotes. Normally only a
single character can appear between the character constant single quotes but the
following conventions are understood.

Notation Meaning

'\'' Single Quote

'\"' Double Quote

'\?' Question Mark

'\\' Backslash

'\a' Audible Signal (BEL)

'\b' Back space

'\f' Form feed (Page throw)

'\n' New line (line feed)

'\r' Carriage return

'\t' Tab

'\v' Vertical Tab

The above are called escape sequences. There are also escape sequences that allow
the bit representations of characters in octal or hexadecimal notation. Typically
these look like

 '\16' or '\xe'

the first being an octal escape sequence and the second being a hexadecimal escape
sequence. Octal escape sequences may consist of up to three digits. Unlike octal
constants there is no need for an initial zero. The use of character constants is
illustrated in the following program.

main()

Arithmetic and Data Types - The character Data Type

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.char.html (1 of 2) [02/04/2002 09:21:20]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/char1.c

{
 char x1='H',x2,x3='l';
 x2='e';
 printf("%c%c%c%c%c\n",x1,x2,x3,x3,'o');
}

producing the output

Hello

There are better ways of doing this.

Surprisingly char variables may be signed or unsigned . This only has an effect
when char variables are being mixed with other variable types in arithmetic
expressions. The implications will be discussed in the next section .

Mixed data type arithmetic●

Conversions and promotions between data types●

Arithmetic and Data Types - The character Data Type

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.char.html (2 of 2) [02/04/2002 09:21:20]

Arithmetic and Data Types - Mixed
Data Type Arithmetic
Chapter chap4 section 11

This section discusses the problems of evaluating expressions involving values of different data
types. Before any expression involving a binary operator can be evaluated the two operands must be
of the same type, this may often require that one (or sometimes both) of the values of the operands
be converted to a different type. The rules for such conversions depend on both the types of the
operands and the particular operator. Since the C language has 45 operators and 12 different data
types this seems a daunting task, suggesting that there are something like 24000 combinations to
consider. Fortunately, it is not that complicated, even so the rules are far from simple. Some
programming languages take the simple way out and prohibit any expressions involving values of
different data types and then provide special type conversion functions. This is called strong typing
and such languages are called strongly typed. The C language is not strongly typed and instead
infers the required type conversions from the context.

There are six basic methods of converting values from one type to another. In discussing the
methods it is common to talk about the width of a data object, this is simply the number of bits of
computer memory it occupies. The methods are.

Sign Extension

This technique is adopted when converting a signed object to a wider signed object. E.g
converting a short int to a long int . It preserves the numerical value by filling the extra
leading space with 1's or 0's.

1.

Zero Extension

This is used when converting an unsigned object to a wider unsigned object. It works by
simply prefixing the value with the relevant number of zeroes.

2.

Preserve low order data - truncate

This is used when converting an object to a narrower form. Significant information may be
lost.

3.

Preserve bit pattern

This is used when converting between signed and unsigned objects of the same width.

4.

Internal conversion

This uses special hardware to convert between floating point types and from integral to
floating point types.

5.

Truncate at decimal point

This is used to convert from floating point types to integral types, it may involve loss of
significant information.

6.

The basic conversions listed above are those that take place on assignment. Some examples are
shown in the following program.

main()
{

Arithmetic and Data Types - Mixed Data Type Arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.mixed.arithmetic.html (1 of 5) [02/04/2002 09:21:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/conv1.c

 signed short int ssi;
 signed long int sli;
 unsigned short int usi;
 unsigned long int uli;
 ssi = -10;
 sli = ssi; /* sign extension - sli should be -10 */
 printf("ssi = %8hd sli = %8ld\n",ssi,sli);
 usi = 40000U; /* usigned decimal constant */
 uli = usi; /* zero extension - uli should be 40000 */
 printf("usi = %8hu uli = %8lu\n",usi,uli);
 uli = 0xabcdef12; /* sets most bits ! */
 usi = uli; /* will truncate - discard more sig bits */
 printf("usi = %8hx uli = %8lx\n",usi,uli);
 ssi = usi; /* preserves bit pattern */
 printf("ssi = %8hd usi = %8hu\n",ssi,usi);
 ssi = -10;
 usi = ssi; /* preserves bit pattern */
 printf("ssi = %8hd usi = %8hu\n",ssi,usi);
}

This produced the following output.

ssi = -10 sli = -10
usi = 40000 uli = 40000
usi = ef12 uli = abcdef12
ssi = -4334 usi = 61202
ssi = -10 usi = 65526

It may be interesting to note that the difference between the pairs of values on the last two lines is
65536. Conversions between signed long and unsigned short are typically undefined. The next
program shows conversions to and from floating point types.

main()
{
 double x;
 int i;
 i = 1400;
 x = i; /* conversion from int to double */
 printf("x = %10.6le i = %d\n",x,i);
 x = 14.999;
 i = x; /* conversion from double to int */
 printf("x = %10.6le i = %d\n",x,i);
 x = 1.0e+60; /* a LARGE number */
 i = x; /* won't fit - what happens ?? */
 printf("x = %10.6le i = %d\n",x,i);
}

producing the output

x = 1.445000e+03 y = 1445
x = 1.499700e+01 y = 14
x = 1.000000e+60 y = 2147483647

Arithmetic and Data Types - Mixed Data Type Arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.mixed.arithmetic.html (2 of 5) [02/04/2002 09:21:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/conv2.c

This program was compiled and run on a SUN Sparc station. The loss of significant data, a polite
way of saying the answer is wrong, in the final conversion should be noted.

There is an extra complication concerning variables of type char . The conversion rules to be
applied depend on whether the compiler regards char values as signed or unsigned. Basically the
ANSI C standard says that variables of type char are promoted to type unsigned int or type signed
int depending on whether the type char is signed or unsigned. An unsigned int may then be further
converted to a signed int by bit pattern preservation. This is implementation dependent. The
following program shows what might happen.

main()
{
 char c;
 signed int si;
 unsigned int usi;
 c = 'a'; /* MS bit will be zero */
 si = c; /* will give small +ve integer */
 usi = c;
 printf(" c = %c\n si = %d\n usi = %u\n",c,si,usi);
 c = '\377'; /* set all bits to 1 */
 si = c; /* sign extension makes negative */
 usi = c;
 printf(" si = %d\n usi = %u\n",si,usi);
}

producing the output

 c = a
 si = 97
 usi = 97
 si = -1
 usi = 65535

The output shown above was produced using the SUN Sparc Station compiler, identical output was
produced by Turbo C but the IBM 6150 gave the result

si = 255 usi = 255

for the final line.

Clearly both the SUN Sparc Station and the Turbo C compiler regarded char as a signed data type
applying sign extension when assigning the signed char c to the signed int si . The conversion from
signed char c to unsigned int usi is more interesting. This took place in two stages the first being
sign extension and the second being bit pattern preservation. On the IBM 6150 char is treated as an
unsigned data type, both assignments using bit pattern preservation. The following program with
forced signing of char further clarifies the point.

main()
{
 unsigned char uc;
 signed char sc;
 unsigned int ui;
 signed int si;

Arithmetic and Data Types - Mixed Data Type Arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.mixed.arithmetic.html (3 of 5) [02/04/2002 09:21:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/conv3.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/conv4.c

 uc = '\377';
 ui = uc;
 si = uc;
 printf("Conversion of unsigned char ui = %u si = %d\n",
 ui,si);
 sc = '\377';
 ui = sc;
 si = sc;
 printf("Conversion of signed char ui = %u si = %d\n",
 ui,si);
}

producing the output

Conversion of unsigned char ui = 255 si = 255
Conversion of signed char ui = 4294967295 si = -1

For the first line of output the variable "uc" is an unsigned char and the conversion of its value to
either the signed int si or the unsigned int ui is by bit pattern preservation. For the second line of
output the variable "sc" is a signed char and the conversion of its value to the signed int si is a
simple case of sign extension whereas the conversion to the unsigned int ui is by sign extension
followed by bit pattern preservation.

The distinction between signed and unsigned char data types only becomes significant when a char
data type is used to hold a value with the most significant bit set. For the normal ASCII character
set this will not happen, but if you are using extended ASCII character codes (e.g. the box drawing
characters found on PCs) then the most significant bit will be set.

It is also quite common practice to use variables of type char to store small integer values.

And a final example.

main()
{
 unsigned char uc = '\377';
 char c = '\377';
 signed char sc = '\377';
 int v1,v2,v3;
 v1 = 20 + uc; /* unsigned arithmetic */
 v2 = 20 + c; /* default */
 v3 = 20 + sc; /* signed arithmetic */
 printf("v1 = %d v2 = %d v3 = %d\n",v1,v2,v3);
}

producing the output

v1 = 275 v2 = 19 v3 = 19

The most significant point here is the value of "v1". The expression

20 + uc

involves a signed integer (20) and an unsigned char (uc). The unsigned char has been converted to
an unsigned int by bit pattern preservation and the signed integer 20 converted to an unsigned
integer prior to the execution of the + operation.

Arithmetic and Data Types - Mixed Data Type Arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.mixed.arithmetic.html (4 of 5) [02/04/2002 09:21:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/ctest3.c

The usual arithmetic conversions and promotions●

Arithmetic and Data Types - Mixed Data Type Arithmetic

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.mixed.arithmetic.html (5 of 5) [02/04/2002 09:21:24]

Arithmetic and Data Types - The
usual arithmetic conversions
and promotions
Chapter chap4 section 12

The binary arithmetic operations are only defined when applied to two values of the
same type. If the evaluation of an expression involves values of different types
various conversions are applied to one (or both) of the values to give two values of
the same type. These are known as the usual arithmetic conversions . The
following description is taken straight from the ANSI C standard.

First, if either operand has type long double , the other operand is converted to long
double .

Otherwise, if either operand has type double , the other operand is converted to
double .

Otherwise, if either operand has type float , the other operand is converted to type
float .

Otherwise, the integral promotions are first applied to both operands and then the
following rules are applied.

If either operand has type unsigned long int, the other operand is converted to
unsigned long int.

Otherwise, if one operand has type long int and the other has type unsigned int, if a
long int can represent all values of an unsigned int, the operand of type unsigned int
is converted to long int; if a long int cannot represent all the values of an unsigned
int, both operands are converted to unssigned long int

Otherwise, if either operand has type long int, the other operand is converted to long
int.

Otherwise, if either operand has type unsigned int, the other operand is converted to
unsigned int.

Otherwise, both operands have type int.

The integral promotions specify the conversion of char and short int data types to
int data types in arithmetic contexts. Functional promotions specify type conversion
of functional parameters. The following table shows the integral promotions

Original type Type after promotion

Arithmetic and Data Types - The usual arithmetic conversions and promotions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.usual.conversions.html (1 of 3) [02/04/2002 09:21:28]

unsigned char unsigned int

signed char int

unsigned short int unsigned int

short int int

The type of a promoted char depends on whether the char data type is signed or
unsigned. Integral promotions are applied in the context of evaluation or arithmetic
expressions. The functional promotion rules are the same as the integral promotion
rules with the extra rule that float data types are converted to double

A good rule is to avoid mixing data types, especially the signed and unsigned
varieties when the rules get particularly complex. However there are some occasions
when normal practice expects the use of mixed data types. Consider the following
program which demonstrates the mixture of integral and floating-point types in
evaluating an expression, here constants of the various types are mixed but similar
effects would be seen using variables.

main()
{
 double x,y;
 x = 1 + 2 / 3;
 y = 1 + 2 / 3.0;
 printf("x = %5lf, y = %5lf\n",x,y);
}

producing the output

x = 1.000000, y = 1.666667

Consider the expressions on the right hand side of the two assignments.

In the assignment to x the first step in evaluation of the expression is the evaluation
of

2/3

Both operands are integers. Since "/" has higher precedence than "+" and there are
no type conversions, the rules of integer division apply yielding the result 0 (as an
integer). The addition operator then has two integral operands so yields an integral
result (1) which is converted to floating point on assignment.

The second assignment proceeds rather differently. Again the first step is the
evaluation of the expression

2/3.0

Arithmetic and Data Types - The usual arithmetic conversions and promotions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.usual.conversions.html (2 of 3) [02/04/2002 09:21:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/mix1.c

only in this case one of the operands is floating point so the other is converted to
floating point and the rules of floating point arithmetic apply yielding the result
0.666666... The addition now has one floating point operand so the other is
converted to floating point and the result assigned without conversion.

A final example of arithmetic involving objects of different types, in this case
integers and characters is shown below. The program reads in a two digit number
reverses the digits and displays both the number and its reversed form. The program
would fail if it were not supplied with a two digit number.

main()
{
 int n1=0,n2;
 char c1,c2;
 printf("Enter a two digit number ");
 scanf("%c%c",&c1,&c2);
 n1 = (c1-'0')*10 + c2-'0';
 n2 = (c2-'0')*10 + c1-'0';
 printf("The number was %d\n",n1);
 printf("The number reversed was %d\n",n2);
 printf("The sum was %d\n",n1+n2);
}

A typical dialogue is

Enter a two digit number 17
The number was 17
The number reversed was 71
The sum was 88

The interesting point here concerns the expressions

c1-'0' and c2-'0'

The effect of evaluating these expressions is to subtract the internal representation
of the character 0 (zero) from whatever was actually read in. If the internal
representation of the digits 0-9 is continuous, as it would be if your computer used
the ASCII character set, then this technique provides a handy way of converting
from external character form to internal binary form, however it is often better to
use a library function such as atoi().

Casts●

Arithmetic and Data Types - The usual arithmetic conversions and promotions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.usual.conversions.html (3 of 3) [02/04/2002 09:21:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap4/char2.c

Arithmetic and Data Types -
Casts
Chapter chap4 section 13

Sticking to the rule of thumb that says don't mix data types in expressions and
relying on assignment conversions can lead to very clumsy code and it is sometimes
useful if we can force conversions when we actually need to. This is easily done in
the C programming language using a construct known as a cast. A cast is of the
form

(data type name) expression

The expression

1 + 2 / 3

used in the program in the previous section could have been written

1 + 2 / (double) 3

The expression after the "/" operator is now

(double) 3

which is of type double. When working with constants this seems clumsy, it is
certainly easier to write 3.0 but if the expression had involved integer variables then
it does avoid unnecessary intermediate variables. Supposing k,l and m were all
integer variables then the expression

k + l / m

would be evaluated using all integer arithmetic, to evaluate it using floating point
arithmetic, a cast could be used thus

k + l / (double) m

Operator Prcedences●

Arithmetic and Data Types - Casts

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.casts.html [02/04/2002 09:21:29]

Arithmetic and Data Types -
Operator Precedences
Chapter chap4 section 14

To finish off this rather long chapter here is a list, in precedence order, of all the
operators we have seen so far.

Operators Associativity

() ++(postfix) --(postfix) Left to Right

++(prefix) --(prefix) ~ (type) +(unary)
-(unary)

Right to Left

* / % Left to Right

+ - Left to Right

<< >> Left to Right

& Left to Right

^ Left to Right

| Left to Right

= += *= <<= >>= /= %= -= &= |= ^= Right to Left

Exercises●

Arithmetic and Data Types - Operator Precedences

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.precedence.html [02/04/2002 09:21:30]

Arithmetic and Data Types - C
and C++
Chapter chap4 section 15

As well as the cast mechanism for explicit type conversion, C++ also allows data
type names to be used as if they were functions. This type of explicit type
conversion is more typical of older program languages. For example, in C++, you
could write

int(5.3)

instead of

(int)5.3

The C style cast is available in C++ because C++ is a strict superset of C, the
function-like usage is more appropriate in more advanced applications.

The fact that the operators "<<" and ">>" can be used to mean two completely
different things in C++ is particularly interesting. The C++ compiler decides which
interpretation to apply by examining the data types of the variables associated with
the operators. If the operator to the left of a "<<" or ">>" symbol is of IO stream
type then input or output code is generated, otherwise shift instructions are
generated.

This use of the same operator to mean different things is called operator
overloading. In fact, ANSI C also has operator overloading, the operator & means
something quite different (take the address) when it used a unary operator in front of
variable compared with its use as a binary operator between two integers (bitwise
AND).

Arithmetic and Data Types - C and C++

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.C++.html [02/04/2002 09:21:31]

Arithmetic and Data Types -
Exercises
Chapter chap4 section 16

Write a program similar to exercise 8 of the previous chapter only displaying
the percentage correct to 2 decimal places.

1.

Run the program that adds 30000 to 30000 on your computer. What size are
your ints?

2.

Write a program that reads in a temperature expressed in Celsius (Centigrade)
and displays the equivalent temperature in degrees Fahrenheit.

3.

If the variable x is of type double or type float then adding a suitably small
number to it will not change the actual value stored. Write a program to read
in an integer, calculate its reciprocal and store it in a variable called "r".
Calculate and display the value of

(1000+r)-1000

Display the value using a "g" or "e" conversion. Run your program for
various input integers. How big does the integer have to be before adding the
reciprocal has no effect ?

4.

Write and run a program to find out whether your computer's char's are signed
or unsigned.

5.

Write a program to read in a four letter word and print it out backwards.6.

Write a program to read in a three digit number and produce output like

 3 hundreds
 4 tens
 7 units

for an input of 347. There are two ways of doing this. Can you think of both
of them? Which do you think is the better?

7.

The digital root of an integer is calculated by adding up the individual digits
of a number. Write a program to calculate this (for numbers of up to 4 digits).
Is it true that the digital root of a number divisible by 3 is also divisible by 3?

Does this still hold if the number is expressed in hexadecimal or octal
notation? I.e. if you add up the hexadecimal or octal digits is the sum divisible
by 3. Write a program to find out.

8.

The notes include a program that got into trouble printing out floating point
numbers producing very long lines of digits. Try this on your system.

9.

Arithmetic and Data Types - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap4.exercises.html [02/04/2002 09:21:33]

Addresses, Pointers, Arrays and
Strings - String input using "s"
conversion
Chapter chap6 section 8

Strings may be read in using the %s conversion with the function scanf() but there
are some irksome restrictions. The first is that scanf() will only recognise, as an
external string, a sequence of characters delimited by whitespace characters and the
second is that it is the programmer's responsibility to ensure that there is enough
space to receive and store the incoming string along with the terminating null which
is automatically generated and stored by scanf() as part of the %s conversion. The
associated parameter in the value list must be the address of the first location in an
area of memory set aside to store the incoming string.

Of course, a field width may be specified and this is the maximum number of
characters that are read in, but remember that any extra characters are left
unconsumed in the input buffer.

Simple use of scanf() with %s conversions is illustrated in the program shown
below.

main()
{
 char strspace[50]; /* enough ?? */
 printf("Enter a string ");
 scanf("%s",strspace);
 printf("The string was >>%s<<\n",strspace);
}

The program was called str2 and a typical dialogue is illustrated below.

$ str2
Enter a string fred
The string was >>fred<<
$ str2
Enter a string fred and joe
The string was >>fred<<
$ str2
Enter a string fred
The string was >>fred<<

Addresses, Pointers, Arrays and Strings - String input using "s" conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.sconv.html (1 of 2) [02/04/2002 09:21:35]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str2.c

$ str2
Enter a string "fred and joe"
The string was >>"fred<<
$ str2
Enter a string fred\ and\ joe
The string was >>fred\<<
$

It will be noted that attempts to quote a string with internal spaces or to escape the
internal spaces (both of which normally work in the Unix command environment)
did not work.

String input using scanset conversion●

String input using c conversion●

String input using the gets() function●

Addresses, Pointers, Arrays and Strings - String input using "s" conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.sconv.html (2 of 2) [02/04/2002 09:21:35]

Addresses, Pointers, Arrays and
Strings - String input using
scanset conversion
Chapter chap6 section 9

The scanset conversion facility provided by scanf() is a useful string input method
although it can appear dauntingly complex. This conversion facility allows the
programmer to specify the set of characters that are (or are not) acceptable as part of
the string. A scanset conversion consists of a list of acceptable characters enclosed
within square brackets. A range of characters may be specified using notations such
as "a-z" meaning all characters within this range. The actual interpretation of a range
in this context is implementation specific, i.e. it depends on the particular character
set being used on the host computer. If you want an actual "-" in the scanset it must
be the first or last character in the set. If the first character after the "[" is a "^"
character then the rest of the scanset specifies unacceptable characters rather than
acceptable characters.

The use of scansets is shown by this program, called str3.

main()
{
 char strspace[50];
 printf("Enter a string in lower case ");
 scanf("%[a-z]",strspace);
 printf("The string was >>%s<<\n",strspace);
}

And a typical dialogue is shown here.

$ str3
Enter a string in lower case hello world
The string was >>hello world<<
$ str3
Enter a string in lower case hello, world
The string was >>hello<<
$ str3
Enter a string in lower case abcd1234
The string was >>abcd<<
$

Note that, in all cases, conversion is terminated by input of something other than a

Addresses, Pointers, Arrays and Strings - String input using scanset conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.scanset.html (1 of 2) [02/04/2002 09:21:36]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str3.c

space or lower-case letter.

String input using s conversion●

String input using c conversion●

String input using the gets() function●

Addresses, Pointers, Arrays and Strings - String input using scanset conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.scanset.html (2 of 2) [02/04/2002 09:21:36]

Addresses, Pointers, Arrays and
Strings - String input using c
conversion
Chapter chap6 section 10

An alternative method for the input of strings is to use scanf() with the %c conversion
which may have a count associated with it. This conversion does not recognise the
new-line character as special. The count specifies the number of characters to be read
in. Unlike the %s and %[] (scanset) conversions the %c conversion does not
automatically generate the string terminating NUL and strange effects will be noted if
the wrong number of characters are supplied. Its use is demonstrated by the following
program.

main()
{
 char inbuf[10];
 int i;
 while(1)
 {
 printf("Enter a string of 9 characters ");
 scanf("%10c",inbuf);
 inbuf[9]='\0'; /* Make it a string */
 printf("String was >>%s<<\n");
 if(inbuf[0] == 'Z') break;
 }
}

typical dialogue is shown below.

$ str4
Enter a string of 9 characters 123456789
String was >>123456789<<
Enter a string of 9 characters abcdefghi
String was >>abcdefghi<<
Enter a string of 9 characters abcdefghijklmnopqr
String was >>abcdefghi<<
Enter a string of 9 characters 123456789
String was >>klmnopqr
<<
Enter a string of 9 characters ttttttttt
String was >>23456789

Addresses, Pointers, Arrays and Strings - String input using c conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.cconv.html (1 of 2) [02/04/2002 09:21:39]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str4.c

There are some rather odd things going on here. The first point to note is that, contrary
to the prompt, 10 characters are being converted. This is done so that the newline
character at the end of the input line is also read in, otherwise it would be left in the
input buffer to be read in as one of the input characters the next time round. The effect
of providing too many input characters is that "unconsumed" input characters
(including new-line characters) are left in the input buffer, these will be "consumed"
by the next call to scanf(), if too few input characters are provided then scanf() hangs
(or blocks) until it has got enough input characters. Both types of behaviour can be
seen in the above example.

The complexities of scanf()' s behaviour suggest that it is not really suitable for
reliable general purpose string input.

String input using s conversion●

String input using scanset conversion●

String input using the gets() function●

Addresses, Pointers, Arrays and Strings - String input using c conversion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.cconv.html (2 of 2) [02/04/2002 09:21:39]

Addresses, Pointers, Arrays and
Strings - String input using the
gets() library functions
Chapter chap6 section 11 The best approach to string input is to use a library function called
gets(). This takes, as a single parameter, the start address of an area of memory suitable
to hold the input. The complete input line is read in and stored in the memory area as a
null-terminated string. Its use is shown the program below.

main()
{
/* this program reads in strings until it has read in
 a string starting with an upper case 'z'
*/
 char inbuf[256]; /* hope it's big enough ! */
 while(1)
 {
 printf("Enter a string ");
 gets(inbuf);
 printf("The string was >>%s<<\n",inbuf);
 if(inbuf[0] == 'Z') break;
 }
}

and a typical dialogue is shown below

$ str5
Enter a string hello world
The string was >>hello world<<
Enter a string 1
The string was >>1<<
Enter a string
The string was >><<
Enter a string ZZ
The string was >>ZZ<<
$

We will see shortly how to use the functional value associated with gets(), this will
provide a better way of terminating the input in loops such as that shown above. You
should, by now, have a pretty good idea of the likely consequences of the input string
being too long for the buffer area. gets() simply does not handle this problem, you can
either, as is done here, declare a fairly large buffer and hope or use the more advanced
function fgets() that will be described in the section on file handling.

Addresses, Pointers, Arrays and Strings - String input using the gets() library functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.gets.html (1 of 2) [02/04/2002 09:21:41]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str5.c

Library functions for handling Input Strings

Addresses, Pointers, Arrays and Strings - String input using the gets() library functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.input.gets.html (2 of 2) [02/04/2002 09:21:41]

Addresses, Pointers, Arrays and
Strings - The library function sprintf()
and puts()
Chapter chap6 section 13

The library function sprintf() is similar to printf() only the formatted output is written to a
memory area rather than directly to standard output. It is particularly useful when it is necessary
to construct formatted strings in memory for subsequent transmission over a communications
channel or to a special device. Its relationship with printf() is similar to the relationship between
sscanf() and scanf(). The library function puts() may be used to copy a string to standard output,
its single parameter is the start address of the string. puts() writes a new-line character to
standard output after it has written the string.

A simple example of the use of sprintf() and puts() is shown below.

main()
{
 char buf[128];
 double x = 1.23456;
 char *spos = buf;
 int i = 0;
 sprintf(buf,"x = %7.5lf",x);
 while(i<10) puts(spos+i++);
}

producing the output

x = 1.23456
 = 1.23456
= 1.23456
 1.23456
1.23456
.23456
23456
3456
456
56

If "\n" had been incorporated in the format string of the sprintf() then the output would have been
double spaced because the sprintf() function would have put a newline character in the generated
string and puts() would then generate a further newline.

Note that this program is slightly naughty, strictly sprintf()' s layout specification string should
be a string constant.

The correct way to adjust field width and precision at run time is to replace the width and/or
precision with a star ("*") and include an appropriate integer in the parameter list. This value will
be used before the actual value to be converted is taken from the parameter list. Here is a

Addresses, Pointers, Arrays and Strings - The library function sprintf() and puts()

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.sprintf.puts.html (1 of 2) [02/04/2002 09:21:47]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/sput.c

program showing the facility in use.

main()
{
 double x=1234.567890;
 int i=8,j=2;
 while(i<12)
 {
 j=2;
 while(j<5)
 {
 printf("width = %2d precision = %d "
 "display >>%*.*lf<<\n",i,j,i,j,x);
 j++;
 }
 i++;
 }
}

The program displays the effects of various widths and precisions for output of a double variable.
Here is the output.

width = 8 precision = 2 display >> 1234.57<<
width = 8 precision = 3 display >>1234.568<<
width = 8 precision = 4 display >>1234.5679<<
width = 9 precision = 2 display >> 1234.57<<
width = 9 precision = 3 display >> 1234.568<<
width = 9 precision = 4 display >>1234.5679<<
width = 10 precision = 2 display >> 1234.57<<
width = 10 precision = 3 display >> 1234.568<<
width = 10 precision = 4 display >> 1234.5679<<
width = 11 precision = 2 display >> 1234.57<<
width = 11 precision = 3 display >> 1234.568<<
width = 11 precision = 4 display >> 1234.5679<<

The ">>" and "<<" are used to indicate the limits of the output field. Note that the variables "i"
and "j" appear twice in parameter list, the first time to give the values in the annotation and the
second time to actually control the output.

Arrays of Strings

Addresses, Pointers, Arrays and Strings - The library function sprintf() and puts()

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.sprintf.puts.html (2 of 2) [02/04/2002 09:21:47]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/adjout.c

The Pre-Processor and standard
libraries - Mathematical
functions
Chapter chap8 section 7

The math.h include file contains prototypes for a useful set of mathematical
functions.

 asin atan atan2 cos sin tan
 cosh sinh tanh exp frexp ldexp
 log log10 modf pow sqrt ceil
 fabs floor fmod

For details of what these do you should consult the appropriate manual. There is no
standard set of mathematical constants (such as "pi") defined in any header file,
you've got to set these up for yourself although many implementations do provide
such information, frequently in the math.h include file.

If a mathematical function fails due to an inappropriate input value or the output
value lying outside the range of representable numbers then the global variable
errno is set to a value indicating the type of error. The value returned by the
mathematical function is implementation dependent. The include file errno.h
includes the declaration of errno and #define's for the two likely values EDOM and
ERANGE used for indicating errors in mathematical function evaluation. EDOM
means the input value is inappropriate, a domain error and ERANGE means that the
output value is out of range.

On some systems you may need to include extra command line arguments for the C
compiler to make it look in the mathematical functions library. On a Unix system

cc summ.c -lm

would be typical, the "-lm" flag specifying the maths library. This shouldn't be
necessary on an ANSI system. The following program which tabulates squares,
square roots and cube roots shows the use of the maths library functions sqrt() and
pow().

#include <math.h>
main()
{
 int i=0;

The Pre-Processor and standard libraries - Mathematical functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.math.html (1 of 2) [02/04/2002 09:21:50]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/root.c

 while(i++<16)
 printf("%2d %4d %8.6lf %8.6lf\n",
 i,i*i,sqrt(i),pow(i,1.0/3));
}

producing the output

 1 1 1.000000 1.000000
 2 4 1.414214 1.259921
 3 9 1.732051 1.442250
 4 16 2.000000 1.587401
 5 25 2.236068 1.709976
 6 36 2.449490 1.817121
 7 49 2.645751 1.912931
 8 64 2.828427 2.000000
 9 81 3.000000 2.080084
10 100 3.162278 2.154435
11 121 3.316625 2.223980
12 144 3.464102 2.289428
13 169 3.605551 2.351335
14 196 3.741657 2.410142
15 225 3.872983 2.466212
16 256 4.000000 2.519842

Notice that the operand of the sqrt() library function was of type int, this did not
cause any problems since the prototype for sqrt() specifies a parameter of type
double and the compiler has simply included a type conversion in the code that
generates the value of the parameter.

The string handling macros and functions

The Pre-Processor and standard libraries - Mathematical functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.math.html (2 of 2) [02/04/2002 09:21:50]

The Pre-Processor and standard libraries -
String handling
Chapter chap8 section 8

The string.h include file includes prototypes for the following library functions

strcpy

Copy a string from one area to another. The use of this function was illustrated earlier.

1.

strncpy

Copy a string up to a maximum number of characters or end of source string. This avoids the problems associated
with strcpy() The function has three parameters which specify the destination address, the source address and the
maximum number of bytes to copy. A typical use is illustrated by the following code fragment

 char inbuf[512];
 char wkbuf[20];
 .
 .
 strncpy(wkbuf,inbuf,19);
 .

This copies at most 19 characters from inbuf to wkbuf The number of bytes to copy is set to 19, one less than the size
of wkbuf because copying of long strings is terminated by the exhaustion of number of characters to copy not the
need to store a NUL in the destination space.

The use of strncpy() is generally preferable to the use of strcpy()

2.

strcat

Concatenate strings The use of this function was illustrated earlier.

3.

strncat

Concatenate strings with limit on size. This, like strncpy(), imposes a restriction on the maximum number of
characters concatenated. It has three parameters specifying the destination and source addresses and the maximum
number of characters to append. A typical use is shown below

 int l;
 char dirpath[80];
 char file[256];
 .
 .
 l = strlen(pname); /* how much space already used ?? */
 strncat(pname,"/",80-l-1); /* append a slash */
 strncat(pname,fname,80-l-2); /* and the file name to give
 full path name (if poss) */
 .
 .

This code first determines the length of the string already in the destination area then appends as much as possible of
the string in input.

4.

strcmp

Compare strings. The use of this function was illustrated earlier. The return value of this function is positive or
negative depending on the difference of the first pair of characters that differ that are found in the strings being
compared.

5.

strcoll

Compares strings in a manner dependent on the current locale. The value returned by strcmp() is dependent on the
host system's character set. This function allows the user control the return value to give a non-standard ordering of
strings.

6.

strncmp7.

The Pre-Processor and standard libraries - String handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.string.html (1 of 4) [02/04/2002 09:21:59]

Compares strings with a limit on size

strxfrm

Transforms a string in a manner dependent on the current locale. This can be used instead of strcoll() to generate a
transformed version of a string that can be used with strcmp() to give the effect of a non-standard ordering sequence.
A separate transformed string is stored explicitly.

8.

strchr

Search a string for a particular character. This function takes two parameters the first is the string to be searched and
the second is the character to be searched for. The return value is a pointer to the first occurence of the character
within the string or NULL if the character was not found.

The following example program called findsl shows the function in use.

#include <string.h>

main()
{
 int input[256];
 char *cptr;
 printf("Enter a string ");
 gets(input);
 cptr = strchr(input,'/');
 if(cptr)
 {
 printf("String from first / is %s\n",cptr);
 }
 else
 printf("No / in input\n");
}

A typical dialogue is

$ findsl
Enter a string http://www.wlv.ac.uk/
String from first / is //www.wlv.ac.uk/
$ findsl
Enter a string the cat sat on the mat
No / in input

9.

strcspn

Computes length of initial substring of a string comprising characters NOT from a specified set of characters. It is
the opposite of strspn()

10.

strpbrk

Similar to strchr() only a set of characters may be specified. Here's an example program called showbrk.

#include <string.h>
main()
{
 char inbuf[256];
 char *cptr;
 printf("Enter string ");
 gets(inbuf);
 cptr = strpbrk(inbuf,"abcdefghijklmnopqrstuvwxyz");
 if(cptr)
 printf("First lower case letter at position %d\n",cptr-inbuf);
 else
 printf("No lower case letters\n");
}

11.

The Pre-Processor and standard libraries - String handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.string.html (2 of 4) [02/04/2002 09:21:59]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/findsl.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/showbrk.c

and a typical dialogue

$ showbrk
Enter string ABCDEfGHIHJKlm
First lower case letter at position 5
$ showbrk
Enter string ABCDEFG
No lower case letters

strrchr

Similar to strchr() only works from end of string. Here's an example program called findlast that demonstrates its
use.

#include <string.h>
main()
{
 char *cptr;
 char input[256];
 printf("Enter full path name ");
 gets(input);
 cptr = strrchr(input,'/');
 if(cptr)
 printf("File name %s\n",cptr+1);
 else
 printf("Not a full path name\n");
}

Note the use of "cptr+1" in the printf() parameter list, since strrchr() returned the address of the '/'.

12.

strspn

Computes length of initial substring of a string comprising characters from a specified set of characters. It is closely
realted to strpbrk() as will be seen from the example of that function.

13.

strstr

Looks for a string as a sub-string of another string.

14.

strtok

Breaks string into sequence of tokens. This function has two parameters the first is a string to be examined and the
second is a string consisting of the token separators. The function will be used in a loop, on the first call, with the
first parameter set to point to the string, the function makes a private note of the parameters and where it has got to
in breaking the string into tokens. On subsequent calls the first parameter should be NULL. The return value is a
pointer to the token start address or NULL if there are no more tokens.

It is important to realise that strtok() operates by converting token separators into NULLs in the input string.

Here's an example of it in use.

#include <string.h>
main()
{
 char inbuf[256];
 char *cptr;
 int count = 0;
 printf("Enter path name ");
 gets(inbuf);
 cptr = strtok(inbuf,"/");
 while(cptr)
 {
 printf("Component %d = %s\n",++count,cptr);
 cptr = strtok(NULL,"/");
 }

15.

The Pre-Processor and standard libraries - String handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.string.html (3 of 4) [02/04/2002 09:21:59]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/findlast.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/strtok.c

}

and the dialogue

Enter path name home/staff/acad/jphb/cbook/new/chap8/chap8.txt
Component 1 = home
Component 2 = staff
Component 3 = acad
Component 4 = jphb
Component 5 = cbook
Component 6 = new
Component 7 = chap8
Component 8 = chap8.txt

strerror

Generates an error message. This is used in conjunction with the standard global variable errno to give standard
error messages describing the reason for failure of library routines or system calls. The actual messages are, of
course, host system dependant. It takes a single integer parameter and returns a pointer to the relevant error message.

16.

strlen

Determines the length of a string The use of this function was illustrated earlier

17.

memset

Fills a memory area with a particular character.

memset(buff,'\0',256);

could be used to fill 256 bytes starting at buff with zeroes.

18.

memcpy

This copies characters from one memory area to another. Unlike strcpy() it does not stop when a NUL is
encountered in the data being copied.

19.

memmove

This is similar to memcpy() except that it works via an intermediate area giving defined behaviour if the areas
overlap.

20.

memcmp

Compare areas of memory

21.

memchr

Search memory for a particular character.

22.

The #define directive

The Pre-Processor and standard libraries - String handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.string.html (4 of 4) [02/04/2002 09:21:59]

Addresses, Pointers, Arrays and
Strings - Arrays of Strings
Chapter chap6 section 14

It is important to realise that a string constant such as

"hello, world"

is really a constant of type pointer to character that points to the system place where
the actual string is stored. It is possible to have aggregates of strings which will, of
course, really be aggregates of pointers to char. The following program, called
stall1, demonstrates the point.

main()
{
 char *days[] = {
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
 };
 char *dname;
 int nday;
 printf("Enter day of week [1-7] ");
 scanf("%d",&nday);
 dname = days[nday-1];
 printf("That is %s\n",dname);
}

A typical dialogue is shown below

$ stall1
Enter day of week [1-7] 4
That is Wednesday
bash$ stall1
Enter day of week [1-7] 2
That is Monday

Addresses, Pointers, Arrays and Strings - Arrays of Strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.strings.html (1 of 3) [02/04/2002 09:22:02]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall1.c

$

The final 2 lines of code could have been replaced by the single line

printf("That is %s\n",ndays[n-1]);

The relationship between string constants, pointers and aggregates is well illustrated
by the following program, which prints out a string constant backwards.

main()
{
 int i=4;
 char c;
 do
 {
 c = "hello"[i];
 printf("%c",c);
 i--;
 } while(i >= 0);
 printf("\n");
}

The output was

olleh

The key to understanding this is to remember that a string constant, such as "hello"
in this case, is really the address of the place where the actual string is stored, the
index operator can then, quite naturally, be associated with such an address.

The next program devlops the idea rather more obscurely. The purpose of the
program, called stall2, is to display an integer in hexadecimal notation.

main()
{
 int i;
 unsigned int m;
 printf("Enter an integer ");
 scanf("%d",&i);
 m = i;
 i = 0;
 do
 {
 printf("%c","0123456789abcdef"[m>>28]);
 m <<= 4;

Addresses, Pointers, Arrays and Strings - Arrays of Strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.strings.html (2 of 3) [02/04/2002 09:22:02]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall15.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall2.c

 } while(++i<8);
 printf("\n");
}

A typical dialogue is given below.

$ stall2
Enter an integer 10
0000000a
$ stall2
Enter an integer 33
00000021
$ stall2
Enter an integer -9
fffffff7
$

The code will repay careful study. The string constant

"0123456789abcdef"

is, of course, the address of the start of an aggregate so the index operator may
properly be used in this context. The value of the expression

m>>28

is simply the most significant half-byte of the (shifted) value of m which is used as
index to select the relevant character from the string. Finally

m <<= 4

shifts the bit pattern 4 bits to the left so that progressively less significant half-bytes
become the most significant half-byte after evaluation of "m>>28". It is essential
that "m" be unsigned otherwise the shift operations would not work correctly.

The use of printf() or some other library function is a much more obvious and
straightforward way of coding this conversion but it may well be useful if only a
limited amount of memory is available for storing the code.

Library string handling function

Addresses, Pointers, Arrays and Strings - Arrays of Strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.strings.html (3 of 3) [02/04/2002 09:22:02]

Addresses, Pointers, Arrays and Strings -
Library string handling functions
Chapter chap6 section 15

The C programming language does not, in fact, support a string data type, however strings are so useful
that there is an extensive set of library functions for manipulating strings. Three of the simplest functions
are

Name Function

strlen() determine length of string

strcmp() compare strings

strcpy() copy a string

The first of these, strlen(), is particularly straightforward. Its single parameter is the address of the start of
the string and its value is the number of characters in the string excluding the terminating NUL.

The second function, strcmp(), takes the start addresses of the two strings as parameters and returns the
value zero if the strings are equal. If the strings are unequal it returns a negative or positive value. The
returned value is positive if the first string is greater than the second string and negative if it is less than.
In this context the relative value of strings refers to their relative values as determined by the host
computer character set (or collating sequence).

It is important to realise that you cannot compare two strings by simply comparing their start addresses
although this would be syntactically valid.

The third function, strcpy(), copies the string pointed to by the second parameter into the space pointed to
by the first parameter. The entire string, including the terminating NUL, is copied and there is no check
that the space indicated by the first parameter is big enough.

A simple example is in order. This program, stall3, has the opposite effect to the example given earlier.

main()
{
 char *days[] = {
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
 };
 int i;
 char inbuf[128];
 printf("Enter the name of a day of the week ");
 gets(inbuf);
 do
 {
 if(strcmp(days[i++],inbuf)==0)
 {
 printf("day number %d\n",i);
 exit(0);

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (1 of 6) [02/04/2002 09:22:11]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall3.c

 }
 } while(i<7);
 printf("Unrecognised day name\n");
}

A typical dialogue

$ stall3
Enter the name of a day of the week Tuesday
day number 3
$ stall3
Enter the name of a day of the week Bloomsday
Unrecognised day name
$ stall3
Enter the name of a day of the week Friday
day number 6
$

The program is totally unforgiving of any errors in the input layout such as leading and trailing spaces or
entry all in lower case or entry of abbreviations.

To demonstrate the use of strlen(), here is a simple program, called stall4, that reads in a string and prints
it out reversed, a tremendously useful thing to do. The repeated operation of this program is terminated by
the user entering a string of length zero, i.e. hitting the RETURN key immediately after the program
prompt.

main()
{
 char inbuf[128]; /* Hope it's big enough */
 int slen; /* holds length of string */
 while(1)
 {
 printf("Enter a string ");
 gets(inbuf);
 slen = strlen(inbuf); /* find length */
 if(slen == 0) break; /* termination condition */
 while(slen > 0)
 {
 slen--;
 printf("%c",*(inbuf+slen));
 }
 printf("\n");
 }
}

The program operates by printing the characters one by one, starting with the last non-NUL character of
the string. Notice that "slen" will have been decremented before the output of the character, this is correct
since the length returned by strlen() is the length excluding the NUL but the actual characters are
aggregate members 0 length-1.

A typical dialogue is illustrated below.

$ stall4
Enter a string 1234

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (2 of 6) [02/04/2002 09:22:11]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall4.c

4321
Enter a string x
x
Enter a string abc def ghi
ihg fed cba
Enter a string
$

Here is another version of the same program re-written using a more typical C programming style.

main()
{
 char inbuf[128]; /* Hope it's big enough */
 int slen; /* holds length of string */
 while(1)
 {
 printf("Enter a string ");
 gets(inbuf);
 if((slen = strlen(inbuf)) == 0) break;
 while(slen--)printf("%c",*(inbuf+slen));
 printf("\n");
 }
}

It illustrates the use of side-effects and address arithmetic and should be compared with the first version.

The next prorgam is designed to drive home the point about comparing strings as distinct from comparing
their start addresses.

main()
{
 char x[22],*y;
 strcpy(x,"A Programming Example");
 y = x;

/* First test - compare y with constant */

 if(y == "A Programming Example")
 printf("Equal 1\n");
 else
 printf("Unequal 1\n");

/* Second test - compare using strcmp() */

 if(strcmp(x,"A Programming Example") == 0)
 printf("Equal 2\n");
 else
 printf("Unequal 2\n");

/* Assign constant address and compare */

 y = "A Programming Example";
 if(y == "A Programming Example")

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (3 of 6) [02/04/2002 09:22:11]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall4a.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/str6.c

 printf("Equal 3\n");
 else
 printf("Unequal 3\n");
}

It produced the following output

Unequal 1
Equal 2
Unequal 3

The first comparison compares the address held in the variable "y" with the address of the system place
where the string constant "A Programming Example" is stored. Clearly the start address of the aggregate
"x" is different from the address of the system place where the string constant "A Programming Example"
is stored, since strcpy() has only copied the string.

The second test used strcmp() to compare the strings rather than their start addresses, the result is, not
surprisingly, that the strings were, in fact, equal.

The final test looks rather surprising. A value has been assigned to "y" and "y" has then been immediately
compared with that value and found to be different. The explanation is that the compiler has not been
clever enough to spot the repeated use of the same string constant and has made multiple copies of this
constant in memory. This underlines the fact that the actual value of a string constant is the address of the
first character. Some compilers may be clever enough to avoid this problem. The ANSI standard does not
specify any particular behaviour.

Finally an example using strcpy(). This program, called stall5 twiddles the case of every character in the
input string.

main()
{
 char istr[128]; /* input buffer */
 char tstr[128]; /* translated string here */
 int i;
 int slen; /* string length */
 while(1)
 {
 printf("Enter a string ");
 gets(istr);
 if((slen=strlen(istr))==0) break; /* terminate */
 strcpy(tstr,istr); /* make a copy */
 i = 0;
 while(i < slen) /* translate loop */
 {
 if(tstr[i] >= 'A' &&
 tstr[i] <= 'Z') /* upper case */
 tstr[i] += 'a'-'A';
 else if(tstr[i] >= 'a' &&
 tstr[i] <= 'z') /* lower case */
 tstr[i] += 'A'-'a';
 i++; /* to next character */
 }
 printf(" Original string = %s\n",istr);
 printf("Transformed string = %s\n",tstr);
 }

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (4 of 6) [02/04/2002 09:22:11]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall5.c

}

The following dialogue is typical

$ stall5
Enter string aBDefgXYZ
 Original string = aBDefgXYZ
Transformed string = AbdEFGxyz
Enter string ab CD 123
 Original string = ab CD 123
Transformed string = AB cd 123
Enter string :::x:::y:::Z:::
 Original string = :::x:::y:::Z:::
Transformed string = :::X:::Y:::z:::
Enter string

The program has preserved the original string by copying it to a different memory area before
manipulating it.

It is important that there is somewhere to copy the string to. A common programming error is illustrated
below. This variation on the previous program is called stall6.

main()
{
 char istr[128];
 char *tstr;
 int i;
 int llen;
 while(1)
 {
 printf("Enter string ");
 gets(istr);
 if((llen=strlen(istr))==0) break;
 strcpy(tstr,istr);
 i = 0;
 do
 {
 if(tstr[i]>='A' && tstr[i]<='Z')
 tstr[i] += 'a'-'A';
 else if(tstr[i]>='a' && tstr[i]<='z')
 tstr[i] += 'A'-'a';
 } while(i++<=llen);
 printf(" Original string = %s\n",istr);
 printf("Transformed string = %s\n",tstr);
 }
}

This is what happened

$ stall6
Enter string abcdefghjikl
Segmentation fault (core dumped)

The programmer has probably assumed that there really is such a data type as a string and that strcpy()

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (5 of 6) [02/04/2002 09:22:11]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/stall6.c

provides the facility to assign strings. The failure of the program is not surprising once you think about
the initial value of "tstr". The initial value of non-initialiased variables was discussed earlier. Clearly
copying the input character string to whatever location tstr happened to point to, has overwritten
something important or has attempted to access a memory location not available to the program.
Occassionally this error will not cause program failure because "tstr" happens to point to somewhere
relatively safe and the program has only been tested with strings that were not long enough to cause
damage when copied to whatever place "tstr" pointed to.

Exercises

Addresses, Pointers, Arrays and Strings - Library string handling functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.string.library.html (6 of 6) [02/04/2002 09:22:11]

The Pre-Processor and standard
libraries - The #define directive
Chapter chap8 section 9

The #define preprocessor directive is used to associate a particular string of
characters with a replacement string. The operation of the preprocessor is then very
similar to an editor performing a global substitution. The basic syntax is

#define <identifier> <replacement>

The replacement can be any sequence of characters and is terminated by the end of
line. The normal C language rules apply to the formation of identifiers. This is
particularly useful for referring to frequently used items in a program, for example
the size of a buffer. The following variant of the line reversing program illustrates
the point.

#include <stdio.h>
#define LINMAX 80

main()
{
 char inbuf[LINMAX];
 int c;
 while(1)
 {
 int i=0;
 while((c=getchar())!='\n' && c!=EOF)
 if(i!=LINMAX)inbuf[i++]=c;
 if(c==EOF) break;
 if(i--)while(i>=0)putchar(inbuf[i--]);
 putchar('\n');
 }
}

The virtue of this approach is that it is possible to change the size of the buffer by
simply altering the single line that defines the symbol LINMAX , once this change
has been made the program can be re-compiled and the preprocessor will replace
every occurrence of the symbol LINMAX by the new actual value. In a larger
program with several references to LINMAX the advantages of this approach are
considerable.

If the actual buffer size were quoted then it would be necessary to track down every

The Pre-Processor and standard libraries - The #define directive

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.define.html (1 of 3) [02/04/2002 09:22:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/revlin2.c

reference and alter it when the buffer size was changed. It would be all to easy to
overlook one or, possibly worse, change an instance of a number that happened to
look the same but was completely unrelated to the buffer size.

It is good programming practice to use upper case letters for identifiers defined by
#define directives, this makes them stand out in the actual C code and makes it
clearer to the programmer that they are not normal variables. Remember that the
preprocessor operates purely by textual substitution so the error in

 #define MAXCNT 100
 .
 .
 .
 MAXCNT = 50;

is not immediately obvious unless you realise what MAXCNT actually stands for.

Identifiers defined using #define in this fashion are sometimes called manifest
constants although this notation does not really reflect the full capabilities of
#define as the example below will make clear. Occasionally they are called
object-like macros .

It is quite possible to use #define directives for all sorts of purposes as the following
program shows.

#include <stdio.h>
#define LINMAX 80

#define BEGIN {
#define END }
#define AND &&
#define FOREVER while(1)
#define NEWLINE '\n'

main()
BEGIN
 char inbuf[LINMAX];
 int c;
 FOREVER
 BEGIN
 int i=0;
 while((c=getchar())!=NEWLINE AND c!=EOF)
 if(i!=LINMAX)inbuf[i++]=c;
 if(c==EOF) break;
 if(i--)while(i>=0)putchar(inbuf[i--]);

The Pre-Processor and standard libraries - The #define directive

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.define.html (2 of 3) [02/04/2002 09:22:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/revlin2p.c

 putchar('\n');
 END
END

The program now looks quite unlike a C program and bears a marginal resemblance
to certain other programming languages. This practice is to be strongly discouraged
even though it does demonstrate the text substitution nature of the preprocessor.

Function Like Macros

The Pre-Processor and standard libraries - The #define directive

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.define.html (3 of 3) [02/04/2002 09:22:16]

Loops and Conditions -
Introduction
Chapter chap5 section 1

So far all the programs we have written have been straight-line programs, this
means that they have consisted of a sequence of statements to be executed one after
the other. In this chapter we will see how to write programs that do different things
depending on conditions detected by the program and how to write programs that
repeatedly execute a set of statements. Before we do this, however, we will need to
learn how to detect conditions.

See Also

Relational Operators●

Logical Operators●

The If and Else Statements●

The Dangling Else Problem●

Local Variables in Compound Statements●

The Equality and Assignment Operators●

The While, Break and Continue Statements●

The Do Statment●

The Trinary (:?) Operator●

Exercises●

Loops and Conditions - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.intro.html [02/04/2002 09:22:22]

Loops and Conditions -
Relational and Logical Operators
Chapter chap5 section 2

In the C programming language there a number of operators that allow us to
construct expressions whose value depends on some condition between the values of
the operands. The following set of four operators, known as the relational
operators, are basic examples.

Operator Meaning

> Greater than

>= Greater than or equal to

<= Less than or equal to

< Less than

These may be used in expressions of the form

<value1> <relational operator> <value2>

Such integer valued expressions, known as relational expressions, have either the
value 0 or the value 1. The expression has the value 1 if the relationship between the
values is true and 0 if the relationship between the operators is false. They are
illustrated by the following program.

main()
{
 int x = 3;
 int y = 4;
 printf("Value of %d > %d is %d\n",x,y,x>y);
 printf("Value of %d >= %d is %d\n",x,y,x>=y);
 printf("Value of %d <= %d is %d\n",x,y,x<=y);
 printf("Value of %d < %d is %d\n",x,y,x<y);
}

which produced the following output

Value of 3 > 4 is 0
Value of 3 >= 4 is 0
Value of 3 <= 4 is 1
Value of 3 < 4 is 1

Loops and Conditions - Relational and Logical Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.relational.operators.html (1 of 2) [02/04/2002 09:22:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/relop1.c

If you are familiar with other programming languages you might find this rather
surprising. The C programming language does not have such things as logical or
Boolean data types.

As well as the relational operators, the C programming language also provides two
equality operators.

Operator Meaning

== Is equal to

!= Is not equal to

Expressions involving these operators evaluate to 1 or 0 in exactly the same way as
the relational operators described earlier.

If a relational or equality operator is associated with operators of different types then
the usual arithmetic conversions take place. This can, occasionally, produce
surprising results as is shown in the program below.

main()
{
 int x = -4;
 unsigned int y = 3;
 printf("Value of %u<%d is %d\n",y,x,y<x);
}

producing the output

Value of 3<-4 is 1

This output says that 3 is less than -4, which is apparently wrong. What has
happened is that the "<" operator has two operands, one of type int and the other of
type unsigned int , in this case the arithmetic conversion rules require the signed
operand to be converted to unsigned by bit pattern preservation before the
comparison. The normal representation of negative numbers involves setting high
order bits to indicate this fact so unsigned comparison will see the value with the
high order bits set as the larger. This can be even more confusing with the char data
type, since the signed or unsigned nature of char is not always obvious.

The logical operators

Loops and Conditions - Relational and Logical Operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.relational.operators.html (2 of 2) [02/04/2002 09:22:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/relop1a.c

Loops and Conditions - The
logical operators
Chapter chap5 section 3 There are three operators that are commonly used to combine
expressions involving relational operators. These are

Operator Meaning

&& and

|| or

! not

The ! operator is unary, the others are binary. The operators "&&" and "||" should
not be confused with the bitwise operators "&" and "|". The rules for evaluating
expressions involving the logical operators are.

&& If either of the values are zero the value of the expression is zero,
otherwise the value of the expression is 1. If the left hand value is zero, then
the right hand value is not considered.

●

|| If both of the values are zero then the value of the expression is 0 otherwise
the value of the expression is 1. If the left hand value is non-zero, then the
right hand value is not considered.

●

! If this operator is applied to a non-zero value then the value is zero, if it is
applied to a zero value, the value is 1.

●

The effects of these operators is summarised in the following table.

Operand 1 Operand 2 op1 || op2 op1 && op2 ! op1

0 0 0 0 1

0 non-zero 1 0 1

non-zero 0 1 0 0

non-zero non-zero 1 1 0

Some further examples of expressions involving these operators are now in order.

main()
{
 int x=1,y=2,z=3;
 int p,q;
 p = (x>y) && (z<y); /* False i.e. 0 */
 q = (y>x) || (y>z); /* True i.e. 1 */

Loops and Conditions - The logical operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.logical.operators.html (1 of 4) [02/04/2002 09:22:36]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/relop2.c

 printf(" %d && %d = %d\n",p,q,p&&q);
 printf(" %d || %d = %d\n",p,q,p||q);
 /* Can mix "logical" values and arithmetic */
 printf(" %d && %d = %d\n",x,q,x&&q);
 printf(" %d || %d = %d\n",p,y,p||y);
 /* Exercise the NOT operator */
 printf(" ! %d = %d\n",p,!p);
 printf(" ! %d = %d\n",q,!q);
 /* NOT operator applied to arithmetic */
 printf(" ! %d = %d\n",z,!z);
}

producing the output

 0 && 1 = 0
 0 || 1 = 1
 1 && 1 = 1
 0 || 2 = 1
 ! 0 = 1
 ! 1 = 0
 ! 3 = 0

These are, of course, very simple examples. Before considering more elaborate
cases we must note the precedence and associativity of these new operators. Here is
yet another table of operator precedences.

Operator Associativity

() ++(postfix) --(postfix) Left to Right

++(prefix) --(prefix) ~ (type) +(unary)
-(unary) !

Left to Right

* / % Left to Right

+ - Left to Right

<< >> Left to Right

< <= => > Left to Right

== != Left to Right

& Left to Right

^ Left to Right

| Left to Right

&& Left to Right

|| Left to Right

?: Right to Left

Loops and Conditions - The logical operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.logical.operators.html (2 of 4) [02/04/2002 09:22:36]

= += *= <<= >>= /= %= -= &= |= ^= Right to Left

The ?: operator will be described later in this chapter. The next example illustrates
the sometimes surprising effects of associativity.

main()
{
 int a = 9;
 int b = 8;
 int c = 7;
 printf("Value of %d>%d>%d is %d\n",a,b,c,a>b>c);
}

producing the output

Value of 9>8>7 is 0

This is, initially, rather surprising because 0 means that the relation is false and yet
the relation appears to be true. However if it is remembered that an expression like
this is evaluated left to right then the result makes sense. The first step is the
evaluation of

9>8

this is clearly true and the value of the expression is 1. The next, and final step, is
the evaluation of

1>7

this is, equally clearly false, and has the value 0.

If you want to determine whether x lies between the values a and b you must write

b > x && x > a

and not

b > x > a

There is no need for parentheses because ">" has a higher precedence than "&&".
Note that there is nothing wrong with writing "b>x>a", it will be accepted by the
compiler, it simply doesn't do what you might expect it to do.

You may have noted the odd rules about ignoring the right hand value when
evaluating "&&" and "||" expressions. This is sometimes called fast track
evaluation. It is clearly sensible not to evaluate a, possibly complex, part of an
expression when the value of the complete expression can already be determined. It

Loops and Conditions - The logical operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.logical.operators.html (3 of 4) [02/04/2002 09:22:36]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/relop3.c

is also useful in avoiding possible problems. Consider the following program, called
relop4, that might make use of the fact that a floating point number has either the
value zero or a reciprocal less than 0.75.

main()
{
 double x;
 int flag;
 printf("Enter a number ");
 scanf("%lf",&x);
 flag = (x==0 || 1.0/x < 0.75);
 printf("Flag value = %d\n",flag);
}

A typical dialogue is shown below

$ relop4
Enter a floating point number 1.5
Flag value is 1
$ relop4
Enter a floating point number 0.75
Flag value is 0
$ relop4
Enter a floating point number 0
Flag value is 1

The important point here is the behaviour of the program for the input value zero. If
both operands of the "&&" operator were evaluated before determining the value of
the expression then the program would fail when it attempted to compute 1.0/x.

You might think, quite correctly, that the operator "&&" is commutative and it
doesn't make any difference which way round you write the operands. If you
consider the effects of reversing the order of operands in the program, it is fairly
obvious that the behaviour with the input value 0 would be quite different. If the
operands were reversed then the first step in determining the value to be assigned to
"flag" is to determine the value of

1.0/x < 0.75

If the input value were 0, then the program would crash when it attempted to
determine the value of "1.0/x".

If and Else statements

Loops and Conditions - The logical operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.logical.operators.html (4 of 4) [02/04/2002 09:22:36]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/relop4.c

Loops and Conditions - The
trinary (?:) operator
Chapter chap5 section 10

Consider the following code which sets the variable x to the maximum of a and b.

if(a>b)
 x = a;
else
 x = b;

This looks innocent and straightforward but if the main requirement is to deliver the
maximum of a and b as a value within an expression it is remarkably clumsy
requiring, amongst other things, the use of an extra intermediate variable "x" to
convey the result of the statement execution to the expression evaluation part of the
code.

The C programming language offers an alternative via the "?:" operator. This is a
trinary operator which means that three operands are associated with the operator.
The syntax is

<expression1> ? <expression2> : <expression3>

The value of the expression is the value of expression2 if the value of expression1 is
non-zero and the value of expression3 if the value of expression1 is zero. The
setting of x to the maximum of a and b can now be achieved by the following code

x=a>b?a:b

Here is a very simple example.

main()
{
 int a,b;
 printf("Enter 2 numbers ");
 scanf("%d%d",&a,&b);
 printf("Maximum is %d\n",a>b?a:b);
 printf("Minimum is %d\n",a>b?b:a);
}

A typical dialogue with this program, called trin, is shown below.

$ trin

Loops and Conditions - The trinary (?:) operator

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.trinary.html (1 of 2) [02/04/2002 09:22:38]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/trin.c

Enter 2 numbers 3 5
Maximum is 5
Minimum is 3
$ trin
Enter 2 numbers 4 4
Maximum is 4
Minimum is 4
$

Another simple and useful example of the use of the trinary operator is shown by the
following program.

main()
{
 int i=0;
 while(i<3)
 {
 printf("%d error%c\n",i,i==1?' ':'s');
 i++;
 }
}

producing the output.

0 errors
1 error
2 errors

Notice the neat way in which the final "s" is suppressed on the output.

Exercises

Loops and Conditions - The trinary (?:) operator

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.trinary.html (2 of 2) [02/04/2002 09:22:38]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/trine.c

Loops and Conditions - If and Else
statements
Chapter chap5 section 4

It is now time to consider some new types of statement. The first of these are the if-statement and the
else-statement . The syntax of an if-statement is

if (<expression>) <statement>

and the meaning is that if the expression has a non-zero value then the statement included within the
if-statement , sometimes called the controlled statement, is executed. If the value of the expression is
zero then the controlled statement is not executed.

An if-statement may be followed immediately by an else-statement . The syntax of an else-statement is

else <statement>

and the meaning is that the controlled statement is executed if the controlling expression of the
immediately preceding if-statement had the value zero.

A simple example program called if1 is in order.

main()
{
 int x;
 printf("Enter a number ");
 scanf("%d",&x);
 if(x%2 == 1) printf("%d is odd\n",x);
 else printf("%d is even\n",x);
}

and a typical dialogue is

$ if1
Enter a number 27
27 is odd
$ if1
Enter a number 0
0 is even
$ if1
Enter a number 1000
1000 is even

To understand the behaviour of this program it is only necessary to remember what the "%" operator
does. The value of the expression "x%2" is the remainder when x is divided by 2, i.e. 0 when x is even
and 1 when x is odd, so the value of "x%2 == 1" is 1 if x is odd and 0 if x is even.

It is quite common practice to omit the "== 1" in the condition in cases such as this since the value of
"x%2" is 0 or 1 anyway.

The next example uses the relational and logical operators. It reads in three numbers and determines
whether the middle number lies between the other two. Note how the controlled statements are indented
for greater readability, this is common practice. This program is called if2.

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (1 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if2.c

main()
{
 int p,q,r;
 printf("Enter three numbers ");
 scanf("%d%d%d",&p,&q,&r);
 if((p<q && q<r) || (p>q && q>r))
 printf("%d lies between %d and %d\n",q,p,r);
 else
 printf("%d does not lie between %d and %d\n",
 q,p,r);
}

and a typical dialogue is shown below

$ if2
Enter three numbers 1 2 3
 2 lies between 1 and 3
$ if2
Enter three numbers 3 2 1
 2 lies between 3 and 1
$ if2
Enter three numbers 10 10 11
 10 does not lie between 10 and 11

The expression associated with the "if" could have been written

p<q && q<r || p>q && q>r

The parentheses were not essential because "&&" has a higher precedence than "||", however the human
reader may well have forgotten this and the extra typing is a small price to pay for greater readability
and clarity.

The controlled statement associated with an if-statement may be any valid statement including another
if-statement , however it can only be a single statement. In the following program called if3 the
programmer has attempted to associate two statements with the if .

main()
{
 int x;
 printf("Enter a number ");
 scanf("%d",&x);
 if(x%3 == 0)
 printf("The number %d",x);
 printf("is divisible by 3\n");
}

The program is intended to report whether the input number is divisible by 3. Remember that the value
of the expression x%3 is non-zero if x is not divisible by 3. What actually happened is shown below.

$ if3
Enter a number 27
The number 27 is divisible by three
$ if3
Enter a number 10

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (2 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if3.c

is divisible by three

The problem here is, of course, that the final printf() statement is not controlled by the if and is, in fact,
the statement after the if-statement so it is always executed. What is required is some way of grouping
statements together in a single "super" statement. C provides just such a mechanism known as a
compound statement. A compound statement is simply a list of ordinary statements enclosed in braces,
i.e. {..}. A compound statement can be used anywhere where the ANSI standard requires a statement.
The correct version of the if3 program, called if4, is shown below.

main()
{
 int x;
 printf("Enter a number ");
 scanf("%d",&x);
 if(x%3 == 0)
 {
 printf("The number %d",x);
 printf("is divisible by 3\n");
 }
}

and a typical dialogue

$ if4
Enter a number 27
The number 27 is divisible by three
$ if4
Enter a number 10
$

The expression associated with the "if" could have been written

!(x%3)

the parentheses being necessary since the ! operator has a higher precedence than the % operator. A
further, slightly more complex example is shown below. This program is called if5.

main()
{
 double x;
 printf("Enter a number ");
 scanf("%lf",&x);
 if(x > 0.0)
 {
 printf("%10.5lf is positive\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 }
 else
 {
 if (x == 0.0)
 {
 printf("Zero - no reciprocal\n");
 }
 else

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (3 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if4.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if5.c

 {
 printf("%10.5lf is negative\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 }
 }
}

and a typical dialogue

$ if5
Enter a number 3.5
A positive number It's reciprocal is 0.28571
$ if5
Enter a number 0.0
Zero - no reciprocal
$ if5
Enter a number -2.89
A negative number It's reciprocal is -0.34602

Notice how the if and else keywords and the { and } symbols marking out the controlled compound
statements are all lined up. This is highly desirable and makes understanding complex programs much
easier for the human reader. As in all examples in these notes the indentation has been achieved using
TABs in the source file.

Some programmers prefer to lay this program out in a slightly different way. The initial "{" appears on
the same line as the condition, the statements within the controlled compound statement are indented
and the final "}" is lined up with the if keyword.

main()
{
 double x;
 printf("Enter a number ");
 scanf("%lf",&x);
 if(x > 0.0) {
 printf("%10.5lf is positive\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 } else {
 if (x == 0.0) {
 printf("Zero - no reciprocal\n");
 } else {
 printf("%10.5lf is negative\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 }
 }
}

There are some other conventional layouts, consult any reputable textbook to see examples. The choice
of layout is left to personal taste and local standards. However it is important to be consistent in layout
once you have decided what convention to adopt.

In the both the previous examples there was a compound statement associated with the condition
"x==0.0". The list of statements within the {..} consisted of a single statement. Under these
circumstances there is no need for the braces and the following is perfectly correct. The program could
be further shortened and simplified by combining successive printf() s into a single printf().

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (4 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if51.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if52.c

main()
{
 double x;
 printf("Enter a number ");
 scanf("%lf",&x);
 if(x > 0.0)
 {
 printf("%10.5lf is positive\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 }
 else
 {
 if (x == 0.0)
 printf("Zero - no reciprocal\n");
 else
 {
 printf("%10.5lf is negative\n",x);
 printf("%10.5lf is the reciprocal\n",1.0/x);
 }
 }
}

A more interesting example of the use of multiple if statements is illustrated by the following example.
This program reads in a simple expression with a very restricted format and prints out its value.

main()
{
 int n1,n2;
 int val;
 char op;
 printf("Enter a simple expression ");
 scanf("%d%c%d",&n1,&op,&n2);
 if(op == '+')
 val = n1 + n2;
 else if(op == '-')
 val = n1 - n2;
 else if(op == '/')
 val = n1 / n2;
 else if(op == '*')
 val = n1 * n2;
 else
 {
 printf("?? operator %c\n",op);
 exit(1);
 }
 printf("%d%c%d = %d\n",n1,op,n2);
}

A typical dialogue is shown below.

$ if6
Enter a simple expression 2+2

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (5 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6.c

2+2 = 4
$ if6
Enter a simple expression 29-11
29-11 = 18
$ if6
Enter a simple expression 23*5
23*5 = 115
$ if6
Enter a simple expression 11%5
Unknown operator %

A particularly interesting point concerns the sequence of else if lines. To understand this, you should
note that an else statement is associated with the immediately preceding if statement in spite of any
impressions to the contrary given by program layout. If you're uncertain about this it is illustrative to
rearrange the text of the program to conform to the layout described earlier.

Program execution proceeds by evaluating the relational expressions "c == '+'", "c == '-'", etc., one after
the other until one has the value 1. The associated controlled statement is then executed and then the
statement after the final else statement is executed.

main()
{
 int n1,n2;
 int val;
 char op;
 printf("Enter a simple expression ");
 scanf("%d%c%d",&n1,&op,&n2);
 if(op == '+')
 val = n1 + n2;
 else if(op == '-')
 val = n1 - n2;
 else if(op == '/')
 val = n1 / n2;
 else if(op == '*')
 val = n1 * n2;
 else
 {
 printf("?? operator %c\n",op);
 exit(1);
 }
 printf("%d%c%d = %d\n",n1,op,n2);
}

This program was obtained from the previous one simply by changing the indentation to show the
structure more clearly. Either layout is correct and acceptable, if there are a large number of conditions
the advantages of the first form are obvious.

A new library function, exit(), appears in this program. The effect of this library function is to terminate
the program immediately and return to the host operating system. The integer parameter of exit() may be
accessible to the host operating system as a program return or exit code. The details of this mechanism
are, of course, host operating system dependant. Different values can be used to indicate successful or
unsuccessful operation of the program. Returning 0 to indicate succesful operation and using non-zero
integer values to indicate various errors is a common practice. If you don't include a call to exit() in your
program, it simply "drops off the end", this is perfectly safe but does mean that the value returned to the

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (6 of 7) [02/04/2002 09:22:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6x.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6x.c

host operating system environment is indeterminate.

The dangling else problem.●

equality and assignment operator confusion●

Local Variables in compound statements●

Loops and Conditions - If and Else statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.if.else.html (7 of 7) [02/04/2002 09:22:45]

Loops and Conditions -
Exercises
Chapter chap5 section 11

Write a program that will read in 4 numbers and print out their average.1.

Write a program to read in a set of numbers and print out their average. The
program will start by prompting the user for the number of numbers to be
read in and will then prompt for the individual numbers with a prompt such as

Enter Number 23

to indicate to the user which data item is currently being entered. Do
something special when prompting for the last number.

Note that there is no need to store all the individual numbers, it is sufficient to
maintain a running total.

2.

Modify the previous program to print out the largest and smallest number
read in as well as the average. Also change the prompt to show the number of
numbers still to be entered.

3.

Write a program to prompt the user for an integer and calculate the sum of all
the integers up to and including the input value. Print out the result.

4.

Modify the previous program to use floating point arithmetic to add up the
reciprocals of all the integers up to and including the input value.

5.

Further modify the previous program to print out a list of reciprocal sums for
every integer up to and including the input value.

I.e. print out the sum of the reciprocals of the integers up to and including 1,
up to and including 2, up to and including 3 etc., etc.

6.

Write a program to print out the integers from 40 to 127 in decimal, octal,
hexadecimal and also print out the equivalent character.

7.

Modify the previous program to list the values 4 to a line.8.

As a seasonal amusement some programmers like to print out a picture of a
Chirstmas Tree looking like this.

 *

 *

 *

9.

Loops and Conditions - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.exercises.html (1 of 2) [02/04/2002 09:22:48]

 |
 ---+---

The tree consists of a series of tiers (three in this case) of increasing size.
Write a program to produce such a display having prompted the user for the
number of tiers.

You could try putting a few baubles on the tree (using o or O).

A year is a leap year if it is divisble by 4 unless it is a century year (one that
ends in 00) in which case it has to be divisible by 400. Write a program to
read in a year and report whether it is a leap year or not.

10.

Loops and Conditions - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.exercises.html (2 of 2) [02/04/2002 09:22:48]

Loops and Conditions - The
dangling else problem
Chapter chap5 section 5

The following program underlines the importance of understanding the relationship
between if statements, else statements and the associated controlled statements.

main()
{
 int a = 2;
 int b = 2;
 if (a == 1)
 if (b == 2)
 printf("a was 1 and b was 2\n");
 else
 printf("a wasn't 1\n");
}

When compiled and run this program did not produce any output. A properly laid out
version of this program makes it clear what is actually going on.

main()
{
 int a = 2;
 int b = 2;
 if (a == 1)
 if (b == 2)
 printf("a was 1 and b was 2\n");
 else
 printf("a wasn't 1\n");
}

This shows something called the dangling else problem. With the program in its original
form it is quite likely that the programmer thought the else statement

else
 printf("a wasn't 1\n");

would be associated with the first if; it wasn't. An else always associates with the
immediately preceding if as the alternatively laid out version of the program makes quite
clear. The reason for the complete absence of output is the fact that there is no else
statement associated with the first if .

In order to achieve the effect that the programmer probably originally intended, it is

Loops and Conditions - The dangling else problem

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.dangling.else.html (1 of 2) [02/04/2002 09:22:49]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6a.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6a1.c

necessary to re-arrange the program in the following form.

main()
{
 int a = 2;
 int b = 2;
 if (a == 1)
 {
 if (b == 2) printf("a was 1 and b was 2\n");
 }
 else printf("a wasn't 1\n");
}

Local Variables in compound statements

Loops and Conditions - The dangling else problem

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.dangling.else.html (2 of 2) [02/04/2002 09:22:49]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if6a2.c

Loops and Conditions - The
equality and assignment
operators
Chapter chap5 section 7

A final point in this section concerns a common error made by newcomers to the C
programming language who are familiar with other programming languages. It is
remarkably easy to write

if (x = 5) ...

when you should have written

if (x == 5) ...

both are perfectly valid code. The first has the effect of assigning the value 5 to x,
the value of the expression "x = 5" is, of course, 5 and the statement associated with
the if will always be executed. The second compares the value of x with 5 and the
action taken depends on the value of x.

Many authors have criticised this aspect of the C language. It could have been
avoided had more symbols been available to the designers. However C already used
every available symbol except $ and ` (back quote) in the normal printing ASCII
character set.

The while, break and continue statements.

Loops and Conditions - The equality and assignment operators

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.equality.vs.assignment.html [02/04/2002 09:22:50]

Loops and Conditions - Local
variables in compound statements
Chapter chap5 section 6 You might have noticed that the "body" of all the C programs we have
seen so far consisted of a single compound statement that included declarations within the
compound statement as well as executable statements. Declarations can always be included
within compound statements as is shown by this program.

main()
{
 double x;
 int flag=0;
 printf("Enter a number ");
 scanf("%lf",&x);
 if(x > 1.5)
 {
 int flag = 1;
 printf("flag = %d, x = %10.5lf\n",flag,x);
 }
 else
 {
 int flag = -1;
 printf("flag = %d, x = %10.5lf\n",flag,x);
 }
 printf("flag = %d, x = %10.5lf\n",flag,x);
}

A typical dialogue with the program called if7 is shown below

$ if7
Enter a number 1.0
flag = -1, x = 1.00000
flag = 0, x = 1.00000
$ if7
Enter a number 2.0
flag = 1, x = 2.00000
flag = 0, x = 2.00000

There are 3 distinct and separate variables called flag in this program, the first is declared
at the start of the program and the other two are declared within the compound statements
associated with the if and else . Changing one of the flag variables within a compound
statement has no effect on the "flag" declared at the start of the program. Once the path of
execution enters the compound statement the "flag" declared at the start of the program is
effectively hidden from view. The flag declared within the compound statement ceases to
exist once the path of execution leaves the compound statement. The set of statements

Loops and Conditions - Local variables in compound statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.local.variables.html (1 of 2) [02/04/2002 09:22:54]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/if7.log

where a particular variable definition is effective is called the scope of the variable.

The use of the same variable name for multiple different variables in this way is not good
programming style. It is easy to forget which instance you are actually referring to,
however the possibility of creating extra variables of purely local scope is sometimes
useful as the following program illustrates.

main()
{
 double x;
 printf("Enter a number ");
 scanf("%lf",&x);
 { /* this compund statement can be commented out */
 double a; /* scope is this block ONLY */
 if(x < 0) a = -x;
 else a = x;
 printf("Debug - absolute value %10.5lf\n",a);
 }
 printf("Reciprocal of %10.5lf is %10.5lf\n",x,1/x);
}

The compound statement that includes the variable "a" is used purely for debugging. Once
the programmer is happy this block can be commented out (having first removes the
comments inside the block !!). The variable "a" is used solely for debugging and the
removal of the block containing also removes the declaration so that the main code is not
cluttered up with declarations of variables that are used purely for debugging. This is
particularly useful when the debugging code block uses a loop, the "loop control variable"
only needs to be declared within the block this avoiding any interference with similarly
named variables in the main code.

Equality and Assignment operators

Loops and Conditions - Local variables in compound statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.local.variables.html (2 of 2) [02/04/2002 09:22:54]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/local.c

Loops and Conditions - The while, break
and continue statements
Chapter chap5 section 8

The next statement to be described in this chapter is the while statement. This provides a means for
repeated execution of controlled statements. The basic form is

while (<expression>) statement

and the meaning is that the expression is evaluated and if the value of the expression is non-zero then the
controlled statement is executed otherwise the statement after the while statement is executed. An
example program is in order.

main()
{
 int i = 0;
 while(i < 10) /* OK to continue ? */
 {
 printf("%d %2d %3d\n",i,i*i,i*i*i);
 i++;
 }
}

The output it produced is

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

The behaviour should be fairly obvious. This program is a looping or iterative program. When the
program starts "i" has the value 0. The first value of the expression

i<10

is 1 since the value of "i" (0) is clearly less than 10. This continues to be the case until the expression

i<10

is evaluated after the execution of the printf() with i having the value 9. At this stage the value of "i" is
10 and the value of the controlling expression is now zero so the controlled printf() is not executed and
the path of execution drops through to whatever follows, in this case the end of the program.

Of course the statement controlled by the while can be a compound statement and may include further
while statements.

The following example shows nested while loops being used to print out multiplication tables.

Loops and Conditions - The while, break and continue statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.while.break.html (1 of 5) [02/04/2002 09:22:58]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/while1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/whilet.c

main()
{
 int i=1,j;
 while(i <= 12) /* goes "down" page */
 {
 j = 1;
 while(j <= 12) /* goes "across" page */
 {
 printf(" %3d",i*j);
 j++;
 }
 printf("\n"); /* end of line */
 i++;
 }
}

as follows

 1 2 3 4 5 6 7 8 9 10 11 12
 2 4 6 8 10 12 14 16 18 20 22 24
 3 6 9 12 15 18 21 24 27 30 33 36
 4 8 12 16 20 24 28 32 36 40 44 48
 5 10 15 20 25 30 35 40 45 50 55 60
 6 12 18 24 30 36 42 48 54 60 66 72
 7 14 21 28 35 42 49 56 63 70 77 84
 8 16 24 32 40 48 56 64 72 80 88 96
 9 18 27 36 45 54 63 72 81 90 99 108
 10 20 30 40 50 60 70 80 90 100 110 120
 11 22 33 44 55 66 77 88 99 110 121 132
 12 24 36 48 60 72 84 96 108 120 132 144

Input operations can also be included within a loop. An interactive program using a while statement and
illustrating this is shown below.

main()
{
 double x = 1.0; /* non-zero to avoid immediate exit */
 printf("Program to display reciprocals, "
 "squares and cubes\nEnter 0 to"
 " terminate\n");
 while(!(x == 0)) /* i.e. while valid data */
 {
 printf("Enter a number ");
 scanf("%lf",&x);
 if(!(x==0)) /* valid data ?? */
 {
 printf("Reciprocal = %10.5lf\n",1.0/x);
 printf("Square = %10.5lf\n",x*x);
 printf("Cube = %10.5lf\n",x*x*x);
 }
 }
}

Loops and Conditions - The while, break and continue statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.while.break.html (2 of 5) [02/04/2002 09:22:58]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/while2.c

A typical dialogue is shown below

Program to display reciprocals, squares and cubes
Enter 0 to terminate
Enter a number 4
Reciprocal = 0.25000
Square = 16.00000
Cube = 64.00000
Enter a number 0.25
Reciprocal = 4.00000
Square = 0.06250
Cube = 0.01562
Enter a number -3
Reciprocal = -0.33333
Square = 9.00000
Cube = -27.00000
Enter a number 0

Occasionally there is, apparently, no need for the controlled statement associated with a while ,
everything you want to do can be done via side-effects of the evaluation of the expression. Under these
circumstances there must still be a statement after the expression but it will be a null statement that is
represented simply by a semi-colon. An example is shown below.

main()
{
 int i=2;
 while(printf("%d\n",i++)!=3);
}

This produced the output

2
3
4
5
6
7
8
9
10

To understand what happened you need to know the little known fact that the value of the printf()
function is the number of characters actually printed which may include a new-line. It is also worth
noting that the production of output by the function printf() is a side-effect . Another simple example of
a while statement whose controlled statement is a null statement is a simple spin delay.

int delay = 10000;
while(delay--);

Another common use of the while statement is the forever loop which might look like

while(1)
{

Loops and Conditions - The while, break and continue statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.while.break.html (3 of 5) [02/04/2002 09:22:58]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/while3.c

 .
 .
 .
}

The controlled statement is executed until the loop is broken by some means. The simplest and
commonest way of doing this is by using a break statement. A break statement consists simply of the
word break followed by a semi-colon. Its effect is to cause immediate exit from the enclosing while
statement. (It has the same effect when used with do and for statements, these will be described in due
course.) It provides a means for writing a simpler and tidier version of the interactive program that
appeared earlier in these notes. The revised version is.

main()
{
 double x;
 printf("Program to display reciprocals, "
 "squares and cubes\nEnter 0 to"
 " terminate\n");
 while(1)
 {
 printf("Enter a number ");
 scanf("%lf",&x);
 if(x == 0) break; /* end of valid data ? */
 printf("Reciprocal = %10.5lf\n",1.0/x);
 printf("Square = %10.5lf\n",x*x);
 printf("Cube = %10.5lf\n",x*x*x);
 }
}

The condition "x==0.0" might be called the termination condition as far the while controlled statement
is concerned. The use of break avoids the need for testing for the condition twice with one of the tests
being logically inverted and used in conjunction with an if statement to prevent the rest of controlled
statement being executed when the termination condition is detected.

Closely associated with the break statement is the continue statement which like the break causes the
rest of the loop to be skipped but unlike the break does not exit the loop. Its use is illustrated in the
following example which sums all the numbers up to and excluding a user entered value excluding the
numbers that are divisible by 4.

main()
{
 int max;
 int sum=0,count=0;
 int i=0;
 printf("Enter largest number ");
 scanf("%d",&max);
 while(1)
 {
 i++;
 if(i == max) break;
 if(i%4 == 0) continue;
 count++;
 sum += i;

Loops and Conditions - The while, break and continue statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.while.break.html (4 of 5) [02/04/2002 09:22:58]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/while4.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap5/while5.c

 }
 printf("There are %d numbers not divisible by 4"
 " and less than %d\nTheir total is %d\n",
 count,max,sum);
}

This produced the output

bash$ while5
Enter largest number 15
There are 11 numbers not divisible by 4 and less than 15
Their total is 81
bash$ while5
Enter largest number 16
There are 12 numbers not divisible by 4 and less than 16
Their total is 96

The do statement

Loops and Conditions - The while, break and continue statements

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.while.break.html (5 of 5) [02/04/2002 09:22:58]

Loops and Conditions - The do
statement
Chapter chap5 section 9

The while statement may be described as test-before-execute . If the controlling
expression is initially zero then the controlled statement is never executed. There is
an alternative version that is sometimes useful. This is the do statement which may
be described as execute-before-test . This is sometimes called a one-trip-loop
referring to the fact that the loop "body" is always executed at least once. The syntax
is

do <statement> while (<expression>) ;

The controlled statement is always executed at least once. It is sometimes useful in
interactive programs where the user must provide some input and there is no
sensible initial setting.

The trinary (?:) operator

Loops and Conditions - The do statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap5.do.html [02/04/2002 09:22:59]

Switch and For Statements,
Command Line and File
Handling - The for statement
Chapter chap9 section 2

The for statement provides an alternative way of programming loops that, up to
now, we have programmed using while or do...while statements. The basic syntax is
simply

for(exp1;exp2;exp3) statement

The meaning is that first the expression exp1 is evaluated, then provided expression
exp2 has a non-zero value the statement is executed and expression exp3 is
evaluated. Unlike similar constructs in other programming languages there is no
restriction on the nature of the three expressions that are associated with the for
statement. If the expression exp2 has a zero value then the flow of control passes
through to the statement after the for statement. The basic for statement is
equivalent to writing

 exp1;
 while(exp2)
 {
 statement
 exp3;
 }

and is defined in this fashion by the ANSI standard. The for statement provides a
convenient way of writing this kind of loop. A simple example is in order.

main()
{
 int i;
 for(i=0;i<10;i++)
 printf("%d %2d %4d\n",i,i*i,i*i*i);
}

producing the output

0 0 0
1 1 1
2 4 8

Switch and For Statements, Command Line and File Handling - The for statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.for.html (1 of 3) [02/04/2002 09:23:01]

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

The break and continue statements may be used within for statements in exactly the
same way as they are used within while and do...while statements. Any one, or all
three, of the expressions associated with the for statement may be omitted but the
associated semi-colons must not be omitted.

for(;;) statement

is another way of writing a repeat..forever loop. The controlled statement may, of
course, be compound.

It is occassionally useful to incorporate several expressions in the expression
positions of a for statement. To do this the comma operator is used. This has the
lowest precedence of any C operator. The syntax is simple

expression-1, expression-2

is an expression and its value is simply the value of expression-2, the value of
expression-1 is discarded. It should not be confused with the listing of expressions
as functional parameters. The comma operator is illustrated by the following
program

#include <math.h>
main()
{
 int i;
 double x;
 for(i=0,x=0;i<10;i++,x+=0.5)
 printf("%d %10.7lf\n",i,sqrt(x));
}

which produced the output

0 0.0000000
1 0.7071068
2 1.0000000
3 1.2247449
4 1.4142136
5 1.5811388

Switch and For Statements, Command Line and File Handling - The for statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.for.html (2 of 3) [02/04/2002 09:23:01]

6 1.7320508
7 1.8708287
8 2.0000000
9 2.1213203

The switch statement

Switch and For Statements, Command Line and File Handling - The for statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.for.html (3 of 3) [02/04/2002 09:23:01]

Switch and For Statements, Command
Line and File Handling - The switch
statement
Chapter chap9 section 3

The switch statement provides a very useful alternative to multiple if statements. It is used in
conjunction with the case and default statements. The syntax is

switch(integral expression) statement

the controlled statement, known as the switch body will consist of a sequence of case statements.
The syntax of a case statement is

case constant-integral-expression : statement

this is really nothing more than a labelled statement. The meaning of all this is that flow of control
passes to the statement whose case label matches the value of the switch expression. The flow of
control then continues from that point until a break is encountered or the end of the switch body is
encountered. A break statement takes control out of the switch body.

If none of the case labels match the value of the switch expression then no part of the code in the
switch body is executed unless a default statement appears within the switch body, this acts as a
"catch-all" label when no other case label matches.

An example is in order. This is a variant of a program that has already been seen. It reads in
simple expressions and evaluates them.

#include <stdio.h>
main()
{
 int n1,n2;
 char c;
 char inbuf[30];
 while(1)
 {
 printf("Enter Expression ");
 if(gets(inbuf) == NULL) break;
 sscanf(inbuf,"%d%c%d",&n1,&c,&n2);
 switch(c)
 {
 case '+' :
 printf("%d\n",n1+n2);
 break;
 case '-' :
 printf("%d\n",n1-n2);
 break;
 case '*' :
 printf("%d\n",n1*n2);

Switch and For Statements, Command Line and File Handling - The switch statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.switch.html (1 of 5) [02/04/2002 09:23:04]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/sw1.c

 break;
 case '/' :
 printf("%d\n",n1/n2);
 break;
 default :
 printf("Unknown operator %c\n",c);
 }
 }
}

A typical dialogue is shown below

Enter Expression 345+45
390
Enter Expression 212/6
35
Enter Expression 234-5
229
Enter Expression 234%4
Unknown operator %

Notice the frequent break statements in the switch body, these are necessary to avoid the
drop-through between cases. Many people think this drop-through is annoying and the language
would be better if a break from the switch body was implicit at the end of each case , however it
can sometimes be useful as this example shows.

#include <stdio.h>
main()
{
 int c;
 int dcnt = 0; /* digits */
 int wcnt = 0; /* white space count */
 int ocnt = 0; /* others count */
 while((c=getchar())!=EOF)
 switch(c)
 {
 case '0' :
 case '1' :
 case '2' :
 case '3' :
 case '4' :
 case '5' :
 case '6' :
 case '7' :
 case '8' :
 case '9' :
 dcnt++;
 break;
 case ' ' :
 case '\t' :

Switch and For Statements, Command Line and File Handling - The switch statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.switch.html (2 of 5) [02/04/2002 09:23:04]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/sw2.c

 case '\n' :
 wcnt++;
 break;
 default :
 ocnt++;
 }
 printf("%d digits\n%d white spaces"
 "\n%d others\n",dcnt,wcnt,ocnt);
}

When it consumed its own source the program produced the following output

13 digits
164 white spaces
336 others

A more elaborate use of switch statements is illustrated by the following program that extracts
comments from C programs. It is not fooled by comment-like things within string constants but
escaped double quotes within strings would cause the program to fail.

/* A program to extract comments */
#include <stdio.h>
#define LEAD 0 /* In normal text */
#define PSCOM 1 /* Possible start of comment */
#define INCOM 2 /* Processing Comment */
#define PECOM 3 /* Possible end of comment */
#define INSTR 4 /* In string constant */
main()
{
 int c; /* input character */
 int state = LEAD; /* current status */
 char *dummy = "/* comment in string */";
 while((c=getchar())!=EOF)
 {
 switch(state)
 {
 case LEAD :
 switch(c)
 {
 case '/' :
 state = PSCOM;
 break;
 case '"' :
 state = INSTR;
 break;
 }
 break;
 case PSCOM :
 switch(c)
 {
 case '*' :

Switch and For Statements, Command Line and File Handling - The switch statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.switch.html (3 of 5) [02/04/2002 09:23:04]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/sw3.c

 state = INCOM;
 break;
 case '"' :
 state = INSTR;
 break;
 default :
 state = LEAD;
 break;
 }
 break;
 case INCOM :
 switch(c)
 {
 case '*' :
 state = PECOM;
 break;
 default :
 putchar(c);
 break;
 }
 break;
 case PECOM :
 switch(c)
 {
 case '/' :
 state = LEAD;
 putchar('\n');
 break;
 default :
 state = INCOM;
 putchar('*');
 putchar(c);
 break;
 }
 break;
 case INSTR :
 switch(c)
 {
 case '"' :
 state = LEAD;
 break;
 default :
 break;
 }
 break;
 }
 }
}

When presented with its own source as input the program produced the following output.

Switch and For Statements, Command Line and File Handling - The switch statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.switch.html (4 of 5) [02/04/2002 09:23:04]

 A program to extract comments
 In normal text
 Possible start of comment
 Processing Comment
 Possible end of comment
 In string constant
 input character
 current status

This use of nested switches, whilst it makes for rather clumsy coding, stems from a very simple
design technique known as a state switch. The whole operation of the program is described by the
following transition table.

 +-------+-------+-----------+-----------+-------+
 | LEAD | PSCOM | INCOM | PECOM | INSTR |
+------+-------+-------+-----------+-----------+-------+
| / | PSCOM | LEAD | INCOM | LEAD | INSTR |
| | | | print / | print \n | |
+------+-------+-------+-----------+-----------+-------+
| * | LEAD | INCOM | PECOM | INCOM | INSTR |
| | | | | print * * | |
+------+-------+-------+-----------+-----------+-------+
| " | INSTR | INSTR | INCOM | INCOM | LEAD |
| | | | print " | print * " | |
+------+-------+-------+-----------+-----------+-------+
|other | LEAD | LEAD | INCOM | INCOM | INSTR |
| | | | print ch | print * ch| |
+------+-------+-------+-----------+-----------+-------+

The table entries represent the new value of "state" and the action to be taken depending on the
current input character (shown in the left hand column) and the current value of state (shown in
the top row). In some circumstances as well as changing the value of state it is necessary to take
some sort of action, in this case printing out a particular character or the current input character
("ch").

Command Line Arguments

Switch and For Statements, Command Line and File Handling - The switch statement

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.switch.html (5 of 5) [02/04/2002 09:23:04]

Addresses, Pointers, Arrays and
Strings - Introduction
Chapter chap6 section 1

In this chapter we shall see how to determine the actual addresses of variables and
how to manipulate them. We will also see how the C programming language
handles collections of variables known as aggregates or arrays and how to reference
individual members of such a collection. Finally we will look at the special facilities
for handling and manipulating a particular sort of collection of characters known as
a string.

See Also

Addresses●

Arrays and Aggregates●

MSDOS Memory Management●

Initialisation of Arrays and Aggregates●

More on Operator Precedence●

Strings●

String input using "s" conversion●

String input using scanset conversion●

String input using "c" conversion●

String input using the gets() function●

Processing strings●

Arrays of Strings●

sprintf() and puts()●

Library String handling functions●

Exercises●

Multi-dimensional arrays are discussed later.

Addresses, Pointers, Arrays and Strings - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.intro.html [02/04/2002 09:23:05]

Addresses, Pointers, Arrays and
Strings - Addresses
Chapter chap6 section 2

We have actually already seen how to obtain the address of a variable. This is done very
simply by preceding the name of a variable with an ampersand (&). We have used this
syntax with the parameters of the scanf() library function which required the addresses of
the locations to receive the converted input values. It is rare that the actual addresses of
variables are of any interest to the outside world, however it is possible to display them as
this simple program demonstrates.

main()
{
 int a,b;
 double x;
 int z;
 printf("Address a = %08x\n",&a);
 printf("Address b = %08x\n",&b);
 printf("Address x = %08x\n",&x);
 printf("Address z = %08x\n",&z);
}

The output produced by this program on the SUN Sparc Station was

Address a = f7fffc04
Address b = f7fffc00
Address x = f7fffbf8
Address z = f7fffbf4

and on the IBM 6150

Address a = 3fffe478
Address b = 3fffe47c
Address x = 3fffe480
Address z = 3fffe488

The differences in the results reflect the different ways the two machines allocate actual
memory locations. It is interesting to note that the SUN Sparc Station allocates successive
locations in reverse order whereas the IBM 6150 worked forwards. You may also note the
different amount of memory associated with a floating point number. This program would
give different results on different machines. The actual addresses are byte addresses, here
expressed in hexadecimal notation.

The following diagrams show the memory layout on the SUN Sparc Station and the IBM
6150 respectively.

Addresses, Pointers, Arrays and Strings - Addresses

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.addresses.html (1 of 5) [02/04/2002 09:23:10]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/ad1.c

Byte Address Memory Location

f7fffbf4

zf7fffbf5

f7fffbf6

f7fffbf7

f7fffbf8

x

f7fffbf9

f7fffbfa

f7fffbfb

f7fffbfc

f7fffbfd

f7fffbfe

f7fffbff

f7fffc00

bf7fffc01

f7fffc02

f7fffc03

f7fffc04

af7fffc05

f7fffc06

f7fffc07

The IBM 6150

Byte Address Variable

3fffe478

a3fffe479

3fffe47a

3fffe47b

3fffe47c

b3fffe47d

3fffe47e

3fffe47f

3fffe480

x

3fffe481

3fffe482

3fffe483

Addresses, Pointers, Arrays and Strings - Addresses

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.addresses.html (2 of 5) [02/04/2002 09:23:10]

3fffe484

3fffe485

3fffe486

3fffe487

3fffe488

z3fffe489

3fffe48a

3fffe48b

Addresses cannot be stored in any of the types of variable we have seen so far. It is
tempting to think that an address occupies 32 bits, and this is very commonly the case on
Unix based systems, and thus assume that addresses could be stored in long int s. However
the internal storage of addresses on PC's, especially when running MSDOS, is a very
different matter, requiring a combination of segment numbers and offsets. The use of
hexadecimal conversion for the display of addresses is not strictly ANSI standard,
particular implementations may display addresses in various other forms.

There are special variable types for storing addresses or pointers as they are often called.
There are separate variable types for storing the addresses of each separate type of data
object, the reasons for this will become clear in due course. The declaration of, for
example, a variable suitable for storing the address of an int may be mixed in with
declarations of variables of type int because the syntax is simply to precede the name with
an asterisk (*).

The declaration

int x,*y,z=0

declares three variables x,y and z. "x" and "z" are variables of int type whereas y is a
variable of type pointer to int . You can only, meaningfully, assign the address of an int to
a variable of type pointer to int, however you can perform certain arithmetic operations on
a pointer to int. You can also perform the unary operation * on a variable (or expression)
of type pointer to int. The effect of this operation is to obtain the value of the thing
pointed to. A demonstration program is in order.

main()
{
 int *x; /* pointer */
 int y = 2;
 int z = 3;
 x = &y;
 printf("x points to a location holding %d\n",*x);
 x = &z;
 printf("x points to a location holding %d\n",*x);
 x++;

Addresses, Pointers, Arrays and Strings - Addresses

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.addresses.html (3 of 5) [02/04/2002 09:23:10]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/ptr1.c

 printf("x points to a location holding %d\n",*x);
}

This produced the following output on a SUN Sparc Station

x points to a location holding 2
x points to a location holding 3
x points to a location holding 2

The most interesting point about this program is the effect of the operation "x++". One
might be excused for imagining that this added 1 to the address stored in x and that this
would cause problems since an earlier program suggested that successive int variables had
addresses 4 units apart. This did not cause problems because the type of the variable "x" is
pointer to int and incrementing a pointer to int is taken to mean alter the value to point to
the next integer (i.e. add 4). Note also that the operation of the program depends on the
reverse order of allocation of memory locations to integers used by the SUN Sparc Station
compiler, the program would not work correctly on the IBM 6150. The following example
further illustrates the typed nature of pointer arithmetic.

main()
{
 double x = 3.5;
 double y = 2.5;
 double z = 1.5;
 double *fptr = &z;
 printf("Address = %08x Value = %5.2lf\n",fptr,*fptr);
 fptr++;
 printf("Address = %08x Value = %5.2lf\n",fptr,*fptr);
 fptr++;
 printf("Address = %08x Value = %5.2lf\n",fptr,*fptr);
}

producing the output

Address = f7fffbf0 Value = 1.50
Address = f7fffbf8 Value = 2.50
Address = f7fffc00 Value = 3.50

Again the operation of this program depends on the SUN Sparc Station order of variable
allocation. Note that the incrementation of "fptr" has increased its value by 8, the number
of bytes occupied by a variable of type double .

As well as using the "*" unary operator to mean the value of the thing pointed to when it
appears within an expression, the unary "*" operator may be used on the left hand side of
an assignment expression to mean that the value is to be stored in the addressed location.
The following program demonstrates the point.

Addresses, Pointers, Arrays and Strings - Addresses

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.addresses.html (4 of 5) [02/04/2002 09:23:10]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/ptr2.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/ptr3.c

main()
{
 int x=4;
 int y=2;
 int z=5;
 int *iptr;
 iptr = &z;
 *(iptr+2) = y+z;
 printf("x = %d, y = %d, z = %d\n",x,y,z);
}

producing the output

x = 7, y = 2, z = 5

here the expression

*(iptr+2)

appearing on the left hand side of the assignment operator means that the assignment
target is two int locations past the int location whose address is stored in "iptr". With the
SUN Sparc Station backwards way of doing things this means that the assignment is to the
location "x".

A pointer variable can be initialised to point to something as part of its declaration in
exactly the same way as an ordinary variable can be initialised as part of its declaration. It
is important to realise that a pointer variable that has not been initialised will contain an
unpredictable value, just like an uninitialised ordinary variable. This can cause some
unpredictable results.

It cannot be too strongly emphasised that you cannot rely on variables being stored in any
particular order in memory or there being any particular relationship between the addresses
of successively declared variables.

Aggregates and Arrays

Addresses, Pointers, Arrays and Strings - Addresses

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.addresses.html (5 of 5) [02/04/2002 09:23:10]

Addresses, Pointers, Arrays and
Strings - Aggregates and Arrays
Chapter chap6 section 3

It is tedious to think of a whole series of names for a set of variables. The C language,
like most other programming languages, provides a means of associating a single name
with a set of objects of the same data type. Such a collection or set is called an
aggregate or array. An aggregate is declared in a similar manner to an ordinary
variable only the number of elements in the aggregate appears in square brackets after
the name. The name of an aggregate is not the name of a variable but may be thought of
as a pointer to or address of the first object in the aggregate. The following program
shows the declaration of an aggregate and simple use of the aggregate to store data.

main()
{
 int agg[5]; /* declares 5 ints */
 int i = 0;
 int sum = 0;
 do /* loop to "fill" aggregate */
 {
 *(agg+i) = i*i;
 i++;
 } while(i<5);
 i = 0;
 do /* loop to add up values */
 {
 sum += *(agg+i);
 i++;
 } while(i<5);
 printf("Sum = %d\n",sum);
}

It produced the following output, which is the sum of the squares of the integers from 0
to 4.

Sum = 30

The following program demonstrates the input of numbers into the members of an
aggregate, and then lists the numbers in the reverse order of entry (i.e. last-in, first-out).
The program is called "agg2"

main()

Addresses, Pointers, Arrays and Strings - Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.html (1 of 5) [02/04/2002 09:23:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg2.c

{
 int agg[5];
 int i = 0;
 while(i < 5)
 {
 printf("Enter number %d ",i+1);
 scanf("%ld",agg+i);
 i++;
 }
 i = 4; /* i would be 5 after leaving input loop */
 printf("The numbers were ");
 while(i >= 0)
 {
 printf("%d ",*(agg+i));
 i--;
 }
 printf("\n");
}

A typical dialogue is shown below.

$ agg2
Enter number 1 45
Enter number 2 789
Enter number 3 2154
Enter number 4 32
Enter number 5 176
The numbers were 176 32 2154 789 45
$

There are one or two points of particular interest in this program. Note the expression
"i+1" in the input prompt, this is done because users are generally happier to think of
the first thing they enter as number 1 rather than number 0. Note also the expression

agg+i

in the parameter list for the scanf() library function. The value of this expression is, of
course, the address of the location to receive the input value. Finally note the exclusion
of "\n" from the format strings in all but the last of the 3 printf() function calls in the
program.

In standard implementations of the C language there is no mechanism whatsoever to
prevent your program running off the end (or the beginning) of an aggregate. The
effects are almost always unpredictable and usually disastrous. The designers of the C
language were of the opinion that such checks would be computationally expensive and,
anyway, systems programmers ought to be sufficiently alert and intelligent to design

Addresses, Pointers, Arrays and Strings - Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.html (2 of 5) [02/04/2002 09:23:14]

their programs to avoid such problems. These problems are sometimes known as array
bound violations.

However an example of running off the end is in order. This has been deliberately
concocted not to do anything disastrous, just mysterious.

main()
{
 int x = 45;
 int elems[20];
 int y = 66;
 int i = 0;
 printf("x = %d y = %d\n",x,y);
 while(i<=20) /* fill aggregate */
 {
 *(elems+i) = i;
 i++;
 }
 /* The following statement does
 not reference any part of the
 aggregate */
 printf("x = %d y = %d\n",x,y);
}

producing the output

x = 45 y = 66
x = 20 y = 66

The output is puzzling since there is no reference to "x" or "y" between the two printf()
statements in the program. The problem here is where the value of "i" is stored when "i"
has the value 20. Since the aggregate "elems" has only got 20 elements their addresses
will elems+0, elems+1, elems+19. The address elems+20 will not refer to a
member of the aggregate but some other memory location, probably one lying either
immediately before or immediately after the area of computer memory allocated to the
aggregate. With the "backwards" memory allocation policy adopted by the SUN Sparc
station compiler, it seems fairly reasonable to expect the address elems+20 to refer to
the integer location immediately prior to the aggregate and this does seem to be what
happened. The following listing shows what the program produced on the IBM 6150
which uses "forward" allocation.

x = 45 y = 66
x = 45 y = 20

Clearly the location after the aggregate has been changed in this case.

On both systems the program has changed the contents of a memory location without

Addresses, Pointers, Arrays and Strings - Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.html (3 of 5) [02/04/2002 09:23:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg3.c

referring to it in any conventional way. This unanticipated corruption arose, perhaps,
because the programmer thought that a 20 member aggregate would have members
bearing reference numbers 1,2,...20.

There is an alternative notation available and commonly used to refer to members of an
aggregate. The notation

*(agg+i)

may be replaced by

agg[i]

where "agg" is the name of the aggregate and "i" is an integer. Most C compilers
actually convert the second notation into the first notation internally. "[..]" is actually an
operator, sometimes called the indexing operator or the subscript operator. The use of
the subscript operator is demonstrated by the following version of the first program
using aggregates. It should be compared with the earlier listing.

main()
{
 int agg[5];
 int i = 0;
 int sum = 0;
 do
 {
 agg[i] = i*i;
 i++;
 } while(i < 5);
 i = 0;
 do
 {
 sum += agg[i];
 i++;
 } while(i < 5);
 printf("Sum = %d\n",sum);
}

It operated in exactly the same way. If you are familiar with other programming
languages, you'll certainly be more comfortable with this notation, until you read the
next paragraph anyway.

The "[..]" operator is commutative which means that either of the following are
acceptable and both have exactly the same effect.

agg[i] i[agg]

Addresses, Pointers, Arrays and Strings - Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.html (4 of 5) [02/04/2002 09:23:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg4.c

This is hardly surprising since the compiler, as just explained, will convert them into

*(agg+i) *(i+agg)

respectively. The following program, which is yet another variation on the first
aggregate example, further illustrates the relation between the "[..]" operator and
address variables.

main()
{
 int agg[5];
 int *collection = agg;
 int i=0;
 int sum = 0;
 while(i<5)
 {
 collection[i] = i*i;
 i++;
 }
 i = 0;
 while(i<5) sum += collection[i++];
 printf("sum = %d\n",sum);
}

This looks slightly odd to programmers familiar with the concept of arrays as
implemented in certain other programming languages, since collection is being used as
an array although it was not declared as such. Reflecting on the fact that collection[i] is
synonymous with *(collection+i) should make it clear what is happening. It is better,
for a variety of reasons, not to think about arrays when programming in C but to think
about aggregates which have some rather different properties. Multi-dimensional arrays
and aggregates are discussed later.

MSDOS memory models●

Aggregate initialisation●

Addresses, Pointers, Arrays and Strings - Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.arrays.html (5 of 5) [02/04/2002 09:23:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg5.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg5.c

Functions and storage
organisation - Multi-Dimensional
Aggregates and Arrays
Chapter chap7 section 11

It is not very surprising that since the C programming language allows aggregates of any
data type or object it allows aggregates of aggregates. The syntax is also not very
surprising unless you are thinking in terms of two dimensional arrays. A typical
declaration is

char names[2][4];

This declares an aggregate of two elements, each element is an aggregate of four
characters. Elements of such an object can be referred to in a fairly obvious fashion by
expressions such as

names[1][2]

Aggregates of aggregates can be initialised using, not very surprisingly, an initialiser
which consists of a set of initialisers. For example

char names[2][4] = {
 {'f','r','e','d'},
 {'a','n','n','e'},
 };

An aggregate to hold the image of a character screen could be declared in the following
fashion

char screen[25][80];

This clearly reflects a structure of 25 rows of 80 characters. Interestingly the complete
image could be sent to the screen by code like

while(i<2000) sendchar(*(*screen+i++));

To understand this it is useful to think of "screen" as a variable of type
pointer-to-pointer-to-char so the expression *screen is of type pointer-to-char, the
addition of i++ to this value generates the address of a character and the "outer" asterisk
operator yields the actual character. The following simple program illustrates what
happens

main()
{
 char oxo[4][2] = {

Functions and storage organisation - Multi-Dimensional Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.multi.html (1 of 3) [02/04/2002 09:23:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/mda.c

 {'a','b'},{'c','d'},{'e','f'},{'g','h'}
 };
 int i = 0;
 while(i<8) printf("%c",*(*oxo+i++));
 printf("\n");
}

producing the output

abcdefgh

The following example further illustrates some aspects of aggregates of aggregates.

char x[3][5]; /* extern for zero initialisation */
main()
{
 char (*y)[5]; /* what data type is y ? */
 int i;
 strcpy(x[0],"abcd");
 strcpy(x[1],"efgh");
 strcpy(x[2],"ijkl");
 /* output first two strings */
 printf("%s %s\n",x[0],x[1]);
 y = &(x[1]);
 /* what does y+1 point to ? */
 printf("%s %s\n",y,y+1);
}

Producing the following output

abcd efgh
efgh ijkl

Here the variable x is the name of an aggregate of 3 aggregates of 5 characters each. The
three calls to strcpy() put strings in each of the aggreagtes of 5 characters. Remember that
every character within "x" is zero initially since it is of storage class extern. The variable
"y" is of type pointer to an aggregate of 5 characters. Notice that the expression y+1
correctly points to the next aggregate of 5 characters after that containing the string
"efgh". The need for the parentheses in the declaration of "y" arises because without it the
declaration

char *y[5]

would give an aggregate of 5 pointers to characters which is not what was required. The
analogy with the syntax for the declaration of pointers to functions should be noted. This
type of operation is sometimes referred to as array slicing

There are obvious extensions to higher dimensioned arrays.

Functions and storage organisation - Multi-Dimensional Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.multi.html (2 of 3) [02/04/2002 09:23:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/x25.c

If you are used to the syntax for multi-dimensional arrays in older languages such as
Pascal and Fortran you will certainly find the C notation confusing. Even more confusing
is the fact that a C compiler will accept

x[2,5]

when you meant to write

x[2][5]

The previous expression is an example of the rarely used comma operator which is
discussed later.

Some programmers may wonder whether 'C' two-dimensional arrays are stored row-first
or column-first. The idea of of rows and columns relates to a graphical presentation of a
two-dimensional array (or matrix) and a mathematical convention that associates the first
index with the row and the second index with the column. Examination of the examples
above shows that when "walking" through storage the first index changes most rapidly so
'C' uses column first storage.

Exercises

Functions and storage organisation - Multi-Dimensional Aggregates and Arrays

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.multi.html (3 of 3) [02/04/2002 09:23:16]

Addresses, Pointers, Arrays and
Strings - MSDOS Memory
Models
Chapter chap6 section 4

On computers using the Intel 80n86 series of processors there are two different ways
of storing an address. These may be called near and far . A near address requires 16
bits of storage whereas a far address requires 32 bits of storage. An actual far
address is constructed from the sum of a 16 bit segment number and a 16 bit offset
with a 4 bit overlap so it is effectively 28 bits long. Near addresses use less memory
and can be manipulated more quickly and more simply. The use of near addresses
implies a severe limitation on the amount of data a program can handle and on the
amount of code that can make up the program.

C compilers intended for use in such environments often have options to generate
either type of address. The selection of such options is usually controlled from the
compiler command line. The choices are usually called memory models.

The Microsoft C version 5.1 compiler typically offers a choice of 5 memory models
known as small, medium, compact, large and huge. Their characterisitics are
summarised below.

small. This means that near addresses are used for both data objects and code
objects (functions). The data and code spaces are thus restricted to 64 KByte
each.

●

medium. Near addresses are used for data but far addresses are used for code.
This restricts the data space to 64 KByte and the code space to 256 MByte.
This suggests a large complex program manipulating a small amount of data.

●

compact. Far addresses are used for data but near addresses are used for code.
This restricts the data space to 256 MByte and the code space to 64 KByte.
This suggests a small simple program manipulating a massive amount of data.

●

large. Far addresses are used for both data and code. The data and code
spaces are thus restricted to 256 MByte each. This suggests large programs
manipulating large amounts of data.

●

huge. The ability to handle large amounts of data in the large and compact
memory models suggests that the data may be stored in large aggregates or
arrays. Unfortunately the large and compact models calculate addresses
within data objects by adding a near offset to the base address of the object.
This implies a restriction of 64 KByte on the size of a data object. This
restriction is relaxed in the huge memory model which is otherwise similar to

●

Addresses, Pointers, Arrays and Strings - MSDOS Memory Models

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.msdos.memory.html (1 of 2) [02/04/2002 09:23:18]

the large model.

Similar memory models are supported by Turbo C with the addition of a
"tiny" model in which all the code and data occupy a single 64 KByte
segment of memory.

An address, either of a data object or a function (code object) may be declared
to be of other than the default type for the current memory model by using the
non ANSI standard keywords near , far and huge as appropriate. A further
complication concerns the standard libraries which come in different forms
for each memory model. If you wish to compile a program using a particular
memory model you need to have and link the set of standard libraries
appropriate to that memory model. Vendors of hard disc systems love this.

The use of the "x" conversion with printf() to display pointer values is of
doubtful portability. It only works when addresses consist of a single
component which can be converted to an unsigned integer in a
straightforward way. The ANSI standard provides the "p" conversion for use
with pointers. This is specified as converting a pointer to a sequence of
printable characters in an implementation defined manner.

The first program in this chapter was modified to use the "p" conversion
rather than the "08x" conversion and compiled by the Turbo C compiler using
the large memory model. The output produced was.

Address a = 47CA:0FFE
Address b = 47CA:0FFC
Address x = 47CA:0FF4
Address z = 47CA:0FF2

The figure before the colon (47CA) is the hexadecimal high part of the far
address and the the figure after the colon is the low part of the far address.

For fuller details of memory models and associated topics you must consult
your compiler manual. This section is only intended to give a flavour of what
happens.

Array and Aggregate Initialisation

Addresses, Pointers, Arrays and Strings - MSDOS Memory Models

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.msdos.memory.html (2 of 2) [02/04/2002 09:23:18]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/ad1.c

Addresses, Pointers, Arrays and
Strings - Array and Aggregate
Initialisation
Chapter chap6 section 5

It is possible to initialise an aggregate as part of the declaration using a syntax
similar to that used to initialise normal variables. Since an aggregate is being
initialised it is necessary to provide a sequence of values. Such a sequence, known
as an initialiser, consists of a comma separated list of values enclosed within
braces. The following example, yet another variant of the first aggregate program
demonstrates the point.

main()
{
 int agg[5] = {0,1,4,9,16};
 int i = 0;
 int sum = 0;
 do
 {
 sum += *(agg+i);
 i++;
 } while(i<5);
 printf("Sum = %d\n",sum);
}

It produced exactly the same output. It should be noted that older non-standard
implementations of the C programming language may not allow the initialisation of
aggregates declared inside compound statements. The number of data items
provided within the initialiser must match the aggregate size, if too few are provided
then the final members of the aggregate will not be initialised, if too many are
supplied then the behaviour is unpredictable. Attempting to compile the following
program

main()
{
 int agg[5] = {0,1,4,9,16,25};
 int i = 0;
 int sum = 0;
 do

Addresses, Pointers, Arrays and Strings - Array and Aggregate Initialisation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.initialisation.html (1 of 4) [02/04/2002 09:23:21]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg6.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg7.c

 {
 sum += *(agg+i);
 i++;
 } while(i<5);
 printf("Sum = %d\n",sum);
}

produced the following output

"agg7.c", line 3: too many array initializers
Compilation failed

If the size of an initialised aggregate is not specified then the compiler will count the
number of initialisers and create an aggregate of the correct size. This program
demonstrates the facility.

main()
{
 int agg[] = {0,1,4,9,16,25};
 int i=0;
 int sum = 0;

 do sum += *(agg+i);
 while(++i<5);
 printf("Sum = %d\n",sum);
}

It produced the output

Sum = 30

Although it is advantageous to be able to put extra values in a collection of values
and have the size expand automatically, this program has failed to deliver the
correct result (55) because the number of times round the loop has not been altered.
It would be nice if there were some way of telling the program to go through every
member of the aggregate and then stop. If this could be done then any program that
processed an initialised aggregate could easily be modified to process a larger or
smaller aggregate simply by changing the initialiser list.

This effect can be achieved using the sizeof operator. This comes in two very
similar flavours.

The first is

sizeof expression

Addresses, Pointers, Arrays and Strings - Array and Aggregate Initialisation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.initialisation.html (2 of 4) [02/04/2002 09:23:21]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg8.c

and the second is

sizeof (type-name)

The first expression gives the number of basic units of storage (invariably bytes)
occupied by the expression which must be the name of a variable or the name of an
aggregate. The second expression gives the number of basic units of storage
occupied by a single object of named type. So to determine the number of elements
in an aggregate you could use the following code

int agg[] = {......};
nelements = sizeof agg / sizeof (int);

The following program shows the use of the sizeof operators in determining the
range of values to be used when working through an array. This program reads in an
input value and checks whether it is one of the values in the array.

main()
{
 int okvals[] = {23,48,61,44};
 int i = 0;
 int input;
 printf("Enter a code value ");
 scanf("%ld",&input);
 do
 {
 if(okvals[i] == input)
 {
 printf("Accepted\n");
 exit(0);
 }
 i++;
 } while(i < sizeof okvals/sizeof (int));
 printf("Not accepted\n");
}

Here are some examples of its operation. The program was called agg9

abash$ agg9
Enter a code value 23
Accepted
bash$ agg9
Enter a code value 44
Accepted

Addresses, Pointers, Arrays and Strings - Array and Aggregate Initialisation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.initialisation.html (3 of 4) [02/04/2002 09:23:21]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/agg9.c

bash$ agg9
Enter a code value 98
Not accepted
bash$ agg9
Enter a code value 4
Not accepted

The array is to be regarded as a list of acceptable values. If further values become
acceptable or if fewer values become acceptable then it is only necessary to change
the list of values and recompile the program. There is no need to track down every
reference to the array size in code that scans the array, the limits are set
automatically during compilation.

Expressions involving the sizeof operators are evaluated at compile time rather than
run time, this means that the expression in the first flavour of sizeof must be a
constant expression, i.e. one whose value does not change in the course of program
execution and hence can be evaluated once when the program is being compiled.

In the example shown above you could have written

sizeof(agg)

since the enclosing an expression in parentheses has no effect on the value of the
expression.

Operator Precedence

Addresses, Pointers, Arrays and Strings - Array and Aggregate Initialisation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.initialisation.html (4 of 4) [02/04/2002 09:23:21]

Functions and storage
organisation - Exercises
Chapter chap7 section 12

Devise and code a function with two parameters, the first of type char and the
second of type int. The purpose of the function will be to print out the first
parameter the specified number of times. Write a simple interactive program
to test out your function.

1.

Write a function that takes a string as parameter and prints out the string
surrounded by a box of asterisks. Incorporate your function in a program that
prompts the user for a string, prints it out within an enclosing box and then
constructs a further string from the supplied string (you might, for example,
add "This is your string" on the front) and prints out the modified string in an
enclosing box.

2.

The square root of a number can be calculated by making repeated
approximations using the formula

 new = (old + original/old)/2

where "old" is the previous approximation and "original" is the number you
are trying to find the square root of. Stop making repeated approximations
when the difference between the new and old approximations is small
enough. Write a function to calculate square roots and incorporate it in a
simple interactive program.

This method is known as Newton's method, square roots are normally
calculated using a library function.

Write a set of functions called isdecimal(), ishex() and isoctal() that can be
applied to a string to determine what type of numerical constant the string
represents. Incorporate your functions in a program that reads in a string,
converts it to internal numerical form (use sscanf()) and prints out the
internal value in decimal, octal and hexadecimal form.

3.

In a mathematical text a function f(x,y) is defined thus

 f(x,y) = x - y if x<0 or y<0
 f(x,y) = f(x-1,y)+f(x,y-1) otherwise

Write a C program to evaluate this function for user supplied values of x and
y.

4.

Modify the program of the previous exercise to print out a table of values of
the function defined for all values of x and y in the range 0-10.

5.

Functions and storage organisation - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.exercises.html (1 of 2) [02/04/2002 09:23:23]

Warning this might take quite a long time to run.

Functions and storage organisation - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.exercises.html (2 of 2) [02/04/2002 09:23:23]

Addresses, Pointers, Arrays and
Strings - Operator Precedence
Chapter chap6 section 6

We have seen several new operators in this chapter (unary *, unary &, [] and
sizeof). It is time to update our table of operator precedences and associativities.
Here it is.

Operators Associativity

() [] ++(postfix) --(postfix) Left to Right

++(prefix) --(prefix) ~ (type) +(unary)
-(unary) ! sizeof *(unary) &(unary)

Right to Left

* / % Left to Right

+ - Left to Right

<< >:> Left to Right

< <= => > Left to Right

== != Left to Right

& Left to Right

^ Left to Right

| Left to Right

&& Left to Right

|| Left to Right

?: Right to Left

= += *= <<= >>= /= %= -= &= |= ^= Right to Left

Strings

Addresses, Pointers, Arrays and Strings - Operator Precedence

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.precedence.html [02/04/2002 09:23:24]

Switch and For Statements,
Command Line and File Handling -
File Handling
Chapter chap9 section 5

The standard library used in conjunction with stdio.h provides some quite useful facilities for
handling files. There are, inevitably, some host system dependencies in file handling. These
will be mentioned when relevant.

All file handling is done via objects of type pointer to FILE. This compound data type is
defined in stdio.h . The following file handling functions are provided in the standard library.

Function Action

fopen() Open a file

fclose() Close a file

fprintf() Formatted write to a file

fscanf() Formatted read from a file

fputc() Write a character to a file

fgetc() Read a character from a file

fputs() Write a string to a file

fgets() Read a string from a file

putc() Write a character to a file (macro)

getc() Read a character from a file (macro)

ungetc() Un-read a character from a file

fread() Unformatted read from a file

fwrite() Unformatted write to a file

fgetpos() Determine current position in a file

fseek() Adjust current position in a file

fsetpos() Adjust current position in a file

ftell() Determine current position in a file

rewind() Set current position to start of file

feof() Tests whether end-of-file has been seen

ferror() Tests whether a file error has occurred

clearerr() Clears file error indicator

remove() Delete a file

rename() Rename a file

tmpfile() Create a temporary file

Switch and For Statements, Command Line and File Handling - File Handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.file.handling.html (1 of 5) [02/04/2002 09:23:28]

tmpnam() Create a unique file name

fflush() Force writing of data from buffer to file

freopen() Opens a file using a specific FILE object

There are also a number of pre-defined constants in stdio.h The following are most likely to
be useful.

constantmeaning

FOPEN_MAX Maximum number of open files

FILENAME_MAX Maximum length of file name

SEEK_CUR Used with fseek() function

SEEK_END Used with fseek() function

SEEK_SET Used with fseek() function

stderr Pre-opened file

stdout Pre-opened file

stdin Pre-opened file

The standard file handling functions view a file as an array of bytes. Some of the functions are
line oriented regarding a line as a sequence of bytes terminated by a new-line character (in the
Unix tradition). If the host operating system is not Unix then the file handling functions will
attempt to make the files look like Unix files, this can cause some portability problems.

A simple example program designed to copy a file called data1 to a file called data2 is listed
below.

#include <stdio.h>
main()
{
 FILE *ifp,*ofp;
 int c;
 if((ifp=fopen("data1","r")) == NULL)
 {
 printf("Couldn't open \"data1\" for input\n");
 exit(1);
 }
 if((ofp=fopen("data2","w")) == NULL)
 {
 printf("Couldn't open \"data2\" for output\n");
 exit(1);
 }
 while((c=getc(ifp)) != EOF) putc(c,ofp);
}

There are several points of interest in this program.

Switch and For Statements, Command Line and File Handling - File Handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.file.handling.html (2 of 5) [02/04/2002 09:23:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/fil1.c

The objects ifp and ofp are used to hold pointers to objects of type FILE (note the case), they
are no different from any other pointer data type. The library function fopen() actually opens
the file. It takes two parameters that are both pointers to characters. The first parameter is the
name of the file to open, in this simple example the file names are "hard-wired" into the
program but they could have been obtained interactively or from the command line. The
second parameter is the file opening mode. This is also a string of characters, even though, in
this case there is only a single character. ANSI C recognises the following opening modes

mode meaning

r Open text file for reading

w Truncate to zero size or create text file for writing

a Append - open or create text file for writing at end of file

These basic modes may be modified by two extra characters. A "+" may be used to mean that
the file is to be opened for both reading and writing (updating). A b may be used to mean
opening in binary mode, this means that the library functions will present the underlying data
to the program without any attempt to make the file look Unix like, under Unix it has no
effect.

The return value from fopen() is either a pointer to an object of type FILE or the value NULL
if it was not possible to open the named file. The macros getc() and putc() should be noted,
the entire action of copying the files is handled by the single line of code at the end of the
program. There is no need to specifically close the files, when the program returns to the host
environment all open files are automatically closed as part of the return to host environment
mechanism.

The use of the library function fgets() is illustrated in the following example. fgets() is the file
handling equivalent of gets(), it may be thought of as a function that reads in the next record
from the file by equating a record with a sequence of characters terminated by a newline,
which is the normal Unix convention. Unlike gets() which requires the programmer to be
careful about the input buffer size, fgets() has a parameter that specifies the maximum number
of characters to transfer to the input buffer. The prototype of fgets() is

char *fgets(char *, int, FILE *)

The first parameter is, of course, the start address of the input buffer. The second parameter is
the buffer size, the actual number of characters read is, at most, one less than the buffer size
allowing a string terminating NUL to be placed at the end of the buffer. The final parameter
identifies the input file.

If the input record is not too big for the input buffer then it is copied to the input buffer
complete with the input line terminating newline character. If the record is too big then there
will be no newline character in the input buffer and the next call to fgets() will carry on where
the last one left off, getting the next portion of the record.

The use of fgets() is illustrated by the following example which analyses the number of lines
in a file and their maximum and minimum lengths.

#include <stdio.h>

Switch and For Statements, Command Line and File Handling - File Handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.file.handling.html (3 of 5) [02/04/2002 09:23:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/fil2.c

/* Program to report the number of records, their
 average size & the smallest and largest record sizes.
*/

int getrec(FILE *);

main(int argc, char *argv[])
{
 int n;
 int recno = 0; /* number of records */
 int minrec; /* smallest */
 int maxrec; /* largest */
 long cumrec = 0; /* cumulative size */
 FILE *dfp; /* file to analyse */
 char started = 0;
 if(argc != 2)
 {
 printf("Usage : fil2 f\n");
 exit(1);
 }
 if((dfp = fopen(argv[1],"r")) == NULL)
 {
 printf("error opening %s\n",
 argv[1]);
 exit(1);
 }
 while (1)
 {
 if((n=getrec(dfp))==EOF) break;
 recno++;
 cumrec += n;
 if(!started)
 {
 minrec = maxrec = n;
 started = 1;
 }
 if(n<minrec) minrec = n;
 if(n>maxrec) maxrec = n;
 }
 printf("%4d records\n",recno);
 printf("average size %5.1f\n",
 (double)cumrec/recno);
 printf("smallest %2d\nlargest %4d\n",
 minrec,maxrec);
}
int getrec(FILE *f)
/* function to read a record and return (as
 functional value) the record size. If the

Switch and For Statements, Command Line and File Handling - File Handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.file.handling.html (4 of 5) [02/04/2002 09:23:28]

 end of file is encountered then EOF is
 returned.
*/
{
 int rs=0;
 int length;
 char buff[25];
 while(1)
 {
 if(fgets(buff,25,f)==NULL)
 return EOF;
 length = strlen(buff);
 rs += length;
 if(buff[length - 1] == '\n')
 return rs;
 }
}

With a suitably large file named on the command line, the program produced the following
output.

8788 records
average size 99.2
smallest 25
largest 282

There are several interesting points about this program. The function getrec() reads the file in
chunks of 24 bytes, this is ridiculously small. In order to determine how much data has
actually been read in the function strlen() is applied to the string in the input buffer,
remembering that the count returned by strlen() excludes the string terminating NUL. It is
particularly important to look at the character before the string terminating NUL in the input
buffer, if this is a newline then the repeated calls to fgets() have encountered the end of the
current record and the accumulated record size can be returned.

stdin, stdout and stderr

Switch and For Statements, Command Line and File Handling - File Handling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.file.handling.html (5 of 5) [02/04/2002 09:23:28]

Addresses, Pointers, Arrays and Strings -
Library Functions for processing strings
Chapter chap6 section 12

There are a variety of library functions for handling input data that has been read in using gets(). The most
useful include sscanf() and the function atoi(). The function sscanf() applies scanf() type conversions to
data held in a program buffer as a single string rather than to data read from standard input. The atoi()
function converts a character string from external decimal form to internal binary form.

The use of sscanf() in conjunction with gets() is illustrated by the following program, known as getin1. The
purpose of the program is to read in an integer. Unlike simple uses of scanf(), input errors are detected and
the prompt repeated until a valid integer is entered.

main()
{
 char error;
 char inbuf[256]; /* hope it's big enough */
 int i;
 char c;
 while(1)
 {
 error = i = 0;
 printf("Enter an integer ");
 gets(inbuf); /* get complete input line */
 while(*(inbuf+i) == ' ') i++; /* skip spaces */
 if(*(inbuf+i) == '-' || *(inbuf+i) == '+') i++;
 while(c = *(inbuf+i++)) /* while string end NUL */
 {
 if(c>'9' || c<'0') /* non-digit ? */
 {
 printf("Non-Numeric Character %c\n",c);
 error = 1;
 break;
 }
 }
 if(!error) /* was everything OK ? */
 {
 int num; /* local variable */
 sscanf(inbuf,"%d",&num); /* conversion */
 printf("Number was %d\n",num);
 break;
 }
 }
}

A typical dialogue is shown below

$ getin1
Enter an integer a123
Non-Numeric Character a

Addresses, Pointers, Arrays and Strings - Library Functions for processing strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.stringin.html (1 of 2) [02/04/2002 09:23:30]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap6/getin1.c

Enter an integer 123a
Non-Numeric Character a
Enter an integer 1234.56
Non-Numeric Character .
Enter an integer 1234
Number was 1234
$ getin1
Enter an integer +43
Number was 43
$

There are some interesting points about this program. The main processing loop first skips any leading
spaces leaving the address "inbuf+i" pointing to the first non-blank character in the input text. An initial
sign is also skipped. After the optional initial sign all input characters must be digits until the input string
terminating NUL is encountered. If anything other than a digit, including trailing blanks, is encountered the
loop is broken and an error indicator set.

The condition

c = *(inbuf+i++)

associated with the loop that checks for digits is a typical piece of C code that does several things in one go.
The value of the expression "*(inbuf+i++)" is the next character from the input buffer inbuf. The value of
the expression inbuf+i++ being the address of the character and the * operator yielding the value of the
addressed item. In the course of calculating the address of the character, the variable "i" is incremented as a
side-effect. The character value is assigned to the variable "c" to be used in the test for being a digit on the
following line, the value of the assignment expression being, of course, the value assigned. The value of
this expression only becomes zero, so terminating the loop, when the character in question is the string
terminating NUL.

In practice the code of this program would be incorporated into a user defined function that might well
return the value of the entered integer.

The function sscanf() is similar to scanf() except that it has an extra parameter that is the address of the start
of the memory area that holds the character string to be processed. The library function atoi() could have
been used instead of sscanf() in this example by changing the appropriate line to read

num = atoi(inbuf);

The function i atoi() takes the address of an area of memory as parameter and converts the string stored at
that location to an integer using the external decimal to internal binary conversion rules. This may be
preferable to sscanf() since atoi() is a much smaller, simpler and faster function. sscanf() can do all possible
conversions whereas atoi() can only do single decimal integer conversions.

The library functions sprintf() and puts()

Addresses, Pointers, Arrays and Strings - Library Functions for processing strings

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.stringin.html (2 of 2) [02/04/2002 09:23:30]

Switch and For Statements,
Command Line and File Handling
- stdin, stdout and stderr
Chapter chap9 section 6

The predefined files known as stdin , stdout and stderr normally correspond to the
keyboard and, for both stdout and stderr , the display. Most host operating systems
provide facilities to reconnect these to files but such reconnection or redirection is
totally invisible to the program.

All three are, in fact, objects of type pointer to FILE, and they may be used in any file
handling function in just the same way as a pointer returned by fopen(). In fact the
macro putchar(c) is really nothing more than

putc(c,stdout)

It is sometimes useful to initialise a pointer to FILE to point to one of the standard
items, to provide a "standard input as default" type of operation.

FILE *ifp = stdin;

being a typical definition.

stderr is subject to separate host operating system redirection to stdout and is
commonly used to write error messages. Typically a programmer would write

 fprintf(stderr,"Couldn't open \"%s\"\n",filename);

Direct Access File Handling

Switch and For Statements, Command Line and File Handling - stdin, stdout and stderr

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.stdin.stdout.stderr.html [02/04/2002 09:23:31]

Addresses, Pointers, Arrays and
Strings - Exrecises
Chapter chap6 section 16

Write a program to read text lines into a buffer using gets(). Calculate the
length of each line. By using input redirection arrange for your program to
read a text file (such as its own source) and print out

 The number of lines read
 The length of the longest line
 The length of the shortest line
 The average line length

You should arrange for a line of length zero to terminate your file.

1.

By using a text editor (or otherwise) create a file containing a significant
number (80-100) integers in the range 0-100. Place the integer 999 at the end
of the file.

Write a program to read the file using input redirection and calculate the
number of input integers in each of the ranges 0-9, 10-19, 20-29 etc., Print out
the results of your calculations.

2.

Modify the program of the previous exercise to print out a histogram for each
of the ranges consisting of a sequence of asterisks running across the screen.

3.

Modify the program of the previous exercise to produce a vertical histogram
rather than a horizontal histogram.

4.

Write a program that will read text from standard input and produce a list of
the characters encountered in the input and the number of times each
character occurred. You will find it most convenient to use gets() to read each
line of input into a buffer and terminate your input with an empty line. Run
the program with input re-direction to read from a file. Do not print out the
character and the count if it did not occur in the input.

5.

Modify the program of the previous exercise to print out the character
frequency table in lines of not more than 8 entries going across the screen
rather than one long list.

6.

Write a program that will prompt the user for two strings of characters,
assemble them into a single string and then print the string out reversed.

7.

Addresses, Pointers, Arrays and Strings - Exrecises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap6.exercises.html [02/04/2002 09:23:33]

Functions and storage
organisation - Introduction
Chapter chap7 section 1

In this chapter we will see how to construct packaged code chunks known as
functions or routines.

See Also

Functions●

Prototypes●

Pre ANSI function declarations●

Aggregates and Arrays as function parameters●

Pointers to functions●

Recursion●

Storage classes and function local variables.●

The stack●

Type qualifiers●

Multi-dimensional arrays and aggregates●

Exercises●

Functions and storage organisation - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.intro.html [02/04/2002 09:23:34]

Functions and storage organisation -
Functions
Chapter chap7 section 2

We have been using functions since the very start of the course. printf() is a library function as are scanf(),
gets(), strcmp() etc., We have also been writing functions since our first example program. main() is
nothing more or less than a function.

Functions provide a convenient way of packaging up pieces of code so that they can be used over and
over a again. Consider a simple interactive program that reads in three integers and calculates and
displays the sum of the three integers. It might look like

main()
{
 int n1,n2,n3;
 printf("Enter a number ");
 scanf("%d",&n1);
 printf("Enter a number ");
 scanf("%d",&n2);
 printf("Enter a number ");
 scanf("%d",&n3);
 printf("Sum is %d\n",n1+n2+n3);
}

But this direct use of scanf() is not a very good way to get data from a fallible human user. In the previous
chapter we saw a program that vetted the user's input to insure that it really was numeric. We could, of
course, re-write the above program to incorporate all the checking and prompting for each input number
but this would involve a clumsy, wasteful and error-prone replication of the code. It would be much better
if we could re-use the same code three times. Functions provide precisely this facility. Using a
get-an-integer function the program, called fex1, might look like.

main()
{
 int n1,n2,n3;
 n1 = getint();
 n2 = getint();
 n3 = getint();
 printf("Sum = %d\n",n1+n2+n3);
}
getint()
{
 char error;
 char inbuf[256];
 int i;
 char c;
 while(1)
 {
 i = 0;
 error = i = 0;
 printf("Enter an integer ");
 gets(inbuf);

Functions and storage organisation - Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.functions.html (1 of 5) [02/04/2002 09:23:37]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex1.c

 while(*(inbuf+i) == ' ') i++;
 if(*(inbuf+i) == '-' || *(inbuf+i) == '+') i++;
 while(c = *(inbuf+i++))
 {
 if(c>'9' || c<'0')
 {
 printf("Non-Numeric Character %c\n",c);
 error = 1;
 break;
 }
 }
 if(!error)
 {
 int num;
 sscanf(inbuf,"%d",&num);
 return num;
 }
 }
}

And a typical dialogue is illustrated below.

$ fex1
Enter an integer one
Non-Numeric Character o
Enter an integer 1
Enter an integer hello
Non-Numeric Character h
Enter an integer 23098
Enter an integer 0xfed
Non-Numeric Character x
Enter an integer 23
Sum = 23122
$

If you compare this program with the one in the previous chapter you will find that it is almost identical
with the second part (or function) in the current program. There are two important differences.

The first line has been changed from main() to getint() . "getint" is the name of the function. The
rules for naming C functions are the same as the rules for naming variables. A variable and a
function may not have the same name.

1.

Rather than printing out the number read in, it is returned by the statement

return num;

When the assignment

n1 = getint()

is evaluated, the value of the function getint() is the value associated with the last executed return
statement within the function.

2.

The program shown above consists of two function definitions. The first for the function main() and the
second for the function getint() . We will see shortly that the declaration of a function is not quite the
same thing as the definition of a function.

Functions and storage organisation - Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.functions.html (2 of 5) [02/04/2002 09:23:37]

A C program normally consists a series of function definitions. The line of code that starts getint() is
identified as a function definition by two facts,

it is not included within the compound statement that forms the executable body of the function
main()

1.

the parentheses that appear immediately after the name getint .2.

Notice also that when getint() was called although we did not supply the function with any parameters we
still had to write the parentheses normally used to enclose the parameter list. These function definitions
may appear in any order although it is conventional to start with main and follow it with functions called
by main followed by functions called by functions that are called by main and so on. This order makes
programs much easier to read. Function definitions may not be included within other function definitions,
i.e. they cannot be nested. The return statement can appear anywhere in a function, if the path of
execution of a function reaches the end of the function definition then the function returns to the calling
environment exactly as if an explicit return had been included in the code.

Of course the simple getint() function does exactly the same thing every time it is called. It would be nice
if it could produce a variable prompt. This is easily achieved by making the prompt a parameter. When
using parameters with functions the C programming language talks about formal parameters and actual
parameters. The formal parameter is a sort of dummy variable associated with the function definition, it
provides storage space for the value of the actual parameter which appears as part of the function call.

To declare a formal parameter as part of a function definition, include the type and name to be associated
with the formal parameter within the parentheses that appear at the start of the definition. A variant of the
previous program using a parameter is shown below.

main()
{
 int sum=0,n[3],i=0;
 while(i<3)
 {
 n[i] = getint(i+1);
 sum += n[i++];
 }
 printf("Sum = %d\n",sum);
}
getint(int n)
{
 char error;
 char inbuf[256];
 int i;
 char c;
 while(1)
 {
 i = 0;
 error = i = 0;
 printf("Enter integer %d ",n);
 gets(inbuf);
 while(*(inbuf+i) == ' ') i++;
 if(*(inbuf+i) == '-' || *(inbuf+i) == '+') i++;
 while(c = *(inbuf+i++))
 {
 if(c>'9' || c<'0')
 {
 printf("Non-Numeric Character %c\n",c);

Functions and storage organisation - Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.functions.html (3 of 5) [02/04/2002 09:23:37]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex2.c

 error = 1;
 break;
 }
 }
 if(!error)
 {
 int num;
 sscanf(inbuf,"%d",&num);
 return num;
 }
 }
}

A typical dialogue

$ fex2
Enter integer 1 23
Enter integer 2 11
Enter integer 3 one
Non-Numeric Character o
Enter integer 3 1
Sum = 35
$

Here "n" is the formal parameter.

It is important to realise that the formal parameter holds a copy of the value of the actual parameter at the
time the function was called. It is possible to change the value of the formal parameter but this has no
effect on the actual parameter as the following example shows.

main()
{
 int n[3]={1,2,3};
 int sum = 0;
 addup3(n[0],n[1],n[2],sum);
 printf("sum = %d\n",sum);
}
addup3(int a, int b, int c, int total)
{
 total = a+b+c;
 printf("total = %d\n",total);
}

This produced the output

total = 6
sum = 0

It is clearly desirable that the value of the actual parameter cannot be changed from within the function
because the code of the function has no way of telling whether the actual parameter was the name of a
variable or an expression or even a constant.

It is possible to return values via the parameters by providing the function with the address of a memory
location. The formal parameter then has to be of one of the pointer types. Consider the following

Functions and storage organisation - Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.functions.html (4 of 5) [02/04/2002 09:23:37]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex3.c

example.

main()
{
 int n[3]={1,2,3};
 int sum = 0;
 addup3(n[0],n[1],n[2],&sum);
 printf("sum = %d\n",sum);
}
addup3(int a, int b, int c, int *total)
{
 *total = a+b+c;
 printf("total = %d\n",*total);
}

This produced the following output.

total = 6
sum = 6

Throughout the function code it is quite clear that the final formal parameter is the address of an integer.

Prototypes

Functions and storage organisation - Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.functions.html (5 of 5) [02/04/2002 09:23:37]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex4.c

Functions and storage organisation
- Prototypes
Chapter chap7 section 3

So far we have dodged any consideration of the type of value returned by a function. In the
examples shown above it was quietly assumed that the function getint() returned an
integer. It is quite possible to have functions returning values of other types, however the
compiler will assume that all functions return integers unless it has information to the
contrary as the following example shows.

main()
{
 int n[3]={23,14,7};
 int i=0;
 while(i<3)
 {
 double x;
 x = reciprocal(n[i]);
 printf("1/%d = %10.7lf\n",n[i],x);
 i++;
 }
}
double reciprocal(int j)
{
 return 1.0/j;
}

The data type name associated with the definition of the function reciprocal() should be
noted. This says that the function reciprocal() returns a value of type double.
Unfortunately the compiler had already seen the reference to reciprocal() earlier in the
program and had assumed, in the absence of information to the contrary, that reciprocal()
was of type int. The following error message was generated by the compiler.

"fex5.c", line 14: identifier redeclared: reciprocal
Compilation failed

The solution to this problem is to provide something called a function prototype that
declares the function name, its type and the types of all its formal parameters. Such
prototypes can appear anywhere in the program and need not be part of a function
definition. They usually appear at the start of a program before the function main() and
obviously should appear before any call to the function in question. The following
modified version of the previous program shows what it looks like.

double reciprocal(int);

Functions and storage organisation - Prototypes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.prototypes.html (1 of 4) [02/04/2002 09:23:40]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex5.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex6.c

main()
{
 int n[3]={23,14,7};
 int i=0;
 while(i<3)
 {
 double x;
 x = reciprocal(n[i]);
 printf("1/%d = %10.7lf\n",n[i],x);
 i++;
 }
}
double reciprocal(int j)
{
 return 1.0/j;
}

producing the output

1/23 = 0.0434783
1/14 = 0.0714286
1/7 = 0.1428571

The very first line of the program is the function prototype. It should be noted that there is
no need to define a name to be associated with the formal parameter in the prototype, just
the typing information.

With prototypes the compiler can perform various extra checks on actual calls as the
following example shows.

int addup3(int,int,int,int*);
main()
{
 int n[3] = {4,12,9};
 int sum;
 addup3(n[0],n[1],&sum);
 printf("sum = %d\n",sum);
 addup3(1,2,3,4,sum);
 printf("sum = %d\n",sum);
 addup3(1.2,2.9,2.7,&sum);
 printf("sum = %d\n",sum);
}
int addup3(int x,int y,int z, int *res)
{
 *res = x + y + z;
}

Not surprisingly, the compiler complained producing the following error messages.

Functions and storage organisation - Prototypes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.prototypes.html (2 of 4) [02/04/2002 09:23:40]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fex7.c

line 6: warning: improper pointer/integer combination: arg #3
line 6: prototype mismatch: 3 args passed, 4 expected
line 8: warning: improper pointer/integer combination: arg #4
line 8: prototype mismatch: 5 args passed, 4 expected
Compilation failed

Line 6 was

addup3(n[0],n[1],&sum)

and line 8 was

addup3(1,2,3,4,sum)

The messages about the number of parameters are self-explanatory. The other messages
require further explanation as does the fact that no error messages seem to have been
generated for the final call of addup3() in which all the parameters were of the wrong type.
Let's first fix up the errors on the first two calls of addup3().

int addup3(int,int,int,int*);
main()
{
 int n[3] = {4,12,9};
 int sum;
 addup3(n[0],n[1],n[2],&sum);
 printf("sum = %d\n",sum);
 addup3(1,2,3,&sum);
 printf("sum = %d\n",sum);
 addup3(1.2,2.9,2.7,&sum);
 printf("sum = %d\n",sum);
}
int addup3(int x,int y,int z, int *res)
{
 *res = x + y + z;
}

This compiled without errors and produced the following output

sum = 25
sum = 6
sum = 5

The sum of the 3 values for the final call of addup3() is 6.8, 5 is wrong but not
disastrously. What has happened is that the compiler noted that the function addup3()
required three parameters of type int but was called with three parameters of type double,
it, obligingly, generated extra code that converted the values of the parameters to the
correct type when the function addup3() was called. The extra error messages produced
above can now be explained,

Functions and storage organisation - Prototypes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.prototypes.html (3 of 4) [02/04/2002 09:23:40]

the prototype told the compiler to expect an int for the third argument but a pointer
to int was supplied,

1.

a pointer to int was expected for the fourth argument but an actual int was supplied.
There is no standard conversion between integer data types and pointer data types so
the compiler could not generate any conversion code.

2.

You may be puzzled as to why printf() and scanf() aren't handled in this helpful fashion.
The answer is that printf() and scanf(), for partly historical reasons, take a variable number
of parameters of variable types and no checking is possible. In fact the formal prototype of
printf() is

int printf(char *,...)

where the symbol "...", known as an ellipsis means an arbitrary number (including zero) of
parameters of arbitrary type.

If a function does not actually take any parameters then the keyword void may be used in
place of the parameter list in the prototype declaration and function definition. Just leaving
out the parameters simply tells the compiler that any number of parameters of any type are
acceptable, i.e. no checking will be possible. void indicates quote explicitly that there are
no parameters. Similarly if the function is not going to return a value then its type should
be declared as "void". Examples will be seen later in these notes.

The values of parameters of certain types will be converted under all circumstances
irrespective of prototypes. This mechanism is known as functional parameter promotion
and was described earlier in the discussion on arithmetic type conversions.

Pre ANSI Function Declarations
Aggregates and Arrays as Function Parameters

Functions and storage organisation - Prototypes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.prototypes.html (4 of 4) [02/04/2002 09:23:40]

Functions and storage
organisation - Pre ANSI Function
Declarations
Chapter chap7 section 4

The provision of information on function parameters in prototypes was only
introduced in the ANSI version of the C language. Pre-ANSI prototypes only refer
to the type of the functional value and also have a different way of defining the
formal parameters of a function. The pre-ANSI style prototypes and function
definitions are accepted by ANSI compilers but the checking of the number and type
of function parameters will not take place leading to potential obscure errors.

A typical pre-ANSI function definition would look like

double harmonic_mean()
double x,y,z;
{
 .
 .

The ANSI equivalent is

double harmonic_mean(double x, double y, double z)
{
 .
 .

Aggregates and Arrays as function parameters

Functions and storage organisation - Pre ANSI Function Declarations

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.pre.ansi.html [02/04/2002 09:23:41]

Functions and storage
organisation - Aggregates and
Arrays as Function Parameters
Chapter chap7 section 5

There is no restriction on the possible number or type of parameters that may be
associated with a function. The following program demonstrates the syntax
associated with the use of an aggregate as a formal parameter.

int sumagg(int[],int);
main()
{
 int x[]={1,5,3,2,7,4};
 printf("Sum of numbers = %d\n",
 sumagg(x,sizeof x/sizeof (int)));
}
int sumagg(int q[],int nels)
{
 int i=0;
 int sum = 0;
 while(i<nels) sum+=q[i++];
 return sum;
}

This produced the output

Sum of numbers = 22

The function definition includes the formal parameter

int q[]

There is no need to specify the size of the aggregate at this stage because the
aggregate itself is not being passed to the function. Remember that the name of an
aggregate is, effectively, a synonym for the address of element number zero and also
remember that aggregates are closely related to pointers. The following version of
the program listed above is also perfectly valid.

int sumagg(int[],int);
main()

Functions and storage organisation - Aggregates and Arrays as Function Parameters

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.agg.arr.html (1 of 3) [02/04/2002 09:23:43]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx1.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx2.c

{
 int x[]={1,5,3,2,7,4};
 printf("Sum of numbers = %d\n",
 sumagg(x,sizeof x/sizeof (int)));
}
int sumagg(int *q,int nels)
{
 int i=0;
 int sum = 0;
 while(i<nels) sum+=q[i++];
 return sum;
}

This differs from the previous example only in the definition of the first formal
parameter in the function definition. The aggregate notation

q[]

and the pointer notation

*q

are clearly totally equivalent and interchangeable. Notice that in this example
program it was necessary to pass the aggregate size as a separate parameter.

Another example of the use of aggregates as functional parameters is shown in this
example of a function to calculate the length of a string. There is actually no need to
write such a function, the library function strlen() is perfectly satisfactory and
entirely standard.

int lenstr(char*);
main()
{
 char inbuf[256];
 int len;
 int tlen = 0,cnt = 0;
 while(1)
 {
 printf("Enter String ");
 gets(inbuf);
 if((len = lenstr(inbuf)) == 0) break;
 printf("Length = %d\n",len);
 cnt++;tlen+=len;
 }
 printf("Strings Processed = %d\n"
 "Total Characters = %d\n",cnt,tlen);

Functions and storage organisation - Aggregates and Arrays as Function Parameters

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.agg.arr.html (2 of 3) [02/04/2002 09:23:43]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx3.c

}
int lenstr(char *cp)
{
 char *start = cp;
 while(*cp++);
 return cp - start - 1;
}

A typical dialogue is shown below.

$ fpx3
Enter String hello
Length = 5
Enter String goodbye
Length = 7
Enter String this is some test data
Length = 22
Enter String and some more
Length = 13
Enter String
Strings Processed = 4
Total Characters = 47
$

Pointers to functions

Functions and storage organisation - Aggregates and Arrays as Function Parameters

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.agg.arr.html (3 of 3) [02/04/2002 09:23:43]

Functions and storage
organisation - Pointers to
Functions
Chapter chap7 section 6

Although it is not possible to pass functions (as distinct from their values) to other
functions as parameters it is possible to pass a pointer to a function as a parameter.
In order to do this it is first necessary to look at the syntax of the declaration of a
variable of type pointer to function. Such variables carry the type of value returned
by the function. A typical declaration of variable of type pointer to integer valued
function is

int (*f)();

The odd looking syntax arises because the grouping operator "()" has a higher
precedence than the address operator "*". The parentheses around "*f" are necessary
to ensure that f is seen as pointer before it is seen as a function. It is also, of course,
possible to have an aggregate of pointers to functions. For example

double (*valuator[6])();

The unadorned (i.e. no parentheses) name of a function is an object of type pointer
to function and may be used to initialise a pointer to function as part of the
declaration or may be assigned to a pointer to function. An example is in order.

int sum(int,int);
int difference(int,int);
int product(int,int);
int quotient(int,int);
main()
{
 char inbuf[256];
 int (*math)();
 int n1,n2;
 char *iptr = inbuf;
 printf("Enter an expression ");
 gets(inbuf);
 while(*iptr >= '0' && *iptr <= '9') iptr++;
 n1 = atoi(inbuf);
 if(*iptr == '+') math = sum;
 if(*iptr == '-') math = difference;

Functions and storage organisation - Pointers to Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.pointers.funcs.html (1 of 2) [02/04/2002 09:23:45]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx4.c

 if(*iptr == '*') math = product;
 if(*iptr == '/') math = quotient;
 iptr++;
 n2 = atoi(iptr);
 printf("Value = %d\n",math(n1,n2));
}
int sum(int p,int q)
{
 return p+q;
}
int difference(int x,int y)
{
 return x-y;
}
int quotient(int a,int b)
{
 return a/b;
}
int product(int c,int d)
{
 return c*d;
}

This program reads in a simple expression such as

5+12

and displays its value as the following typical dialogue demonstrates. No attempt is
made to check the input and the required input layout is totally unexplained to the
user. The program is called fpx4 .

$ fpx4
Enter an expression 15*8
Value = 120
$ fpx4
Enter an expression 22/5
Value = 4
$

Recursion

Functions and storage organisation - Pointers to Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.pointers.funcs.html (2 of 2) [02/04/2002 09:23:45]

Functions and storage organisation
- Recursion
Chapter chap7 section 7

C functions may call themselves in an entirely natural manner. This is known as recursion
and is illustrated in the following classical example which calculates factorial n, i.e. the
product of all the integers from 1 to n.

int factorial(int);
main()
{
 int i=1;
 do
 printf("Factorial %d = %d\n",i,factorial(i));
 while(i++<12);
}
int factorial(int x)
{
 if(x==1) return 1;
 else return x*factorial(x-1);
}

producing the output

Factorial 1 = 1
Factorial 2 = 2
Factorial 3 = 6
Factorial 4 = 24
Factorial 5 = 120
Factorial 6 = 720
Factorial 7 = 5040
Factorial 8 = 40320
Factorial 9 = 362880
Factorial 10 = 3628800
Factorial 11 = 39916800
Factorial 12 = 479001600

Storage Classes

Functions and storage organisation - Recursion

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.recursion.html [02/04/2002 09:23:46]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx9.c

Functions and storage
organisation - Storage Classes
Chapter chap7 section 8

In all the examples of functions we have seen so far all variables have been declared
and defined within the compound statements that form the body of the functions.
Such variables are local to the functions and cannot be referred to outside the
function, furthermore they cease to exist once the program control path leaves the
function. Such local variables are created and initialised freshly each time the
program control path enters the function. This point was mentioned earlier. An
example illustrates the point.

void function(void);
main()
{
 int i=0;
 while(i<4)
 {
 printf("i = %d\n",i);
 function();
 i++;
 }
}
void function(void)
{
 int i = 4;
 printf("Initial Value of i = %d\n",i);
 i = 7;
 printf(" Final Value of i = %d\n",i);
}

producing the output

i = 0
Initial Value of i = 4
 Final Value of i = 7
i = 1
Initial Value of i = 4
 Final Value of i = 7
i = 2
Initial Value of i = 4

Functions and storage organisation - Storage Classes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.local.variables.html (1 of 5) [02/04/2002 09:23:49]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx10.c

 Final Value of i = 7
i = 3
Initial Value of i = 4
 Final Value of i = 7

It will be noted that there are two variables called i whose values change
independently.

If an aggregate is declared within a function then it too springs into existence when
the program control path enters the function and goes out of existence on exit. If the
aggregate is initialised then it is re-initialised every time the function is entered, the
initialisation is actually performed by assignment and the inefficiencies involved
meant that some pre-ANSI compiler writers did not allow such aggregates to be
initialised.

It is possible to declare memory locations in such a way that they retain their values
between function calls. This can be done in two ways, the memory locations
declared can be publicly accessible from within all functions, this is sometimes
called a global declaration, alternatively the memory locations can be made local to
functions just like all the declarations we have seen so far but unlike them values are
retained.

In the C programming language the various types of declaration are known as
storage classes. There are four storage classes known as auto, static, extern and
register. All the variables we have seen up to now have occupied memory locations
of storage class auto.

Memory locations accessible from within all the functions of a program are of
storage class extern. The syntax of such declarations is similar to that of auto storage
class declarations with two important differences.

Such declarations must not lie within functions, they usually appear at the
start of a program before the function main().

1.

Memory locations in this storage class are guaranteed by the ANSI standard
to be initialised to zero unless they are specifically initialised to some other
value.

2.

Memory locations that are local to a function and retain their values from one
function call to the next are of storage class static . Such declarations are similar to
auto storage class declarations in that they appear within functions but they are
preceded by the keyword static . They are similar to extern storage class
declarations in that zero initialisation is guaranteed.

An example of the use of extern storage is given below. This uses a "global"
variable to return a value from a function.

Functions and storage organisation - Storage Classes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.local.variables.html (2 of 5) [02/04/2002 09:23:49]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx11.c

int sum; /* storage class extern */
void addup3(int,int,int);
main()
{
 int n[]={1,2,3};
 addup3(n[0],n[1],n[2]);
 printf("Sum = %d\n",sum);
}
void addup3(int a,int b,int c)
{
 sum = a+b+c;
}

producing the output

Sum = 6

The use of global variables in this way is generally not very good practice but it is
sometimes useful to maintain a global set of flags that control the detailed behaviour
of a program and possibly also global data buffers where the whole purpose of the
program is to manipulate the contents of the buffers via the various functions.

The use of static storage is illustrated in the following program.

char getnext(void);
main()
{
 int c;
 int i = 0;
 while(c=getnext())
 {
 if(c=='\n') printf(" ");
 else printf("%c",c);
 if(++i == 20)
 {
 printf("\n");
 i = 0;
 }
 }
 printf("\n");
}
char getnext(void)
{
 static char inbuf[256];
 static char *iptr = inbuf;

Functions and storage organisation - Storage Classes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.local.variables.html (3 of 5) [02/04/2002 09:23:49]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap7/fpx12.c

 int slen;
 if(!*iptr)
 {
 gets(inbuf);
 iptr = inbuf;
 slen = strlen(inbuf);
 *(inbuf+slen) = '\n';
 *(inbuf+slen+1) = '\0';
 if(slen == 1 && *iptr == 'Z')
 return 0;
 }
 return *iptr++;
}

This program reads in text and prints it out 20 characters to a line irrespective of the
input line lengths. An input newline character is replaced by a space. Input is
terminated when an input line consisting of the single character Z is encountered;
there are much better ways of terminating input, they will be described later. The
program was run using the following input data file, using the Unix host systems
input redirection facility.

The cat sat on the mat 1234567890 times and got cold
today is thursday
this is a very short line
this is a long line ************************************
and the end of file follows
Z

and produced the output

The cat sat on the m
at 1234567890 times
and got cold today i
s thursday this is a
 very short line thi
s is a long line ***

************* and th
e end of file follow
s

The particularly nice feature of this program is that the input buffer is entirely
private to the function getnext().

The keyword auto may be applied to auto storage class declarations but this is never

Functions and storage organisation - Storage Classes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.local.variables.html (4 of 5) [02/04/2002 09:23:49]

done in practice. The keyword extern must not be applied to extern storage class
declarations, its significance will be discussed later.

The keyword register applied to a declaration implies that the object declared
should occupy memory of storage class register. This means that, if possible, the
variables should be allocated to processor registers rather than main memory, this
makes for faster reference in time-critical applications. On many modern compilers,
particularly those operating on multiple general purpose register architecture
processors, the use of register makes no difference to the speed of the generated
program, the compiler is clever enough to spot frequently referenced variables and
keep them in registers anyway. If you are coding for a time critical application you
may wish to experiment with register variables but be warned that the declaration of
more register variables than the number of registers actually available may result in
slower programs.

The Stack

Functions and storage organisation - Storage Classes

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.local.variables.html (5 of 5) [02/04/2002 09:23:49]

Functions and storage
organisation - The Stack
Chapter chap7 section 9

Normally when functions call other functions the processor maintains a data
structure called a stack . This consists of a series of blocks of memory called stack
frames that are stored consecutively. Each time a function is called a stack frame is
built and when the function exits the stack frame is released.

The stack frame will include the return address from the function, the machine
state on entry to the function, copies of the actual parameters and space for all the
function's local variables. The following is fairly typical.

+----------------------+
| Return Address |
+----------------------+
| Saved Machine State |
+----------------------+
| Actual Parameters |
+----------------------+
| Local Variables |
+----------------------+

Static and extern storage class variables are not stack based. The following diagram
shows the state of the stack during the execution of the factorial program shown
earlier.

+-----------------+
| Host OS |
+-----------------+
| |
+-----------------+ - frame for main()
| |
+-----------------+
| i = 5 |
+=================+
| in main() |
+-----------------+
| |
+-----------------+ - frame for first call of factorial
| AP = 5 |
+-----------------+

Functions and storage organisation - The Stack

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.stack.html (1 of 2) [02/04/2002 09:23:50]

| |
+=================+
| in factorial |
+-----------------+
| |
+-----------------+ - frame for second call of factorial
| AP = 4 |
+-----------------+
| |
+=================+
| in factorial |
+-----------------+
| |
+-----------------+ - frame for third call of factorial
| AP = 3 |
+-----------------+
| |
+=================+

If a complex program fails producing a core dump in the Unix environment then
there are tools to examine the stack that is part of the memory image written to the
core file. Such a tool is dbx which may be invoked by typing

dbx <object file name> <core file name>

The core file name defaults to core and the object file name defaults to a.out . "dbx"
will produce a stack trace back by typing i> where in response to dbx's prompt.
This shows a history of all the functions that have called other functions. It may well
include unfamiliar library functions. There are many other facilities available to the
user of "dbx", see the manual for details.

Storage qualifiers●

Functions and storage organisation - The Stack

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.stack.html (2 of 2) [02/04/2002 09:23:50]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+dbx

Functions and storage
organisation - Storage qualifiers
Chapter chap7 section 10

There are two storage qualifiers const and volatile that may be associated with a
variable declaration.

The qualifier const implies that the variable may not be changed be program action.
It may be changed by other means, such as the operation of input devices. It is
important to realise that the const qualifier is not in any way direct way associated
with the use of constants. The compiler will normally detect and report attempts to
change variables with the const qualifier.

The qualifier volatile implies that the variable may change in ways outside the
control of the program in an unpredictable fashion.

The const and volatile qualifiers are rarely used in normal programming but are
useful when programming special purpose and dedicated hardware systems that
control devices directly rather than via a host operating system. A common
implication of the const qualifier is that memory locations in question may be
associated with read only memory. Variables can readily have both const and
volatile qualifiers. For example

const volatile int real_time_clock;

the implication being that the program is not going to change the clock setting and
that the clock setting will be changed by other means.

Multi-Dimensional Aggregates and Arrays

Functions and storage organisation - Storage qualifiers

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap7.qualifiers.html [02/04/2002 09:23:51]

The Pre-Processor and standard
libraries - Introduction
Chapter chap8 section 1 In this chapter we will see how the C language pre-processor is used
and we will also begin to look in detail at some of the standard libraries provided
with the C language.

See also

Compiling and Linking●

The #include pre-processor directive●

The standard headers●

The ctype macros and functions●

The stdio standard input and output macros and functions●

The mathematical macros and functions●

The string handling macros and functions●

The #define pre-processor directive●

Function like pre-processor macros●

The #ifdef pre-processor diretive●

Exercises●

The Pre-Processor and standard libraries - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.intro.html [02/04/2002 09:23:53]

The Pre-Processor and standard
libraries - Compiling and Linking
Chapter chap8 section 2

compiling a C language is usually a four stage process. These processes are

Preprocessing1.

Compilation to Assembly Language2.

Conversion of Assembly Language to Machine Code3.

Linking in Libraries4.

Under the Unix system it is possible to stop the compilation after each of these
phases by special command line flags. The pre-processing phase is, essentially, a
text substitution phase. The output of the pre-processing phase is still recognisable C
language code, although parts can look very obscure. Preprocessing is controlled by
various directives incorporated into the C language source code. A preprocessor
directive is recognised by the fact that the first non-whitespace character on the
source line is a "#" (hash).

The following pre-processor directives are understood by ANSI C compilers.

 define elif else endif
 error if ifdef ifndef
 include line pragma undef

The most widely used directives are "define", "include" and "if -- endif". They are
commonly referred to with the preceding "#" as, for example, "#define". Whitespace
characters may appear between the "#" and the actual directive. A preprocessor
directive is terminated by the end of the source line unless the last character on the
source line is a backslash. A line consisting of just a "#" symbol has no effect, Unix
programmers should not confuse this with the Bourne shell conventions for writing
comments.

The commonest uses of the pre-processor are to handle include or header files and
provide a facility for constants and macros, the latter are sometimes called
object-like and function-like macros. The pre-processor behaves in a manner
reminiscent of an editor relacing one text item by text from another source, possibly
building the replacement text in accordance with fairly complex rules.

The #include pre-processor directive

The Pre-Processor and standard libraries - Compiling and Linking

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.compiling.linking.html [02/04/2002 09:23:54]

The Pre-Processor and standard
libraries - The #include directive
Chapter chap8 section 3

The include directive is used to switch compiler input to a named file. This is most
commonly used to incorporate files containing prototypes for library functions,
definitions of standard constants and definitions of data structures used by library
functions.

The form of an include directive is either

 #include <file-name>
or
 #include "file-name"

An include directive is simply replaced by the entire contents of the named file. If
the file-name is enclosed within angle brackets then the compiler looks in various
standard places, if the file-name is enclosed in quotes then the compiler looks in the
current directory before looking in the standard places. The actual set of places
searched for files to include is implementation specific and the rules just quoted are
also implementation specific. It is usually possible to change the compiler's idea of
the standard places by setting an environment variable or a compiler command line
flag ("-I" under Unix).

Files that are included in this fashion are commonly called header files or include
files. They commonly have a ".h" suffix. It is possible to include compilable C code
in an include file but this is regarded as bad practice and it can cause tricky
problems when working with large programs, it is also very inefficient. If you are
familiar with the Pascal programming language you may want to call these files
libraries . This is completely wrong, all C compilation systems use the word library
to refer to a collection of already compiled functions etc. You'll see how to construct
your own libraries in a future chapter.

You can, of course, write your own header files and, in such cases, you can call
them whatever you wish to call them. Include files may include other include files
and so on to an unspecified maximum depth of nesting.

Standard headers

The Pre-Processor and standard libraries - The #include directive

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.include.html [02/04/2002 09:23:56]

The Pre-Processor and standard
libraries - Standard library
header files
Chapter chap8 section 4

There are a number of header files specified in the C language standard. These are
included into a user programmer via the pre-processor mechanism. They include
useful constants defined using the #define pre-processor directive prototypes and
some standard structures.

The standard headers are

assert.h

Correctness assertions. A simple debugging aid. Produces run-time error
messages that refer to the source line number. See the manual pages

1.

ctype.h

Character typing

2.

errno.h

Error reporting and definition of various error types and the global variable
errno.

3.

float.h

Characteristics of floating point numbers on the particular implementation.
Examine the file for details. This specifies precision, range etc., for all the
floating point data types available. A typical such file is listed below.

#define FLT_ROUNDS 1

#define FLT_RADIX 2
#define FLT_MANT_DIG 24
#define FLT_EPSILON 1.19209290E-07F
#define FLT_DIG 6
#define FLT_MIN_EXP (-125)
#define FLT_MIN 1.17549435E-38F
#define FLT_MIN_10_EXP (-37)
#define FLT_MAX_EXP (+128)
#define FLT_MAX 3.40282347E+38F
#define FLT_MAX_10_EXP (+38)

4.

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (1 of 6) [02/04/2002 09:24:00]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+assert

#define DBL_MANT_DIG 53
#define DBL_EPSILON 2.2204460492503131E-16
#define DBL_DIG 15
#define DBL_MIN_EXP (-1021)
#define DBL_MIN 2.2250738585072014E-308
#define DBL_MIN_10_EXP (-307)
#define DBL_MAX_EXP (+1024)
#define DBL_MAX 1.7976931348623157E+308
#define DBL_MAX_10_EXP (+308)

#define LDBL_MANT_DIG 53
#define LDBL_EPSILON 2.2204460492503131E-16
#define LDBL_DIG 15
#define LDBL_MIN_EXP (-1021)
#define LDBL_MIN 2.2250738585072014E-308
#define LDBL_MIN_10_EXP (-307)
#define LDBL_MAX_EXP (+1024)
#define LDBL_MAX 1.7976931348623157E+308
#define LDBL_MAX_10_EXP (+308)

The meanings of most of these is fairly obvious. The initial FLT , DBL or
LDBL refers to one the three floating point numeric data types. The items
with MAX or MIN after the type give the largest and smallest positive
number, those with MANT_DIG give the number of significant decimal
digits, those with EPSILON give the least number that can be added to 1.0
and cause a change. To understand the other items remember floating point
numbers are stored internally in the form

mantissa X radixexponent

where mantissa is always numerically less than 1. The maximum and
minimum exponent is defined both as a power of 10 (MAX_10_EXP and
MIN_10_EXP) and as a power of the radix (MAX_EXP and MIN_EXP),
the radix itself being FLT_RADIX . The number of radix digits (bits if the
radix is 2) is defined by the MANT_DIG items. FLT_ROUNDS defines how
floating point numbers are rounded, 1 means to the nearest number.

limits.h

Characteristics of integers and characters on the particular implementation.
This specifies maximum and minimum values. A typical usch file is listed
below.

#define CHAR_BIT 8
#define SCHAR_MIN (-128)

5.

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (2 of 6) [02/04/2002 09:24:00]

#define SCHAR_MAX 127
#define UCHAR_MAX 255
#define CHAR_MIN SCHAR_MIN
#define CHAR_MAX SCHAR_MAX
#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 65535
#define INT_MIN (-2147483647-1)
#define INT_MAX 2147483647
#define UINT_MAX 4294967295
#define LONG_MIN (-2147483647-1)
#define LONG_MAX 2147483647
#define ULONG_MAX 4294967295
#define MB_LEN_MAX 4

Again these are mostly obvious. Note that several of these are defined in
terms of earlier definitions in the include file. The initial part of the define'd
items refers to the various integer and character data types. CHAR_BIT is the
number of bits in a character and MB_LEN_MAX is the maximum size of a
multi-byte character that would be used with certain national character sets
(such as Chinese).

locale.h

This is concerned with internationalization and provides definitions for a
number of variables that collectively define a locale . The values within the
locale determine how certain functions display numbers, especially currency,
dates and times. There are library functions for setting the locale.

To support non-English character sets which typically include many more
characters than the familiar ASCII codes, C implementations can use either
wide characters as a distinct data type or can use multi-byte characters.
There are special library functions for handling such things. They are referred
to occasionally in these notes but not discussed further.

6.

math.h

This includes prototypes for common mathematical functions.

7.

setjmp.h

A facility for making non-local jumps. It is possible to associate labels with
statements in C, however the scope of such labels is purely within the range
of the function within which they are defined. The setjmp() and longjmp()
functions and associated data structures declared here relax this restriction by
providing support for the necessary stack unwinding.

8.

signal.h9.

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (3 of 6) [02/04/2002 09:24:00]

This provides some support via the signal() library function to catch and
handle exceptional conditions that might be detected by the host operating
system or hardware. The raise() library function may be used to signal such
events. ANSI specifies the following special events as being detectable.

SIGABRT Generated by the abort() function1.

SIGFPE Generated by erroneous arithmetic operations2.

SIGILL Generated by an attempt to execute an illegal operation3.

SIGINT Generated by the receipt of an interactive attention signal4.

SIGSEGV Generated by an invalid attempt to access memory5.

SIGTERM A termination request sent to the program6.

The mechanisms that detect these conditions and the precise circumstances
that cause them are, of course, host system dependent. The handling of signals
is more fully developed in the Unix environment. For fuller information see
the manual

stdarg.h

Various things to allow the programmer to define and use functions with a
variable number of parameters. Used to be called varargs.h

10.

stddef.h

Definitions of alternative names for some common data types that are widely
used but may correspond to different basic types on different systems. ANSI
specifies the following

ptrdiff_t Type of variable used for storing difference between two
pointers.

1.

size_t Type of result of sizeof operator2.

wchar_t Type of object used for storing extended characters3.

11.

stdio.h

This contains prototypes and definitions for a large number of functions and
constants that are primarily associated with file handling which is discussed
more fully in the next chapter. There are also a number of function
prototypes, macros and constants that are useful when working with standard
input and standard output.

12.

stdlib.h

This header file contains prototypes for a number of generally useful library
functions.

function name function action

atoi Ascii to integer

13.

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (4 of 6) [02/04/2002 09:24:00]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3B+signal

atof Ascii to double

atol Ascii to long

strtod Ascii to double

strtol Ascii to long

strtoul Ascii to unsigned long

rand Random number generator

srand Seed random number generator

calloc Allocate memory block

free Release allocated memory block

malloc Allocate memory block

realloc Re-allocate memory block

abort Cause abnormal termination

atexit Defines function to be called when exit() is called

exit Causes normal termination

getenv Get environment information

system Issue command to host operating system

bsearch Binary search of sorted array

qsort Sort array

abs Integer absolute value

div Performs integer division

labs Long integer absolute value

ldiv Performs long integer division

The functions mblen(), mbtowc(), wctomb(), mbstowcs() and wcstombs() are
provided for handling multi-byte characters.

string.h

Prototypes for string handling functions. These are discussed more fully later
in this chapter.

14.

time.h

This includes prototypes and data type definitions for handling the date and
time. Time is commonly stored either in system form which is the number of
seconds since some arbitrary origin or epoch or it is stored in a date/time
structure. The functions are

Function name Function action

15.

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (5 of 6) [02/04/2002 09:24:00]

clock Processor time used by program

difftime Difference between two dates/times

mktime Convert from date/time to system form

time Determines time in system form

asctime Converts date/time to string

ctime Converts system time to string

gmtime Converts system time to GMT date/time

localtime Converts system time to local date/time

strftime
Converts date/time to formatted form. There are many
formatting options. The behaviour is affected by the locale.

Some of these such as assert.h and setjmp.h are not often used. Others such as
signal.h and stdarg.h are best left to a more advanced course. On Unix systems the
include files are commonly found in the directory /usr/include.

The ctype macros and functions

The standard input and output macros and functions

The mathematical macros and functions

The Pre-Processor and standard libraries - Standard library header files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.standard.headers.html (6 of 6) [02/04/2002 09:24:00]

The Pre-Processor and standard
libraries - The ctype macros
Chapter chap8 section 5

One of the simplest and most useful standard headers is ctype.h . This defines a set
of function-like macros that look like functions that can be used to determine the
type of a character. All the macros look like

isathing(c)

and deliver a zero or non-zero value depending on whether the single character
parameter has or does not have a certain property. The functions are

Macro name Macro action

isalnum(c) Non-zero for a letter or number

isalpha(c) Non-zero for a letter

iscntrl(c) Non-zero for a control character

isdigit(c) Non-zero for a digit

isgraph(c) Non-zero for a printing character (excl. space)

islower(c) Non-zero for a lower case letter

isprint(c) Non-zero for a printing character (incl. space)

ispunct(c)
Non-zero for any printing character excluding space, letters and
numbers

isspace(c)
Non-zero for whitespace characters including space, form feed, new
line, carriage return, horizontal tab and vertical tab.

isupper(c) Non-zero for an upper case letter

A simple example is in order.

#include <ctype.h>
main()
{
 char inbuf[256]; /* input buffer */
 int lcnt = 0; /* letter count */
 int ncnt = 0; /* number count */
 int scnt = 0; /* space count */
 int nchar = 0; /* character count */
 char c;

The Pre-Processor and standard libraries - The ctype macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ctype.html (1 of 2) [02/04/2002 09:24:01]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/ctype.c

 printf("Enter String ");
 gets(inbuf);
 while(c = *(inbuf+nchar++))
 {
 if(isdigit(c)) ncnt++;
 if(isalpha(c)) lcnt++;
 if(isspace(c)) scnt++;
 }
 printf("%d characters\n%d digits\n"
 "%d letters\n%d spaces\n",
 nchar,ncnt,lcnt,scnt);
}

A typical dialogue is shown below.

Enter String the cat sat on the mat 1234567890 times
40 characters
10 digits
22 letters
7 spaces

The use of the "isathing" macros is preferable to writing code such as

if(c>='a' && c<='<z' || c>='A' && c<='Z')

because each "isathing" macro is converted into a table lookup and because it
involves much less coding.

The Standard input and output macros and functions

The Pre-Processor and standard libraries - The ctype macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ctype.html (2 of 2) [02/04/2002 09:24:01]

Switch and For Statements,
Command Line and File
Handling - Introduction
Chapter chap9 section 1

In this chapter we will see how to process the command line arguments that will
enable us to write C programs that can be used in the same way as normal operating
system commands. We will also see how to do some elementary handling of files
from within programs rather than using host system input and output redirection.

Before we do that, however, we are going to look at two C language statements that
we have not discussed previously. These are the for and switch statements.

The for statement.●

The switch statement.●

Command line arguments●

Basic file handling●

Standard input, output and error●

Direct access file handling●

Records and fields in files●

Exercises●

Switch and For Statements, Command Line and File Handling - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.intro.html [02/04/2002 09:24:02]

The Pre-Processor and standard
libraries - Standard input and output
functions and macros
Chapter chap8 section 6

The include file stdio.h contains a number of useful function declarations, macros and defined
constants. Many of these are concerned with file handling but the following are more generally
useful.

function name function action

getchar() Get character from standard input. This is usually a macro.

gets() Gets string from standard input

printf() Formatted write to standard output

putchar() Puts character to standard output. This is usually a macro.

puts() Puts string to standard output

scanf() Formatted read from standard input

sprintf() Formatted write to store

sscanf() Formatted read from store

The prototypes for some of these functions, such as printf(), are only partial since they accept a
variable argument list. As well as these functions stdio.h also includes definitions for a number
of useful constants

constant name meaning

BUFSIZ Standard Buffer Size for I/O

EOF End of File Coded Value

NULL Pointer that doesn't point to anything

Just in case you're interested here's a typical macro-expansion of getchar().

(--(stdin)->_cnt>=0? ((int)*(stdin)->_ptr++):_filbuf(stdin))

stdin is a composite data type (see next chapter but 1) that includes both a count of available
characters and a pointer to the next available character. _filbuf() is a library function to fill the
buffer associated with the composite data object stdin .

A simple example is in order. This program, called revlin , reverses a line of input text.

#include <stdio.h>
main()
{
 char inbuf[BUFSIZ];
 int c;

The Pre-Processor and standard libraries - Standard input and output functions and macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.stdio.html (1 of 4) [02/04/2002 09:24:05]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/revlin.c

 int nchar = 0;
 while((c=getchar()) != '\n') *(inbuf+nchar++) = c;
 while(nchar--) putchar(*(inbuf+nchar));
 putchar('\n');
}

A typical example of its operation

The cat sat on the mat 1234567890 times
semit 0987654321 tam eht no tas tac ehT

The use of getchar() is generally preferable to the complicated behaviour of scanf(). A more
interesting example is the following program which does the same thing repeatedly until it
encounters the end of the input file.

#include <stdio.h>

main()
{
 char inbuf[BUFSIZ];
 int c;
 while(1)
 {
 int nchar = 0;
 while((c=getchar()) != '\n')
 {
 if(c==EOF) exit(0);
 *(inbuf+nchar++) = c;
 }
 while(nchar--) putchar(*(inbuf+nchar));
 putchar('\n');
 }
}

This is what it did when presented with itself as input

>h.oidts< edulcni#
)(niam
{
;]ZISFUB[fubni rahc
;c tni
)1(elihw
{
;0 = rahcn tni
)'n\' =!))(rahcteg=c((elihw
{
;)0(tixe)FOE==c(fi
;c =)++rahcn+fubni(*
}
;))rahcn+fubni(*(rahctup)--rahcn(elihw

The Pre-Processor and standard libraries - Standard input and output functions and macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.stdio.html (2 of 4) [02/04/2002 09:24:05]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/revlin1.c

;)'n\'(rahctup
}
}

The functions getchar(), putchar() and the constant EOF repay further study.

The function getchar(), actually a macro, reads a character from standard input and returns it as
a functional value. The value of the function getchar() is of type int for a very important
reason. This is that if the system calls that underlie getchar() detect an end of file condition
then they need to return something that cannot be confused with any possible character. The
only safe way of doing this is to return an integer with some of the bits in the high byte set,
something that would never happen with valid character input (always assuming, of course, that
you didn't have a Chinese keyboard). The constant value written as EOF is commonly -1 but
you musn't assume this. It is a common beginner's mistake to declare the variable "c" of type
char rather than type int in the preceding program, this results in high-byte truncation on
assignment and the end of file condition never being seen.

If the input for a program is being taken from a file, using input re-direction under MSDOS or
Unix, then it is clearly quite straightforward for the host operating system to detect the end of
the file and raise the end-of-file condition. If the the program is taking input from un-redirected
standard input (i.e. the keyboard) this is more difficult. The usual approach is for the keyboard
driving software (that also does such things as echoing the input and making the ERASE key
work properly) to detect a special key (commonly Ctrl-Z or Ctrl-D) at the start of an input line
and use this circumstance to raise the end-of-file condition. Details, obviously, vary between
host systems.

The function, again really a macro, putchar(c) takes a character as parameter and transfers it to
the standard output.

It is useful to note that the function gets(), that we have already used, returns a character
pointer. If the function completed successfully then the pointer points to the start of the buffer
that the string was read in to, if the function fails or, more likely, encounters an end of file
condition then gets() will return a pointer with the value NULL. A simple program, called filean
, that reports on the contents of a file read from standard input illustrates its use.

#include <stdio.h>
#include <ctype.h>
main()
{
 char inbuf[BUFSIZ];
 int lcnt = 0; /* letters */
 int dcnt = 0; /* digits */
 int nchar = 0; /* total number of characters */
 int lines = 0; /* number of lines */
 while(gets(inbuf) != NULL)
 {
 int i=0;
 char c;
 nchar += strlen(inbuf);
 lines++;

The Pre-Processor and standard libraries - Standard input and output functions and macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.stdio.html (3 of 4) [02/04/2002 09:24:05]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/filean.c

 while(c = *(inbuf+i++))
 {
 if(isalpha(c))lcnt++;
 if(isdigit(c))dcnt++;
 }
 }
 printf("%d lines\n%d characters\n"
 "%d letters\n%d digits\n",
 lines,nchar,lcnt,dcnt);
}

When asked to process the file text using the Unix command

filean < text

it produced the following output

195 lines
7309 characters
5917 letters
12 digits

This differs from the output produced by the Unix command

wc text

which produced the output

 195 1204 7504 text

This indicates 195 lines, 1204 "words" and 7504 characters. Because the filean program did not
count the newline characters at the end of each line since these were converted to NUL
characters by gets().

The mathematical macros and functions

The Pre-Processor and standard libraries - Standard input and output functions and macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.stdio.html (4 of 4) [02/04/2002 09:24:05]

The Pre-Processor and standard
libraries - Function Like Macros
Chapter chap8 section 10

An extension of the #define directive allows parameters to be associated with
preprocessor directives in a notation very reminiscent of a function. These are
normally called macros or function-like macros . getchar(), putchar() and the
isathing() macros are examples that are defined in the header files stdio.h and
ctype.h respectively.

The basic syntax is

#define identifier(identifier list) replacement-string

A simple example might be

#define cbroot(x) pow(x,1.0/3)

this means that code such as

cbroot(y+17)

is converted into

pow(y+17,1.0/3)

by the preprocessor. This is very handy, however there are some problems. Consider
the example

#define square(a) a*a

This is quite satisfactory for usages such as

square(17)

which is converted to

17*17

but the conversion of

square(x+2)

to

x+2*x+2

is unlikely to have the effect that the programmer intended. To avoid this problem it

The Pre-Processor and standard libraries - Function Like Macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.function.like.html (1 of 5) [02/04/2002 09:24:09]

is essential to write

#define square(a) (a)*(a)

Once this has been done the preprocessor will convert

square(x+2)

to

(x+2)*(x+2)

Of course there are still some problems with usages such as

1/square(x+2)

being converted to

1/(x+2)*(x+2)

which always has the value 1. To solve this problem a macro such as square is
always defined as

#define square(a) ((a)*(a))

the immediate previous example converting to

1/((x+2)*(x+2))

Unfortunately there are some problems that cannot be resolved. Consider the
following program.

#define square(x) ((x)*(x))
main()
{
 int i=0;
 while(i<16)
 printf("%2d %4d\n",i,square(i++));
}

The output produced is

 2 0
 4 6
 6 20
 8 42
10 72
12 110
14 156

The Pre-Processor and standard libraries - Function Like Macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.function.like.html (2 of 5) [02/04/2002 09:24:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/macroex1.c

16 210

There is clearly something seriously wrong here. The loop has gone up in steps of
two rather than one and the numbers in the right hand column aren't even squares.
The macro expansion of "square(i++)" is

((i++)*(i++))

which, of course, increments "i" twice not once. Note also the right to left order of
function parameter evaluation. This sort of problem causes most C programmers to
use function-like macros with considerable care.

Of course macro definitions within comments are not seen by either the compiler or
the pre-processor; comments are stripped from the source program before
pre-processing. Macros and #define' d identifiers are not seen when they are
referenced inside strings however the value associated with a pre-processor
definition may be a string.

Also if the formal parameter associated with a macro is preceded by a "#" symbol in
the replacement string then a string complete with enclosing quotes and all relevant
escapes is formed. This operation is known as stringizing. It is illustrated by the
following program.

#define string(x) #x
main()
{
 printf(">>%s<<\n",string(a string));
 printf(">>%s<<\n",string(" quoted "));
}

producing the output

>>a string<<
>>" quoted "<<

The following example is more interesting. It also shows that a macro can be
defined in terms of another macro which is in turn defined in terms of yet another
macro.

#define showx(x) printf(#x " = %d ",(x))
#define show1(x) showx(x);printf("\n")
#define show2(x,y) showx(x);show1(y)
#define show3(x,y,z) showx(x);show2(y,z)
#define show4(x,y,z,p) showx(x);show3(y,z,p)

main()

The Pre-Processor and standard libraries - Function Like Macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.function.like.html (3 of 5) [02/04/2002 09:24:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/stringiz.c

{
 int a = 4;
 int b = 9;
 int c = 7;
 int d;
 show1(c+d);
 show3(a,b+c,d=a+b);
 show4(a*b,b*c,c*d,d*a);
}

producing the output

c+d = 7
a = 4 b+c = 16 d=a+b = 13
a*b = 36 b*c = 63 c*d = 91 d*a = 52

It might be useful to consider the steps in the expansion of show1(c+d) in the above
program. The first step of macro expansion conversion changes this to

 "showx(c+d);printf("\n");

The expansion of showx() yields

 printf("c+d" " = %d ",(c+d))

after the stringizing indicated by "#x". The rule concerning the concatenation of
adjacent strings separated only by white space then operates to give a single layout
specification. Warning - many supposed ANSI compilers don't seem to get this quite
right, it should be used with care.

If it is not possible or convenient to write the complete text of a function-like macro
on one line then it can be written over several lines if there is an escaping backslash
immediately before the end of each line.

The pre-processor also provides facilities to paste together tokens to form a single
token after pre-processing. This is called token pasting and is achieved using the ##
symbol. This simply means join up the two items on either side of the ## as if they
were a single text token. Token pasting is illustrated by the following program

#include <stdio.h>
#define shown(x) printf("%d",n##x)
main()
{
 int n1 = 3;
 int n2 = 4;
 int n3 = 5;

The Pre-Processor and standard libraries - Function Like Macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.function.like.html (4 of 5) [02/04/2002 09:24:09]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap8/shown.c

 shown(1);
 shown(2);
 shown(3);
 putchar('\n');
}

producing the output

345

When the pre-processor processed shown(1) it generated

 printf("%d",n1)

rather than the

 printf("%d",n 1)

that would have been generated without pasting.

There are further complex rules defining the behaviour of the preprocessor when
handling replacement strings which include identifiers that were #define' d in an
earlier pre-processor directive.

The #ifdef and #endif directives

The Pre-Processor and standard libraries - Function Like Macros

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.function.like.html (5 of 5) [02/04/2002 09:24:09]

Switch and For Statements, Command
Line and File Handling - Command Line
Arguments
Chapter chap9 section 4

Under an operating system such as Unix or MSDOS a command may typically be issued by typing
something such as

cut -d: -f2,3 data

Here cut is the name of a the command and the assumption is that there is an executable file called cut in
a standard system place. The remaining items on the user supplied input are options or flags controlling
the precise behaviour of the command. They are known as command line arguments.

A C program can always access the command line arguments associated with its invocation via formal
parameters associated with the definition of the function main(). The definition of main() may typically
start

main (int argc, char *argv[])

the identifiers argc and argv are conventional. The value of argc is the number of command line
arguments, including the name of the program and argv is an aggregate of character pointers that point
to the actual arguments, each of which is presented to the program as a NUL terminated string. It is a
simple matter to write a program such as that given below that simply echoes its command line
arguments. The program is called arg1 .

main(int argc, char *argv[])
{
 int i = 0;
 printf("%d command line arguments\n",argc);
 do
 printf("Argument %d = >>%s<<\n",i,argv[i]);
 while(++i<argc);
}

and typical examples of use

$ arg1 a b c
4 command line arguments
Argument 0 = >>arg1<<
Argument 1 = >>a<<
Argument 2 = >>b<<
Argument 3 = >>c<<
$ arg1 test_data -f -deg
4 command line arguments
Argument 0 = >>arg1<<
Argument 1 = >>test_data<<
Argument 2 = >>-f<<
Argument 3 = >>-deg<<
$ arg1
1 command line arguments

Switch and For Statements, Command Line and File Handling - Command Line Arguments

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.command.line.html (1 of 4) [02/04/2002 09:24:12]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/arg1.c

Argument 0 = >>arg1<<
$

The symbols ">>" and "<<" are used to make the limits of the strings clear in the output.

It should be understood that the host operating system is likely to manipulate the command line
arguments typed by the user into something quite different. Before designing applications that depend
on the command line arguments some experimentation is wise. For example typing

arg1 *

on the Unix system used to write these notes gave the result

5 command line arguments
Argument 0 = >>arg1<<
Argument 1 = >>arg1<<
Argument 2 = >>arg1.c<<
Argument 3 = >>arg1.log<<
Argument 4 = >>text<<

whereas under MSDOS (and the Turbo C compiler) the following results were obtained.

2 Command line arguments
Argument 0 = >>.\arg1.exe<<
Argument 1 = >>*<<

The reason for the difference is nothing to do with the C programming language but stems from the fact
that the Unix command interpreting shell expands the file naming wild card "*" into a list of file names
whereas MSDOS's COMMAND.COM does not and requires the user program to make various subtle
system calls to perform this expansion. As stated above the possibility of such differences must be
remembered when designing programs that take information from the command line.

A common alternative declaration for the function main() is

main(int argc, char **argv)

and it would be possible to re-write the previous program to read.

main(int argc, char **argv)
{
 printf("%d Arguments\n",argc);
 while(*argv) printf("%s\n",*argv++);
}

The operation is similar to the previous example. Its operation depends, amongst other things, on the
fact that argv[argc] is guaranteed by the ANSI standard to be NULL so the loop will terminate properly.
The ANSI standard also guarantees that the strings argv[] retain their values throughout the execution of
the program. They may also be changed by the program though this is seldom useful or good practice.

A common requirement is to recognise command line arguments, possibly with associated values and
set flags that will control the behaviour of parts of the program. Such command line arguments may
typically look like

Typical argument Type

-f A "binary" flag. Either present or not present.

-t: A single character value. The argument introduces a value ":" in this case.

-x1234 A flag introducing a numeric value

Switch and For Statements, Command Line and File Handling - Command Line Arguments

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.command.line.html (2 of 4) [02/04/2002 09:24:12]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/arg2.c

-ddata A flag introducing a string value

Typical code to recognise flags of these various types is shown in the example below.

int fflg = 0; /* 1 implies -f seen */
char tchar = 'x'; /* character from -t option */
int xval = 0; /* value from -x option */
char filename[50]; /* string from -d option */
main(int argc, char *argv[])
{
 int i;
 for(i=1;i<argc;i++)
 {
 if(argv[i][0] == '-')
 {
 switch(argv[i][1])
 {
 case 'f' :
 fflg = 1;
 break;
 case 't' :
 tchar = argv[i][2];
 break;
 case 'x' :
 xval = atoi(argv[i]+2);
 break;
 case 'd' :
 strcpy(filename,argv[i]+2);
 break;
 default :
 printf("Unknown option %s\n",argv[i]);
 }
 }
 }
 if(fflg) printf("-f seen\n");
 printf("\"tchar\" is %c\n",tchar);
 printf("x value is %d\n",xval);
 printf("File name is %s\n",filename);
}

and some typical logs

$ arg3 -t^ -x44 -dfred
"tchar" is ^
x value is 44
File name is fred
$ arg3 -ddata -f
-f seen
"tchar" is x
x value is 0
File name is data
$ arg3 -v -t5

Switch and For Statements, Command Line and File Handling - Command Line Arguments

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.command.line.html (3 of 4) [02/04/2002 09:24:12]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/arg3.c

Unknown option -v
"tchar" is 5
x value is 0
File name is
$

You should note that the options are sensed correctly irrespective of their order on the command line
and that the variables associated with the options retain their initial values if the options do not appear
on the command line. File Handling

Switch and For Statements, Command Line and File Handling - Command Line Arguments

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.command.line.html (4 of 4) [02/04/2002 09:24:12]

Switch and For Statements,
Command Line and File
Handling - Direct Access Files
Chapter chap9 section 7

The C language view of a file is to see it as an array of bytes. This means that all
files may be treated as direct access files and the library function fseek() may be
used to provide immediate access to any particular part of the file. This assumes that
the start byte address of the record is known. The following program demonstrates
the construction and use of a table of record start positions using ftell().

/* program to display selected
 records from a file */

#include <stdio.h>
#define MAXREC 1000
long index[MAXREC];

int makeindex(FILE *);
void showrec(FILE *,int);

main(int argc, char *argv[])
{
 int nrec; /* record to show */
 int nrecs; /* records in file */
 FILE *d; /* the data file */
 if(argc != 2)
 {
 fprintf(stderr,"Usage : showrec f\n");
 exit(1);
 }
 if((d=fopen(argv[1],"r"))==NULL)
 {
 fprintf(stderr,"error opening %s\n",
 argv[1]);
 exit(1);
 }
 if((nrecs=makeindex(d))==0)
 {

Switch and For Statements, Command Line and File Handling - Direct Access Files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.direct.access.html (1 of 3) [02/04/2002 09:24:14]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/fil3.c

 fprintf(stderr,
 "file too big or empty\n");
 exit(1);
 }
 printf("%d records\n",nrecs);
 while(1)
 {
 printf("Enter record number ");
 scanf("%d",&nrec);
 if(nrec<0) exit(0);
 if(nrec >= nrecs)
 printf("Out of range\n");
 else showrec(d,nrec);
 }
}
int makeindex(FILE *f)
/* builds the (global) index table
 and returns the number of records
 or 0 if the file has too many
 records or is empty
*/
{
 int c;
 int i=0;
 while(1)
 {
 if((c=getc(f))=='\n')
 {
 index[++i]=ftell(f);
 if(i==MAXREC) return 0;
 }
 else
 if(c==EOF) return i;
 }
}
void showrec(FILE *f, int n)
/* display required record - simply copies
 characters to stdout
*/
{
 char c;
 fseek(f,index[n],0);
 while(1)

Switch and For Statements, Command Line and File Handling - Direct Access Files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.direct.access.html (2 of 3) [02/04/2002 09:24:14]

 {
 putchar((c=getc(f)));
 if(c=='\n') return;
 }
}

A typical dialogue using the source file as input is shown below.

$ fil3 fil3.c
76 records
Enter record number 44
 or 0 if the file has too many
Enter record number 11
 FILE *d; /* the data file */
Enter record number 76
Out of range
Enter record number 21
 exit(1);
Enter record number -1

There are a number of interesting points here. The direct access functions always
work with long integers and it is traditional to declare the associated variables as
being of type long int . The record numbering starts at zero and the file examination
part of the program is terminated by a negative input. Strictly the final parameter of
fseek() ought to have been SEEK_SET not zero.

The value returned by ftell() is the byte position of the byte about to be read from
the file so when a newline is encountered this is the start address of the next record.

The functions fsetpos() and fgetpos() do the same things as fseek() and ftell() only
they use parameters of type fpos_t rather than long int. This, potentially, allows for
larger files to be handled and the use of these functions is to be preferred.

Records and Fields

Switch and For Statements, Command Line and File Handling - Direct Access Files

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.direct.access.html (3 of 3) [02/04/2002 09:24:14]

Switch and For Statements,
Command Line and File Handling -
Records and Fields
Chapter chap9 section 8

For many applications it is necessary, or useful, to regard the records of a file as
consisting of a set of fields. The standard file handling functions provide no support for
fields. There are two common approaches to splitting records into fields. The first
approach, understood by many Unix utilities, is to designate a special character as the
field separator character, this allows a variable number of variable width fields; the
alternative is to define fields as being of a specific width.

When handling data organised into fields within records it is often useful to represent the
record as a sequence of strings. The following program shows how this might be done.

#include <stdio.h>
#define MAXCHAR 120 /* maximum record size */
#define MAXFLDS 20 /* maximum number of fields */
#define SEPCHAR ':' /* field separator */
main()
{
 char ibf[MAXCHAR]; /* input buffer */
 char *fields[MAXFLDS]; /* field pointers */
 int i;
 int j;
 int nfields; /* number of fields */
 while(gets(ibf)!=NULL)
 {
 fields[0] = ibf;
 i=0;
 for(j=0;ibf[j];)
 {
 if(ibf[j]==SEPCHAR)
 {
 fields[++i] = &ibf[j+1];
 ibf[j]='\0';
 }
 j++;
 }
 nfields = i+1;
 printf("%d fields\n",nfields);
 for(j=0;j<nfields;j++)

Switch and For Statements, Command Line and File Handling - Records and Fields

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.records.fields.html (1 of 2) [02/04/2002 09:24:16]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap9/fil4.c

 printf("field %2d >>%s<<\n",j,fields[j]);
 }
}

The program, which reads the data from its standard input, produced the following output

3 fields
field 0 >>a<<
field 1 >>b<<
field 2 >>c<<
1 fields
field 0 >>some data<<
2 fields
field 0 >><<
field 1 >>starts with a null field<<
2 fields
field 0 >>ends with a null field<<
field 1 >><<

when presented with the input

a:b:c
some data
:starts with a null field
ends with a null field:

Exercises

Switch and For Statements, Command Line and File Handling - Records and Fields

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.records.fields.html (2 of 2) [02/04/2002 09:24:16]

Switch and For Statements,
Command Line and File
Handling - Exercises
Chapter chap9 section 9

Write a program that will evaluate a simple arithmetic expression read from
the command line. I.e. the user will type

myprog 3+4

and the program will respond with 7.

1.

Write a version of the file copying program that prompts the user for the
source and destination file names.

2.

Write a version of the file copying program that takes the source and
destination file names from the command line. Devise suitable tests to detect
the incorrect number of command line arguments and invalid file names.
Modify your program to determine whether the destination file already exists
and generate a suitable warning if it does.

3.

Write a program using nested for loops to print out a multiplication table. See
earlier notes for an example of this done using the while statement.

4.

Switch and For Statements, Command Line and File Handling - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap9.exercises.html [02/04/2002 09:24:17]

Structures, Unions and Typedefs
- Introduction
Chapter chap10 section 1

In this chapter we will see how to construct data objects with complex internal
structure. We will also see how to access the components of such objects and the
operations that can be performed on the objects themselves.

See also

Structures (basic)●

Structures (examples)●

Structures (use, basic)●

Structures (use, extended)●

Unions●

Alignment Constraints●

Typedefs●

Bit Fields●

enum data types●

Structures, Unions and Typedefs - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.intro.html [02/04/2002 09:24:18]

Structures, Unions and Typedefs
- Basic Structures
Chapter chap10 section 2

A C structure is a compound data object. A compound data object consists of a
collection of data objects of, possibly, different types. It may be thought of as a
private or user defined data type as distinct from the standard data types that are
provided by the C programming language.

The C programming language provides facilities to declare such objects which
means define their internal structure via a template and to declare a tag to be
associated with such objects so that it is not necessary to repeat the definition. Given
both the declaration of the structure and the associated tag it is only necessary to use
the tag when declaring actual instances of structures. A simple example of a
structure declaration and definition is given below. The C keyword " struct is used
to indicate that structures are being defined and declared.

 struct date /* the tag */
 { /* start of template */
 int day; /* a member */
 int month; /* a member */
 int year; /* a member */
 char dow; /* a member */
 } dates[MAXDAT],today,*next; /* instances */

dates is an aggregate of instances of " struct date , today is a simple instance of a
struct date and next is simply a pointer to a struct date . Once the code given above
has appeared in the program, further instances of struct date can be declared in the
following manner.

 struct date my_birthday;
 struct date end_of_term;

In this simple example the structure tag is " Tag names conform to the same rules as
variable names but belong to a separate "universe" so a variable and a tag can have
the same name. It is, thus, quite legal and perfectly acceptable to write

struct date date;

The template tells the compiler how the structure is laid out in memory and gives
details of the member names. A (tagged) template does not reserve any instances of
the structure, it only tells the compiler what it means.

Structures, Unions and Typedefs - Basic Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.basic.html (1 of 3) [02/04/2002 09:24:20]

Structure member declarations conform to the same syntax as ordinary variable
declarations. Structure member names should conform to the same syntax as
ordinary variable names and structure tags but again belong to a different
"universe". I.e. the same name could be used for a structure tag, an instance of the
structure and a member of the structure. Each structure defines a separate universe
as far as naming structure members is concerned.

The following rather bizarre and confusing code is perfectly legal

 struct u
 {
 int u;
 int v;
 } v;
 struct v
 {
 char v;
 char u;
 } u;

Pre-ANSI C compilers often had rather more restrictive rules about the separate
naming universes.

Structure members can be any valid data type, including other structures,
aggregates and pointers including pointers to structures and pointers to functions. A
structure may not, for obvious reasons, contain instances of itself but may contain
pointers to instances of itself.

Structures may be initialised in the same fashion as aggregates using initialisers. for
example

struct date Christmas = {25,12,1988,3};

Individual members of a structure may be referred as shown in the following
examples

 dates[k].year
 today.month
 (*next).day

The . (dot) operator selects a particular member from a structure. It has the same
precedence as () and [] which is higher than that of any unary or binary operator.
Like () and [] it associates left to right. The basic syntax is

<structure name>.<member name>

Structures, Unions and Typedefs - Basic Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.basic.html (2 of 3) [02/04/2002 09:24:20]

The syntax requires that the first component be a structure so

dates.year[k] /* WRONG */

would be wrong because dates is an aggregate of structures and year is not an
aggregate, similarly

next.day / WRONG */

would be wrong because the . (dot) operator has a higher priority than the * (star)
operator. This incorrect usage attempts to use next as a structure and access the
object whose address is in the member day of this structure.

The correct way of referring to a member of a structure whose address is given is
typically

(*next).day

This is so common that the alternative syntax

next->day

is part of the C Programming language. The -> operator has the same precedence
as the . (dot) operator.

Structures may be assigned, used as formal function parameters and returned as
functional values. Such operations cause the compiler to generate sequences of load
and store instructions that might pose efficiency problems. C programmers
particularly concerned about program speed will avoid such things and work
exclusively with pointers to functions.

There are few actual operations that can be performed on structures as distinct from
their members. The only operators that can be validly associated with structures are
"=" (simple assignment) and "&" (take the address). It is not possible to compare
structures for equality using "==", nor is it possible to perform arithmetic on
structures. Such operations need to be explicitly coded in terms of operations on the
members of the structure.

Simple examples of structures

Structures, Unions and Typedefs - Basic Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.basic.html (3 of 3) [02/04/2002 09:24:20]

Structures, Unions and Typedefs -
Simple examples of structures
Chapter chap10 section 3

The following simple structure declarations might be found in a graphics environment.

 struct point
 {
 double x;
 double y;
 };

 struct circle
 {
 double rad;
 struct point cen;
 };

With the declarations given above the following simple C function may be written to give
the area of a circle

 double area(struct circle circle)
 {
 return PI*circle.rad*circle.rad;
 }

The example assumes that PI was #define'd suitably. To determine whether a given point
lay inside a circle the following C function could be used.

 incircle(struct point point,struct circle circle)
 {
 double dx,dy;
 dx = point.x - circle.cen.x;
 dy = point.y - circle.cen.y;
 return dx*dx+dy*dy <= circle.rad*circle.rad;
 }

Further graphics structure declarations such as

 struct line
 {
 struct point start;
 struct point end;
 };

Structures, Unions and Typedefs - Simple examples of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.examples.html (1 of 2) [02/04/2002 09:24:21]

and

 struct triangle
 {
 struct point pt[3];
 };

can be made in a natural and useful fashion.

Use of Structures

Structures, Unions and Typedefs - Simple examples of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.examples.html (2 of 2) [02/04/2002 09:24:21]

Structures, Unions and Typedefs -
Use of Structures
Chapter chap10 section 4

This section presents and discusses a program that makes use of structures. The first version
of the program is listed below. The purpose of the program is to read text from the standard
input and produce a list of the number of times each distinct word occurs in the input. The
first version of the program requires that the input be presented one word per line.

#include <string.h>
#include <stdio.h>

#define MAXWRDS 1000
#define MAXCHRS 4000

struct word
{
 char *text; /* pointer to word text */
 int count; /* number of occurences */
} word[MAXWRDS];

int nwords; /* number of different words */

void findwrd(char *);
void showwrds(void);

main()
{
 char inbuf[BUFSIZ];
 while(gets(inbuf))
 findwrd(inbuf);
 printf("%d different words\n",nwords);
 showwrds();
}
void findwrd(char *s)
{
 static char wspace[MAXCHRS];
 static char *wptr = wspace;
 int i=0;
 int l;
 while(word[i].count) /* look for word */
 {
 if(strcmp(s,word[i].text)==0)
 {

Structures, Unions and Typedefs - Use of Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.html (1 of 5) [02/04/2002 09:24:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wfreq.c

 word[i].count++;
 return;
 }
 i++;
 } /* didn't find it */
 if((l=strlen(s))+wptr >= wspace+MAXCHRS)
 {
 fprintf(stderr,"Out of string space\n");
 exit(1);
 }
 strcpy(wptr,s); /* save it */
 if(i>=MAXWRDS)
 {
 fprintf(stderr,"Out of word space\n");
 exit(1);
 }
 word[i].text = wptr; /* save info */
 word[i].count = 1;
 nwords++;
 wptr += l+1;
}
void showwrds(void)
{
 int i=0;
 while(word[i].count)
 {
 printf("%2d %s\n",word[i].count,word[i].text);
 i++;
 }
}

When presented with the following data file

this
is
the
data
the
cat
sat
on
the
mat

it produced the following output

8 different words
 1 this

Structures, Unions and Typedefs - Use of Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.html (2 of 5) [02/04/2002 09:24:24]

 1 is
 3 the
 1 data
 1 cat
 1 sat
 1 on
 1 mat

Of course this is not a very convenient way of presenting input.

The following features of the program should be noted. The program starts by defining the
structure word that will hold the frequency count and a pointer to the place where the text of
the word is stored. It is much better to store a pointer to the place where the word is stored
rather than storing the actual text of the word in the structure because, in the latter case, it
would be necessary to reserve enough space within every instance of struct word to hold the
complete text of the largest possible word. It is difficult to predict the largest size and the
operation is likely to be very wasteful of memory.

What is hoped to be a suitable number of instances of struct word are declared, in a future
chapter we shall see to create new instances of struct word dynamically. The aggregate word
is of storage class extern for two reasons. The first is to take advantage of the default zero
initialisation of objects of this storage class and the second is that its manipulation is the
main function of the program so it is likely to be referenced by most of the various functions
of the program.

Most of the work of the program is performed in the function findwrd() This maintains the
set of words seen so far in the private buffer words , it also maintains a private pointer wptr
to the next free location in this buffer. The first task of findwrd() is to search through the
aggregate word to see if the word has already been encountered, this is done very simply by
evaluating the expression

strcmp(s,word[i].text)

If the word has been found then the associated count is incremented and the program returns
from findwrd() If the word is not found then it has to be copied into the text buffer and the
relevant data stored in the next member of the aggregate word Checks are made that there is
enough free space to store the information.

The function showwrds() simply lists the stored information.

A natural next step in the development of this program is to list the words in some sort of
order, the most natural being in order of decresaing frequency and alphabetic order if they
occur the same number of times. This can, of course, be achieved by post-processing the
output using the system sort utility but it is instructive to see how it is done using the library
function qsort() The program listed above requires three modifications, the first is to call the
function qsort() immediately before showwrds() , the second is to define and declare the
function compare() and the third is to include stdlib.h to get the prototype for qsort() The
prototype of compare() is

int compare(struct word *,struct word *);

Structures, Unions and Typedefs - Use of Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.html (3 of 5) [02/04/2002 09:24:24]

Rather then repeat the complete program the functions main() and compare() are listed
below.

 .
int compare(struct word *,struct word *);
 .
 .
 .
 .
 .
main()
{
 char inbuf[BUFSIZ];
 int (*comp)() = compare;
 while(gets(inbuf))
 findwrd(inbuf);
 printf("%d different words\n",nwords);
 qsort(word,nwords,sizeof (struct word),comp);
 showwrds();
}
 .
 .
 .
int compare(struct word *w1,struct word *w2)
{
 if(w1->count != w2->count)
 return w2->count - w1->count;
 return strcmp(w1->text,w2->text);
}

main() has been modified to call qsort() In order to provide qsort() with parameters of the
correct type, it was necessary to declare a variable comp of type pointer to integer valued
function.

The library function qsort() operates by repeatedly calling the comparison function provided
as a parameter to determine whether to re-arrange the elements of the array. It provides the
comparison function with pointers to the two elements that are to be compared. Within the
comparison function note the use of the "->" operator. Note also that the first use of return,
which is used if the counts are different has the returned value set up in such a way that the
sort is in reverse numerical order, i.e. larger counts sort low. If the counts are the same the
value of the strcmp() function provides the necessary ordering information.

The output produced by processing the test data displayed earlier is now

8 different words
 3 the
 1 cat
 1 data

Structures, Unions and Typedefs - Use of Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.html (4 of 5) [02/04/2002 09:24:24]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wfreq1.frg
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wfreq1.frg

 1 is
 1 mat
 1 on
 1 sat
 1 this

A more realistic test is for the modified program to process its own source code after this has
been pre-processed by the Unix utility tr convert all sequences of non-alphabetic characters
into single newline characters. The first few lines of the output were

63 different words
19 word
13 i
10 count
 8 int
 8 w
 7 text
 6 char
 6 struct
 6 void
 5 s
 5 wptr
 4 if
 4 n
 4 nwords
 4 of
 3 MAXCHRS
 3 MAXWRDS

Structure (use - extended)

Structures, Unions and Typedefs - Use of Structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.html (5 of 5) [02/04/2002 09:24:24]

Structures, Unions and Typedefs -
Extended use of structures
Chapter chap10 section 5

Apart from the problems caused by the required input layout which can always be solved by pre-processing,
the technique of searching through the words seen so far is rather clumsy. It would be much easier if we kept
the words in some sort of order. The next version of the program does this by organising the storage of
information about words in a more elaborate fashion. Rather than having a simple aggregate of struct word
each instance of a struct word is, potentially, associated with two other instances of struct word The
association or linkage is maintained by two extra elements in a struct word , these are both pointers to other
instances of a struct word The first such pointer points to an instance of struct word representing text that is
less than that in the main instance and the second points to an instance with text greater than. The declaration
of struct word now becomes

 struct word
 {
 int count;
 char *text;
 struct word *lptr;
 struct word *rptr;
 }

As the program processes input words it builds a hierarchy of such structures, this hierarchy is called a " tree ,
for reasons that are obvious if you draw a diagram showing how the entries point to other instances. When a
word is encountered, a very simple search will either locate it or come to a pointer that doesn't point to
anything (a NULL pointer).

The following diagram shows how the data would be organised after processing the sequence of words "the",
"cat" and "sat".

 +-------+
 | pug 0 |
 +-+---+-+
 | |
 +-----+ +-----+
 | |
+---+---+ +---+---+
| cat 1 | | the 1 |
+-+---+-+ +-+---+-+
 |
 +-------+
 |
 +---+---+
 | sat 1 |
 +-+---+-+

The entry for "pug" is a dummy entry that represents the start of the tree. After further processing the words
"on", "the" and "mat", the data organisation would look like

 +-------+
 | pug 0 |
 +-+---+-+
 | |
 +---------------------+ +-----+

Structures, Unions and Typedefs - Extended use of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.ext.html (1 of 5) [02/04/2002 09:24:28]

 | |
+---+---+ +---+---+
| cat 1 | | the 2 |
+-+---+-+ +-+---+-+
 | |
 +-----+ +-------+
 | |
 +---+---+ +---+---+
 | on 1 | | sat 1 |
 +-+---+-+ +-+---+-+
 |
 +-----+
 |
+---+---+
| mat 1 |
+-+---+-+

The program now looks very different. It is listed in separate sections. First the global declarations.

#include <stdio.h>

#define MAXCHS 4000 /* maximum characters */
#define MAXWDS 800 /* maximum different words */
int wdct; /* number of different words */
int maxocc; /* maximum count */

struct word
 {
 int count; /* occurences */
 char *body; /* actual text */
 struct word *lptr; /* left pointer */
 struct word *rptr; /* right pointer */
 };

void putword(char *,struct word *);
void listwords(struct word *,int);
void error(int);
struct word *new(char *);

This part of the code defines some constants, the compound data type struct word and the two global variables
wdct and maxocc It also includes the function prototypes and #include 's stdio.h The next part is the function
main()

main()
{
 char inbuf[BUFSIZ];
 int i;
 struct word *root;
 root=new("ZZZZ"); /* establish root of tree */
 root->count=0; /* it's only a dummy entry !! */
 while(gets(inbuf)) putword(inbuf,root);
 printf("%d Different Words\n",wdct-1);
 for(i=maxocc;i;i--)listwords(root,i);
}

This calls the function new() to obtain a pointer to a currently unused instance of a struct word and makes this

Structures, Unions and Typedefs - Extended use of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.ext.html (2 of 5) [02/04/2002 09:24:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf221.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf222.c

the root of the linked collection of data. Repeated calls to putword() process each input word as it is
encountered and finally the function listwords() displays all the words that have occurred a specific number of
times. The next listing shows the function putword() that stores information about the current word.

void putword(char *s,struct word *w)
/* Routine to increment word occurence
 count for words already encountered
 and create a properly linked tree
 leaf for words not already encountered.
 The arguments are :-
 (1) word in input
 (2) tree leaf to look at
 The routine descends recursively if the
 current leaf is not the required one.
*/
{
 int flag;
 flag = strcmp(s,w->body);
 if(flag==0)
 {
 if(++w->count > maxocc) maxocc = w->count;
 return;
 }
 if(flag<0)
 {
 if(w->lptr==NULL)
 w->lptr = new(s);
 else
 putword(s,w->lptr);
 }
 else
 {
 if(w->rptr==NULL)
 w->rptr = new(s);
 else
 putword(s,w->rptr);
 }
}

This is fairly straightforward. The input word is compared with the word in the current instance of struct word
, if they match the count is incremented and the function returns. If they do not match that the left or right
pointers are examined as appropriate. If the pointer examined is zero then a new instance of a struct word is
obtained from new() , if the pointer is not zero then the function putword() is examined with this instance of
struct word pointed to as parameter to see if the input word matches the text associated with the struct word
instance pointed to.

The next listing is the function new()

struct word *new(char *s)
/* Routine to set up new tree leaf containing information concerning
 the word supplied as argument. The function returns a pointer to
 the tree leaf which is used by the putword function to link it up
 properly with the rest of the tree.
*/
{
 static char text[MAXCHS];

Structures, Unions and Typedefs - Extended use of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.ext.html (3 of 5) [02/04/2002 09:24:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf223.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/new.c

 static char *tptr=text;
 static struct word words[MAXWDS];
 struct word *w;
 int slen;
 if(wdct>MAXWDS) error(2);
 slen = strlen(s) + 1;
 if(tptr+slen > text+MAXCHS) error(3);
 strcpy(tptr,s);
 w = &(words[wdct++]);
 w->body = tptr;
 tptr += slen;
 w->count = 1;
 w->lptr = NULL;
 w->rptr = NULL;
 return(w);
}

This function maintains a private aggregate of struct word This can be thought of as a pool of objects of this
type, the function fishes fresh objects from the pool, initialises them and returns their address. It also maintains
the internal buffer holding the bodies of the actual input words.

The final listing is the functions listwords() and error()

void listwords(struct word *w,int count)
/* Simple recursive tree walking */
{
 if(w->lptr!=NULL)listwords(w->lptr,count);
 if(w->count == count)
 printf("%3d %s \n",w->count,w->body);
 if(w->rptr!=NULL)listwords(w->rptr,count);
}
void error(int n)
/* Error reporting routine - all errors are fatal */
{
 printf("Error %d : ",n);
 exit(0);
}

These do not require any detailed explanation.

It should be noted that both the functions putword() and listwords() are recursive.

The program is still open to criticism of its arbitrary choice of the amount of space set aside for struct word
objects and the storage of input word text. This problem can be resolved by using the library function malloc()
to allocate space as required from the host system. Some minor change were necessary to the program, these
were the inclusion of stdlib.h for malloc() 's prototype and the deletion of the MAXWRDS and MAXCHARS
#define 's. The function new() has been completely re-written and the new version looks like

struct word *new(char *s)
/* Routine to set up new tree leaf
 containing information concerning
 the word supplied as argument.
 The function returns a pointer to
 the tree leaf which is used by the
 putword function to link it up
 properly with the rest of the tree.
*/
{

Structures, Unions and Typedefs - Extended use of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.ext.html (4 of 5) [02/04/2002 09:24:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf224.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf231.c

 int slen;
 struct word *w;
 if((w = (struct word *)
 malloc(sizeof (struct word)))==NULL) error(2);
 slen = strlen(s) + 1;
 if((w->body = (char *)malloc(slen))==NULL) error(3);
 strcpy(w->body,s);
 w->count = 1;
 w->lptr = NULL;
 w->rptr = NULL;
 wdct++;
 return w;
}

The most interesting point is the use of the function malloc() This takes a single parameter which is the
amount of space to be allocated, the function returns a generic pointer (void *) to the freshly allocated space,
this has to be cast to a pointer to the relevant data type, struct word in this case. If it is not possible to allocate
the required amount of memory, malloc() returns NULL. The initial contents of the freshly allocated memory
are indeterminate.

The similar function calloc() could have been used, this returns a memory area with all bits set to zero but it
requires an extra parameter to indicate how many objects to allocate. Using calloc() , the function new() could
be re-written as

struct word *new(char *s)
/* Routine to set up new tree leaf
 containing information concerning
 the word supplied as argument.
 The function returns a pointer to
 the tree leaf which is used by the
 putword function to link it up
 properly with the rest of the tree.
*/
{
 int slen;
 struct word *w;
 if((w = (struct word *)
 calloc(1,sizeof (struct word)))==NULL) error(2);
 slen = strlen(s) + 1;
 if((w->body = (char *)
 calloc(slen,sizeof (char)))==NULL) error(3);
 strcpy(w->body,s);
 w->count = 1;
 wdct++;
 return w;
}

The setting of w->lptr and w->rptr to NULL is no longer necessary.

Memory blocks allocated by calloc() or malloc() are administered by these functions as a collection of blocks
often called the heap . Reference to locations outside an allocated block can break the heap . The function
free() may be used to release an allocated block.

Unions

Structures, Unions and Typedefs - Extended use of structures

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.structs.use.ext.html (5 of 5) [02/04/2002 09:24:28]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/wf232.c

Structures, Unions and Typedefs
- Unions
Chapter chap10 section 6

The members of a structure are laid out in memory one after the other, a union is
syntactically identical (except that the keyword union is used instead of struct). The
difference between a struct and a union is that in a union the members overlap each
other. The name of a structure member represents the offset of that member from the
start of the structure, in a union all members start at the same location in memory.
The members of a union may themselves be structs and the members of a struct may
themselves be unions.

A typical application is illustrated by the following code fragment. If data, in the
form of floating point numbers in internal form is stored in a file then it is difficult
to read the file since all the standard C file handling functions operate character by
character. The fragment shown below resolves the difficulty by using a union whose
two members consist of a character array and a floating point number. It is assumed
that a floating point number occupies 8 characters.

 union ibf
 {
 char c[8];
 double x;
 } ibf;

 double values[...];

 for(i=0;i<8;i++) ibf.c[i] = getc(ifp);
 values[j] = ibf.x;

Typdefs

Structures, Unions and Typedefs - Unions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.unions.html [02/04/2002 09:24:29]

Structures, Unions and Typedefs
- Alignment Constraints
Chapter chap10 section 8

Almost all modern processors support byte addressing, i.e. an address is the address
of a byte. However there is often a constraint that larger data items (integers and
floating-point numbers) should start at locations whose address is a multiple of the
size of the data item. This constraint called, an alignment constraint, much
simplifies the handling of such data items.

C compilers can process struct and union declarations in such a way that such
alignment constraints do not cause problems. However as a consequence of this
there may be unassigned 'holes' left in structures. Similar problems arise in
allocating memory when processing normal declarations. Consider for example.

 char flag1; /* 1 byte */
 int count; /* 4 bytes */
 char pp[3]; /* 3 bytes */
 double val; /* 8 bytes */

This could well be laid out in memory as shown below.

 0 4 8 12 16 24

 | |x|x|x| | | | | | | |x|x|x|x|x| | | | | | | | |

 | | | |_______ val
 | | |_______________________ pp[0]
 | |_______________________________ count
 |_______________________________________ flag1

 The x's represent unassigned memory locations.

If memory were scarce it would make good sense to change the order of
declarations. The problems become more tricky in a non-byte addressing
environment (such as the PR1ME 50 series) which allows variables of type char to
occupy the next byte in memory but insists that arrays of char be aligned on word
boundaries.

Bit fields

Structures, Unions and Typedefs - Alignment Constraints

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.alignment.html [02/04/2002 09:24:31]

Structures, Unions and Typedefs
- Typedefs
Chapter chap10 section 7

The use of typedef is a simple macro-like facility for declaring new names for data
types, including user-defined data types. Typical examples are shown below :-

 typedef long BIGINT;
 typedef double REAL;
 typedef struct point
 {
 double x;
 double y;
 } POINT;

Given the above declarations, it would be possible to write the following
declarations :-

 POINT a,b,c;
 REAL a1,a2;

It should be emphasised that this does not create new types, it just re-names existing
ones. Unlike pre-processor constructs the interpretation of typedefs is performed by
the compiler so that checks can be made that typedefs are used correctly.

Strangely typedef is regarded in the standard as a storage class.

Alignment Constraints

Structures, Unions and Typedefs - Typedefs

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.typedef.html [02/04/2002 09:24:32]

Structures, Unions and Typedefs
- Bit Fields
Chapter chap10 section 9

The members of a struct may be bit-fields. Strictly these should be called fields
rather than bit-fields but the usage is conventional. This means that the definition of
the member includes a specification of how many bits the field is to occupy. This
can save memory if it is suitably implemented by the compiler. The basic syntax of
a bit-field declaration is

<type> <name> : <constant expression>

The type specification is almost invariably unsigned int, the constant expression is
the number of bits that the bit-field is to occupy. The packing of bit-fields into
actual words is, of course, implementation dependent. The compiler will generate
the appropriate bit-twiddling instructions to allow normal operations to be
performed on bit-fields. Most operations on bit-fields are implementation dependent
and bit-fields are avoided by most programmers in the interests of portability. At
best they allow a saving in memory usage at the price of more code (to extract and
store the individual values).

The use of bit-fields is illustrated by the following declaration. Since this is a
structure declaration all references to the flags have to be of the form.

 flags.fracp = 1;
 flags.epart = 0;

Bit-fields can be initialised in the same way as an ordinary structure. For arithmetic
purposes bit-fields are regarded as integers, they may be seen as signed or unsigned
depending on the implementation.

The use of bit-fields may save some memory compared with storing items whose
values are only ever going to be 1 or 0 in characters, but it should be remembered
that extra instructions will be required to perform the necessary packing and
unpacking. Bit-fields are very rarely used in practice.

enum data types

Structures, Unions and Typedefs - Bit Fields

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.bit.fields.html [02/04/2002 09:24:33]

Structures, Unions and Typedefs
- enum data types
Chapter chap10 section 10

enum data types are data items whose values may be any member of a symbolically
declared set of values. A typical declaration would be.

 enum days {Mon, Tues, Weds, Thurs, Fri, Sat, Sun};

This declaration means that the values Mon...Sun may be assigned to a variable of
type enum days. The actual values are 0...6 in this example and it is these values that
must be associated with any input or output operations. For example the following
program

enum days {Mon, Tues, Weds, Thurs, Fri, Sat, Sun };

main()
{
 enum days start, end;
 start = Weds;
 end = Sat;
 printf ("start = %d end = %d\n",start,end);
 start = 42;
 printf ("start now equals %d\n",start);
}

produced the following output

start = 2 end = 5
start now equals 42

It will be noticed that it is possible to assign a normal integer to an enum data type
and there is no check made that an integer assigned to an enum data type is within
range.

Few programmers use enum data types. The same effects can be achieved by use of
#define's although the scoping rules are different.

It is possible to associate numbers other than the sequence starting at zero with the
names in the enum data type by including a specific initialisation in the name list.
This also effects all following names. For example

Structures, Unions and Typedefs - enum data types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.enum.data.html (1 of 2) [02/04/2002 09:24:34]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap10/et1.c

 enum coins { p1=1, p2, p5=5, p10=10, p20=20, p50=50 };

All the names except p2 are initialised explicitly. p2 is initialised to value
immediately after that used for p1.

Like bit-fields, enum data types are rarely used in practice.

Structures, Unions and Typedefs - enum data types

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.enum.data.html (2 of 2) [02/04/2002 09:24:34]

The Pre-Processor and standard
libraries - The #ifdef and #endif
Directives
Chapter chap8 section 11

The next most useful preprocessor directives are ifdef and endif . These are always
used in pairs with the basic syntax

 #ifdef identifier
 .
 .
 .
 #endif

All the code between the #ifdef and the #endif is skipped (i.e. completely ignored)
unless the identifier has been the subject of a #define directive or has been defined
in some other way.

#ifdef may be written as

#if defined ...

and #ifndef may be written as

#if !defined ...

defined is a special unary operator only understood by the pre-processor. An
obvious and useful example is shown below. This program is called debug .

#include <stdio.h>
#include <ctype.h>
#define DEBUG 1
main()
{
 char inbuf[BUFSIZ];
 int i = 0;
 int lcnt = 0;
 gets(inbuf);
 while(*(inbuf+i))
 {
#ifdef DEBUG
 printf("Character %d Value %c(%o)\n",

The Pre-Processor and standard libraries - The #ifdef and #endif Directives

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ifdef.html (1 of 4) [02/04/2002 09:24:37]

 i,*(inbuf+i),*(inbuf+i));
#endif
 if(isalpha(*(inbuf+i)))lcnt++;
#ifdef DEBUG
 printf("Letter Count %d\n",lcnt);
#endif
 i++;
 }
 printf("Total letters %d\n",lcnt);
}

A typical dialogue is shown.

$ debug
the cat
Character 0 Value t(164)
Letter Count 1
Character 1 Value h(150)
Letter Count 2
Character 2 Value e(145)
Letter Count 3
Character 3 Value (40)
Letter Count 3
Character 4 Value c(143)
Letter Count 4
Character 5 Value a(141)
Letter Count 5
Character 6 Value t(164)
Letter Count 6
Total letters 6

If the line defining DEBUG were removed or commented out then the diagnostic
printf() function calls would not be seen by the compiler and the diagnostic printing
would be omitted. This is a common practice.

There are two other ways in which an identifier associated with #define may become
defined. The first method is from the compiler command line. A typical Unix
system call would be

cc debug.c -DDEBUG

this forces the compiler to see DEBUG as defined even though no actual value is
associated with DEBUG . The usage

cc debug.c -DDEBUG=1

The Pre-Processor and standard libraries - The #ifdef and #endif Directives

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ifdef.html (2 of 4) [02/04/2002 09:24:37]

may be used to associate a particular value with DEBUG . The compiler command
line definition of an identifier is a particularly useful thing to do because it means
that debugging code can be switched on and off without making any alterations
whatsoever to the source code.

The second method applies only to certain special symbols. There are certain
symbols that are defined internally by the preprocessor. The ANSI standard symbols
predefined in this way are

symbol meaning

__STDC__ defined if the compiler is ANSI

__LINE__ the current source line number

__FILE__ the source file name

__DATE__ the date when the program was compiled

__TIME__ the time when the program was compiled

In case your printer or display didn't make it clear these all consist of four letters
preceded by and followed by a pair of underline characters. All except __STDC__
and __LINE__ are character strings complete with enclosing double quotes. The
following might be found in a program

#ifdef __STDC__
double reciprocal(double x)
#else
double reciprocal(x)
double x;
#endif
{
 return 1.0/x;
}

providing a function definition acceptable to both ANSI and pre-ANSI compilers.

The logic associated with #ifdef may be extended using #else and #elif is a fairly
obvious way. You may well encounter code such as

 #ifdef UNIX
 #define INTBITS 32
 #else
 #define INTBITS 16
 #endif

This sort of thing is common in programs intended to be ported across a wide range
of systems although some of the effects can be achieved more cleanly using limits.h

The Pre-Processor and standard libraries - The #ifdef and #endif Directives

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ifdef.html (3 of 4) [02/04/2002 09:24:37]

if ANSI compilers are available.

To provide greater flexibility any #define d identifier can be undefined by the
directive #undef followed by the identifier. The directive #line forces the compiler
to have a particular idea of the current line number in the source. This is only useful
in conjunction with __LINE__.

The directive #pragma allows special compiler specific information to be included
in the program. The meanings of pragmas are always compiler specific, they may,
for example, be used to specify a particular way of storing pointers or generating
code.

Exercises

The Pre-Processor and standard libraries - The #ifdef and #endif Directives

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.ifdef.html (4 of 4) [02/04/2002 09:24:37]

The Pre-Processor and standard
libraries - Exercises
Chapter chap8 section 12

Using the maths library functions sin() and cos() write a program that prints
out lines of text whose full length represents the range of values -1 to +1 with
a suitably positioned asterisk representing the value of sin() and a hash
symbol representing the value of cos(). Produce output for values of input
parameter representing angles in the range 0 degrees to 360 degrees in steps
of 10 degrees.

1.

Define a macro max(a,b) to determine the larger of two integers. Define a
further macro max3(a,b,c) in terms of max(a,b) to determine the largest of
three numbers. Incorporate your macros in a demonstration program that
prompts the user for three numbers and reports the largest.

2.

Write a program to read text from the standard input until an end-of-file
condition is encountered. When all the text has been read in print out an
analysis of the numbers of lines by length.

3.

The function rand() generates random integers. Write a program to verify this
by generating a fairly large number of random integers and analysing them
into 20 frequency ranges. Display the number of random numbers generated
in each range.

4.

Write a program to randomly fill an array of 26 characters with the letters of
the alphabet. Print out the randomised alphabet you have generated.

5.

Extend the program of the previous exercise to read in text from the standard
and replace all letters (preserving case) with the equivalent letter from the
shuffled alphabet. Print out the modified text. This could be regarded as a
very simple encryption system.

To ensure that encryption is consistent you can use the library function
srand() which uses a single integer parameter to initialise the random number
generator. The random initialisation can be regarded as an encryption key.
Devise a decryption program to recover the text that you encrypted earlier.

6.

The Pre-Processor and standard libraries - Exercises

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap8.exercises.html [02/04/2002 09:24:38]

Separate Compilation of C
Modules - Introduction
Chapter chap11 section 1

This chapter discusses the separate compilation and linkage of modules of C code.
So that examples of the compilation and linkage process could be included in these
notes it is necessary to focus on a particular host operating system. The choice
adopted here is Unix for the very obvious reason that the commands and utilities are
pretty much standard compared with the situation under MS-DOS where they are
dependent on the particular C compiler in use. The facilities offered in non-Unix
environments are often modelled on those available under Unix so it is well worth
learning how to do it under Unix.

See also

Compilation●

The extern keyword●

Simple separate compilation●

Separate compilation for program development●

Static Functions●

Scope rules●

Private Libraries●

The make utility●

Separate Compilation of C Modules - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.intro.html [02/04/2002 09:24:39]

Separate Compilation of C
Modules - Compilation
Chapter chap11 section 2

Under Unix the C compiler is invoked by the command "cc", C source files are
expected to have names ending in ".c" and relocatable binary (linkable) modules are
expected to have names ending in ".o". The command "cc" will also invoke the
linker. Libraries can be maintained using the "ar" command. As an example the
Unix command

cc -o sums sums.c -lm

will compile the program sums.c, link in the maths library and place the executable
binary code in a file called sums. With an ANSI compiler there would be no need to
include the flag "-lm".

The -o compiler flag followed by a file name specifies that the executable binary
code be placed in the named file. If the -o flag is omitted the executable binary code
is placed in a file called "a.out".

In the Unix environment C compilation is a multi-stage process. The first stage runs
the pre-processor, the second stage generates assembly language code, the third
stage converts the assembly language code to relocatable binary code and the final
stage links the relocatable binary code modules to generate an executable binary
code module.

The compiler -P flag stops the compilation after the pre-processor stage leaving the
output in a ".i" file. The compiler -S flag stores the assembly language code in a ".s"
file. The compiler -O flag invokes one (or more) optimisation phases. There may
well be many other flags and options depending on the particular environment.

In the Unix environment it is sometimes possible to use the various compilation
steps as separate free-standing programs. The C pre-processor is called "cpp", the
assembler is called "as" and the linker is called "ld". It is very rare to do so.

Modules
In these notes a module is any chunk of code that can be processed by the compiler.
Modules should consist of function declarations and declarations of variables of
storage class extern. A module may simply contain a single function declaration or
may consist entirely of declarations of extern variables. A module is, invariably, a
separate source file. Some authors refer to these modules as compilation units.

Separate Compilation of C Modules - Compilation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.compilation.html (1 of 2) [02/04/2002 09:24:41]

The extern keyword

Separate Compilation of C Modules - Compilation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.compilation.html (2 of 2) [02/04/2002 09:24:41]

Separate Compilation of C
Modules - The extern keyword
Chapter chap11 section 3

When compiling modules separately it is often the case that the definition of a
variable is in one module and references to the variable occur in another module. In
this case the variable definition is said to be external to the function referencing the
variable. This situation poses a problem for the compiler which needs information
about the type of the variable for correct operation.

Declarations which start with the keyword extern and do not include any aggregate
sizes or initialisation provide sufficient information for the correct operation of the
compiler. Actual addresses are filled in when the program is linked.

Simple use of Separate Compilation

Separate Compilation of C Modules - The extern keyword

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.extern.keyword.html [02/04/2002 09:24:42]

Separate Compilation of C
Modules - Simple use of
Separate Compilation
Chapter chap11 section 4

This example is a program that reads in an integer and prints the name of the
associated month. Since an aggregate holding month names is potentially useful in a
variety of situations it is compiled separately. Ultimately the compiled month name
module could be incorporated into a library.

The month name definition and initialisation is in the file mnames.c which is listed
below.

char *mn[] =
 { "january","february","march",
 "april","may","june",
 "july","august","september",
 "october","november","december"
 };

This could be compiled with the following command

cc -c mnames.c

This creates a file called mnames.o. A simple program that uses the information in
the aggregate is shown below. It is in the file mnlp.c

extern char *mn[];
main()
{
 int i;
 while(1)
 {
 printf("Enter a number ");
 scanf("%d",&i);
 if(i<1 || i>12) exit(0);
 printf("month %d is %s\n",i,mn[i-1]);
 }
}

This could be compiled using the following command

Separate Compilation of C Modules - Simple use of Separate Compilation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.simple.separate.html (1 of 2) [02/04/2002 09:24:43]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/mnames.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/mnlp.c

cc -c mnlp.c

This creates a file called mnlp.o The -c compiler flag specifies that the compiler will
compile but will not invoke the linker. The two files could be linked together, along
with the relevant library routines, using the following command

cc -o mnlp mnlp.o mnames.o

This creates an executable file called mnlp which prompts for an integer and
responds with the month name. An alternative approach would be to use the
following command to compile mnlp.c and link mnames.o in one operation

cc -o mnlp mnlp.c mnames.o

It should be noted that the declaration of the aggregate mn[] in the file mnames.c is
outside any function declaration and is, thus, of storage class extern. This means that
the name of the aggregate (mn) is known to the linker. In this example it is
interesting to note that the module mnames.c does not contain any executable
statements.

In line 1 of mnlp.c the declaration tells the compiler that the definition of the
aggregate mn[] is elsewhere so actual references (on line 10) will have to be filled in
by the linker.

If the name of the aggregate in mnames.c were not mn then a linkage error would
result when trying to put the program mnlp together.

Using Separate Compilation for Program Development

Separate Compilation of C Modules - Simple use of Separate Compilation

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.simple.separate.html (2 of 2) [02/04/2002 09:24:43]

Separate Compilation of C
Modules - Using Separate
Compilation for Program
Development
Chapter chap11 section 5

This section describes a larger scale use of separate compilation facilities. The word
counting program described earlier in these notes is subdivided into separate modules.
The first module is not really a C module at all but a set of pre-processor directives and
function prototypes for use by the various code modules. The file is sstr.h and it is listed
below.

#include <stdlib.h>
#include <stdio.h>

struct word
 {
 int count; /* occurences */
 char *body; /* actual text */
 struct word *lptr; /* left pointer */
 struct word *rptr; /* right pointer */
 };

void putword(char *,struct word *);
void listwords(struct word *,int);
void error(int);
struct word *new(char *);

extern int wdct;
extern int maxocc;

This also contains declarations that tell the compiler that the two "global" variables wdct
and maxocc are defined elsewhere and will be fixed up at linkage time.

The second module contains the "global" declarations from the original program. All
these declarations are, of course, of storage class extern and appropriate extern
declarations need to be put in the other modules by including the header file " sstr.h The
file is sstrex.c and it is listed below.

int wdct; /* number of different words */
int maxocc; /* maximum count */

Separate Compilation of C Modules - Using Separate Compilation for Program Development

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.program.development.html (1 of 4) [02/04/2002 09:24:47]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstr.h
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrex.c

The file can be compiled creating the module sstrex.o using the command

cc -c sstrex.c

The remaining modules contain one function each. It is not essential to adopt this style.
Many functions could be declared in a single file, as is the case with the more
conventional style of construction of C source files shown in most of the examples in
these notes.

The next module contains the function main and is in the file sstrmain.c It is listed below.

#include "sstr.h"
main()
{
 char inbuf[BUFSIZ];
 int i;
 struct word *root;
 root=new("ZZZZ"); /* establish root of tree */
 root->count=0; /* it's only a dummy entry !! */
 while(gets(inbuf)) putword(inbuf,root);
 printf("%d Different Words\n",wdct-1);
 for(i=maxocc;i;i--)listwords(root,i);
}

The inclusion of sstr.h has achieved four objectives

The #include directives in sstr.h have included all the relevant standard header
files. For a large application using many header files this is useful, it avoids tedious
error prone repetition.

1.

It has provided the declaration of the structure word Again the advantages of only
actually writing the declaration once are obvious.

2.

It has provided the prototypes for listwords() and new()3.

It has provided declarations for the global variables wdct and maxocc4.

The next module contains the function putword() and is in the file sstrputword.c It is
listed below.

#include "sstr.h"
void putword(char *s,struct word *w)
{
 int flag;
 flag = strcmp(s,w->body);
 if(flag==0)
 {
 if(++w->count > maxocc) maxocc = w->count;
 return;
 }

Separate Compilation of C Modules - Using Separate Compilation for Program Development

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.program.development.html (2 of 4) [02/04/2002 09:24:47]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrmain.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrputword.c

 if(flag<0)
 {
 if(w->lptr==NULL) w->lptr = new(s);
 else putword(s,w->lptr);
 }
 else
 {
 if(w->rptr==NULL) w->rptr = new(s);
 else putword(s,w->rptr);
 }
}

The next module contains the function new() and is in the file sstrnew.c It is listed below.

#include "sstr.h"
struct word *new(char *s)
{
 int slen;
 struct word *w;
 if((w = (struct word *)malloc(sizeof (struct word)))
 ==NULL) error(2);
 slen = strlen(s) + 1;
 if((w->body = (char *)malloc(slen))==NULL) error(3);
 strcpy(w->body,s);
 w->count = 1;
 w->lptr = NULL;
 w->rptr = NULL;
 wdct++;
 return w;
}

The next module contains the function listwords() and is in the file sstrlistwords.c It is
listed below.

#include "sstr.h"
void listwords(struct word *w,int count)
{
 if(w->lptr!=NULL)listwords(w->lptr,count);
 if(w->count == count)
 printf("%3d %s \n",w->count,w->body);
 if(w->rptr!=NULL)listwords(w->rptr,count);
}

The final module contains the function error() and is in the file sstrerr.c It is listed below.

#include "sstr.h"

Separate Compilation of C Modules - Using Separate Compilation for Program Development

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.program.development.html (3 of 4) [02/04/2002 09:24:47]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrnew.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrlistwords.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/sstrerr.c

void error(int n)
{
 printf("Error %d : ",n);
 exit(0);
}

In this case it was not strictly necessary to include the file sstr.h but it was done for
consistency.

Once all the module files described above have been created they may be compiled using
a series of commands such as

 cc -c sstrex.c
 cc -c sstrmain.c
 cc -c sstrputword.c
 cc -c sstrnew.c
 cc -c sstrerr.c

A Unix user would probably use a form of the command such as

cc -c sstr*.c

this assumes that there are no other sstr....c files in the current directory. Whichever form
of the cc command is used the result is the same, the creation of a set of .o files in the
current directory, assuming, of course, there were no compilation errors.

The compiled modules may now be linked along with the standard libraries using the
following command

cc -o sstr sstr*.o

Alternatively the names of each of the compiled modules could be given separately

cc -o sstr sstrex.o sstrmain.o sstrnew.o

The advantage of this arrangement is that if it is necessary to modify the source code of
any of the modules it is only necessary to recompile that particular module (using a "cc
-c" command) and then relink the whole program (using a "cc -o" command). This is
much faster than recompiling the whole program although it does consume more disc
space.

Static Functions

Separate Compilation of C Modules - Using Separate Compilation for Program Development

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.program.development.html (4 of 4) [02/04/2002 09:24:47]

Separate Compilation of C
Modules - Static (Private)
Functions
Chapter chap11 section 6

It is possible to declare functions of storage class static The implication of this is
that such functions can only be referenced in the file (or compilation unit) which
contains the function definition. This is illustrated by the following example.

This program reads in lines of text and displays them 20 characters to a line on the
standard output. This program provides for proper TAB handling (assuming TAB's
every 8 character positions). Note that this is not necessarily a good way of
de-TABbing input lines. The program is split into 2 modules. The first contains the
function main() and is in the file ibad.c It is listed below.

int getnext(void);
#include <stdio.h>
main()
{
 int c;
 int i=0;
 while((c=getnext()) != EOF)
 {
 putchar(c);
 if(++i == 20 || c == '\n')
 {
 i = 0;
 if(c != '\n') putchar('\n');
 }
 }
}

The second module contains the functions getnext() and detab() and is in the file
iblb.c It is listed below.

#include <stdio.h>

int getnext(void);
void detab(void);

Separate Compilation of C Modules - Static (Private) Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.static.functions.html (1 of 3) [02/04/2002 09:24:48]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/ibad.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap11/iblb.c

static char ibuf[256];
static int iptr;
int getnext(void)
{
 int c;
 if(iptr == 0)
 {
 while((c=getchar()) != EOF)
 {
 ibuf[iptr++] = c;
 if (c == '\n') break;
 }
 if(c == EOF) return(EOF);
 detab();
 iptr = 0;
 }
 c = ibuf[iptr++];
 if(c == '\n') iptr=0;
 return c;
}
static void detab(void)
{
 char obf[256];
 int i;
 int j=0;
 int imx = 0;
 while(ibuf[imx++] != '\n');
 for(i=0; i<=imx; i++)
 {
 if(ibuf[i]=='\t')
 {
 if((j%8)==0) obf[j++] = ' ';
 while(j%8) obf[j++] = ' ';
 }
 else obf[j++] = ibuf[i];
 }
 for(i=0; i<=j; i++) ibuf[i] = obf[i];
}

The only external symbol in iblb.c is getnext The definition of getenext looks like a
perfectly ordinary function definition. Function names are visible outside files
unless they are preceded by the keyword static as is the case with the declaration of
the function detab

Separate Compilation of C Modules - Static (Private) Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.static.functions.html (2 of 3) [02/04/2002 09:24:48]

The static keyword associated with the definitions of ibuf[] and iptr ensure that they
are accessible to all the functions declared in the file iblb.c but not by any other
functions. This is sometimes called data and function hiding. If any structures had
been defined in iblb.c then the declarations would, of course, be private, to iblb.c ,
so providing structure hiding It would probably have been better to put the
prototype of getnext in a header file included in both ibad.c and iblb.c thus avoiding
unreliable duplication.

The names of non-static functions and variables of storage class extern are visible
outside the file in which they are defined. In particular they are visible to the linker,
this may be a host system utility designed to link archaic languages such as Cobol
and Fortran. A consequence of this fact is that the rules for distinguishable external
symbols and the ANSI standard says that such symbols may be restricted to as few
as 6 characters and that character case may not be significant. In practice this means
that any external identifier ought to be unique in its first 6 characters. Most modern
linkers are much more accommodating.

Scope Rules

Separate Compilation of C Modules - Static (Private) Functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.static.functions.html (3 of 3) [02/04/2002 09:24:48]

Separate Compilation of C
Modules - Scope Rules
Chapter chap11 section 7

Scope rules define where within a program the definition of a function or variable is
accessible. I.e. the positions where the defined variable or function can be
referenced or used. The scope rules of C are complicated by the use of separate
source files. Scopes can be split into 4 categories.

 function
 file
 block
 function prototype

Function Scope

This applies only to labels. It simply means that labels can be used (as "goto"
targets) anywhere within the function in which they are defined. This includes
use before definition.

1.

File Scope

This means that the identifier can be used anywhere in the current file after
the declaration of the identifier. This applies to functions and all variables
declared outside functions. File scope variable declarations may be either
variable definitions or be preceded by the keyword extern indicating that they
are to be linked in from another file. File scope identifiers may be hidden by
clashing block scope declarations.

2.

Block Scope

This means that the identifier can only be used in the block in which it is
declared. This will apply to auto and register storage class variables declared
within a function.

3.

Function Prototype Scope

In order to improve readability function prototypes are usually written with
"dummy" variable names. For example

double sum(double x, double y);

The scope of the identifiers "x" and "y" is the duration of this particular
function prototype.

4.

Private Libraries

Separate Compilation of C Modules - Scope Rules

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.scope.html [02/04/2002 09:24:50]

Separate Compilation of C
Modules - Private Libraries
Chapter chap11 section 8

It is possible, with most C compilation systems, to build and maintain private
libraries of useful functions to support particular projects. Do not confuse C libraries
with the notion of putting the routine source code in a file and #including it into
programs. If you create and maintain a library you will also almost certainly wish to
create and maintain an associated header file containing function prototypes.

Unix C compilers normally support the command line arguments

-L<dir-name> and -I<dir-name>

to specify extra directories to be searched for header files and libraries. If a Unix
library has a name such as

libmylib.a

then the linker can be told to scan this library for functions by including the
complier command line argument

-lmylib

Unix library files should always have names beginning with "lib" and with the
suffix ".a"

Unix libraries are created and maintained using the utility ar archives. Libraries are
built from ".o" or binary files. The operation of the "ar" command is controlled by
command line flags that unusually do not require initial dashes. To install binary
code units "myf1.o" and "myf2.o" in the library "libmine.a" use the command

ar q libmine.a myf1.o myf2.o

This will create the library "libmine.a" if it doesn't already exist.

There are various flags associated with "ar". The following are useful.

 t List the contents table of the library

 r Replace a named file if it already
 appears in the library

 d Delete the named file from the library

Separate Compilation of C Modules - Private Libraries

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.private.libraries.html (1 of 2) [02/04/2002 09:24:51]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+ar

 w List all the symbols defined in the
 library

It is important that the binary code units are placed in the library in the correct order.
If one code unit calls a function defined in another then the one making the call
should appear first in the library. The a and b flags can be used to put code units in
the library after or before another component of the library.

The Unix utilities lorder and tsort can be used in the following fashion to put a set of
binary code units into a library in the correct order

lorder *.o | tsort | xargs ar q libsubs.a

On some systems the linker "ld" can process a library in random order rather than
serially processing it from beginning to end. If this is the case it does not matter
what order the code units are placed in in the library.

The make utility

Separate Compilation of C Modules - Private Libraries

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.private.libraries.html (2 of 2) [02/04/2002 09:24:51]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+lorder
http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+tsort

Separate Compilation of C Modules -
The make utility
Chapter chap11 section 9

When developing and maintaining a large piece of software built out of numerous source files
it is important to ensure that if any one file is modified, all files dependent on it are also
modified.

The commonest causes of difficulties are when a header file has been modified failing to
re-compile all the source files that reference the header file and failing to recompile all altered
source files before re-linking. The maintenance of such large pieces of software can be
automated using the make utility and an associated makefile. The makefile will consist of a
series of entries each consisting a dependency list and a set of commands.

A dependency list consists of the name of a file called the target and after a colon a list of all
the other files it depends upon. The following command lines consist of a series of commands
that will bring the target up to date. A command line MUST start with a TAB character, a
dependency line MUST NOT start with a TAB character.

A typical make file is shown below

incdate.o : incdate.c date.h
 cc -c incdate.c
vetdate.o : vetdate.c date.h
 cc -c incdate.c
diffdate.o : diffdate.c date.h
 cc -c diffdate.c
libdates.a : incdate.o vetdate.o diffdate.o
 ar qr libdates.a incdate.o vetdate.o diffdate.o
mytest.o : mytest.c date.h
 cc -c mytest.c
mytest : mytest.o libdates.a
 cc -o mytest mytest.o -L. -ldates -lm

This should be called 'makefile' in the current directory To bring any of the executables
up-to-date after modifying source files it is only necessary to type

make <target>

If any of the files required to create the target are themselves out of date as determined from
their entries in the makefile they are also made.

Separate Compilation of C Modules - The make utility

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap11.make.html [02/04/2002 09:24:53]

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+make

Efficiency, Economy and
Portability - Introduction
Chapter chap12 section 1

Most C programmers are quite happy not to worry about the efficiency, economy
and portability of their programs. However there will inevitably be occasions where
such things do matter and it is the purpose of this chapter to highlight programming
practices that should be avoided or followed in such circumstances.

Definitions●

The "Hello World" program analysed●

Efficient Coding●

Economic Coding●

Portability●

Profiling●

Timing●

Efficiency, Economy and Portability - Introduction

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.intro.html [02/04/2002 09:24:54]

Efficiency, Economy and
Portability - Efficiency, Economy
and Portability defined
Chapter chap12 section 2

Efficiency is here taken to refer to the execution speed of a program. In some
circumstances, such as an operating system kernel or a real-time program speed of
execution may be unusually important. Economy is here taken to refer to the
amount of memory used by the program. Again there may be special circumstances
in which it is particularly important to use as little memory as possible. Portability
is fairly self-evident, it simply refers to the ease, or otherwise, with which a program
may be transferred from one computer to another.

C programs often score highly compared with those written in other languages for
economy, efficiency and portability. The rest of this chapter will focus on
techniques that enhance economy, efficiency or portability. It should be noted that
enhancement of one aspect of programming may have a bad effect on other aspects.

It is not possible to give any totally general advice about efficiency and economy. If
efficiency and economy are particularly important you should conduct experiments
and tests to identify the strengths and weaknesses of your particular compiler. The
material in this chapter will suggest which areas to investigate.

Of course, it goes without saying (almost) that a program should be got working
correctly before any attempt is made to enhance its efficiency or economy.

The Hello World program analysed

Efficiency, Economy and Portability - Efficiency, Economy and Portability defined

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.eff.eco.html [02/04/2002 09:24:55]

Efficiency, Economy and
Portability - The "Hello World"
Program
Chapter chap12 section 3

Examination of the performance of different versions of this program provide some
useful insights into factors affecting efficiency and economy. Five different versions
of the "Hello World" program were compiled and run using Microsoft C (version
5.1). Extra code was incorporated to display "hello world" 10000 times and report
the time elapsed by interrogating the clock. They were actually run on an 80286
based processor (a few years ago!).

The sizes and relative execution times are given below.

size (bytes) execution time

Program 1 7233 101

Program 2 4525 140

Program 3 2377 112

Program 4 5245 103

Program 5 2361 100

Program 1 was the classic version using printf() The efficiency is remarkably good
but the printf() library function is clearly memory hungry. This is hardly surprising
since it includes code for all forms of floating point and integer conversion as well
as basic string output.

Program 2. hw2.c , listed below used the stdio.h macro putchar() . This is the least
efficient program but it uses the least amount of memory of the portable versions.

#include <stdio.h>
char *msg="hello, world\n";
main()
{
 while(*msg)putchar(*msg++);
}

Program 3, hw3.c , listed below used the MS-DOS INT 21 (function 2) system call
to write characters in preference to putchar() This represents a significant
improvement in both speed and more noticeably memory utilisation compared with

Efficiency, Economy and Portability - The "Hello World" Program

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.hw.html (1 of 2) [02/04/2002 09:24:57]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/hw2.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/hw3.c

program 2. Note that the string needed to include \r for proper operation.

#include <stdio.h>
#include <dos.h>

char *msg="hello, world\r\n";
main()
{
 while(*msg)
 {
 bdos(0x02,*msg++,0);
 }
}

Program 4, hw4.c , listed below, uses the library function puts() , efficiency is good
but the program is memory hungry.

#include <stdio.h>
main()
{
 puts("hello, world\n");
}

Program 5, hw5.c , listed below was expected to be the fastest and use the least
memory. It met both expectations (just). It is also, arguably, the most obscure. It
used the MS-DOS INT 21 (function 9) system call to display a string (quaintly
terminated with a $ symbol).

#include <stdio.h>
#include <dos.h>

char *msg="hello, world\r\n$";
main()
{
 bdos(0x09,FP_OFF(msg),0);
}

The execution times in these examples were probably dominated by screen handling
overheads but suggest there is little to be gained (in terms of efficiency) by not using
standard library routines but that standard library routines are memory hungry.

Efficient Coding

Efficiency, Economy and Portability - The "Hello World" Program

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.hw.html (2 of 2) [02/04/2002 09:24:57]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/hw4.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/hw5.c

Efficiency, Economy and
Portability - Efficient Coding
Chapter chap12 section 4

Many texts on C state that writing i++ rather than i=i+1 can give more efficient
code. The effect is very small and a good compiler may well generate the same code
in each case. Similar comments apply to the use of the register storage class for
items such as loop control variables.

However there are some practices that can give rise to serious inefficiencies. Things
to watch out for are.

Structure assignment and the use of structures as functional parameters and
values force the generation of code to copy structures byte by byte. It is much
better to use structure addresses.

1.

Function calls may well involve significant overheads for environment
saving, stack frame formation and auto storage class variable initialisation.
All these aspects of using functions should be looked at carefully.

2.

Think about the data types you use. Long integer arithmetic is usually slower
than short integer arithmetic. Floating point arithmetic is much slower than
integer arithmetic.

3.

Little used aspects of C may well not be well handled by compilers. Particular
things to avoid are fields and enum data types.

If the compiler has an optimisation flag this should be used. The Unix
compiler flag is -O. Compiler optimisation should be viewed with caution, it
has been known for a compiler optimised version of a program to contain
bugs that were absent from the non-optimised version. Compiler optimisation
lengthens compilation time so don't use for program development.

Profiling is a technique supported in some environments that allows the
programmer to determine the number of times each function has been called
and how much time has been spent in each function. It is worth using if it is
available. Profiling is described in more detail later.

A final, general, point is, of course, to use the most efficient algorithm
available consistent with development time (highly efficient algorithms are
often rather hard to understand and code).

Economic Coding

4.

Efficiency, Economy and Portability - Efficient Coding

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.efficient.html [02/04/2002 09:24:58]

Efficiency, Economy and
Portability - Economic Coding
Chapter chap12 section 5

If memory is tight there are various things that should be noted.

Exercise discretion with the use of library functions. Some are very memory
hungry.

1.

Rather than declare sufficiently large arrays use malloc() to obtain new
memory as needed. Be aware that this is inefficient and not as economic of
memory as might be hoped due to administrative overheads. Release blocks
acquired via malloc() (or calloc()) using free() as soon as they are no longer
required.

2.

Look out for alignment constraints, particularly amongst elements of structs
and unions.

3.

Avoid unnecessary use of extern storage (global variables).4.

Try and re-use code as much as possible by careful selection and design of
functions.

5.

Use pointers to variables as function parameters. Pack up as many variables
as possible into a single structure and pass a pointer to that structure rather
than use memory variables.

6.

Think about the data types of large aggregates. If your program needs an
array of 5000 integers consider whether the range of expected values would
allow the array to be of type char or type short int rather than long int .

7.

Portability

Efficiency, Economy and Portability - Economic Coding

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.economic.html [02/04/2002 09:24:59]

Efficiency, Economy and
Portability - Portability
Chapter chap12 section 6

A portable program is one that can be transferred from one computer system to
another. The degree of portability is a measure of the ease with which such a
transfer can be made. For C programs there are several dimensions to portablility.
The major portability barriers you are likely to encounter are between ANSI-C and
"old" C and between the MS-DOS and Unix environments.

Pre-ANSI C compiler writers were free to do whatever they liked, however the
language implemented by pre-ANSI compilers is usually a strict subset of the ANSI
specification. The biggest problem area is likely to be the pre-processor, many
pre-ANSI pre-processors behaved rather differently from the ANSI specification,
this is particularly true with Unix based systems. Of course, portability in the other
direction, i.e. from ANSI to pre-ANSI is much more difficult, but you are unlikely
to meet this as a practical requirement.

Much of the strength of C as a language stems from the careful use of standard
libraries. In pre-ANSI environments these were not totally standard, differences may
be encountered in both the functionality provided and the particular header files.
Some early versions of printf() and scanf() were rather different from current
practice.

Of course, for full portability, you musn't use any library functions that are not part
of the ANSI standard. The practice of some manual writers of indicating whether
functions are ANSI or not is, unfortunately, far from universal, and you should
equip yourself with a list of ANSI functions.

Many compilers and host operating systems provide a lot of useful extra functions
that are not part of the ANSI standard. These may well be standardised by different
bodies, for example the system calls available Unix systems (and some others) but
not to PCs. There are also well known standards for graphics.

The ANSI standard does not totally specify the language. In several areas the
compiler writer is left to do whatever seems most appropriate. This is described as
implementation-defined behaviour.

The most significant area of implementation-defined behaviour concerns the sizes
and natures of the basic data types. The ANSI standard includes a 3 page list of all
instances of implementation defined behaviour.

The following points may be worth noting.

Efficiency, Economy and Portability - Portability

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.portability.html (1 of 2) [02/04/2002 09:25:01]

As far as possible declare all integer variables as either short int or long int
Don't rely on the default.

1.

Be aware of constraints on identifiers. Don't use identifiers more than 31
characters long. Be aware of the special constraints that apply to externally
visible identifiers, at their most restrictive these state that only the first 6
characters are significant and that alphabetic case may not be significant.

2.

Be wary of little used features of the language. enums and (bit) fields are the
features most likely to cause problems.

3.

Be wary of union data types and the side effects of alignment constraints.4.

Watch out for possible side-effects associated with the order of evaluation of
function arguments.

5.

Watch out for the effects of promoting non-ASCII valued char variables.
Always declare variables as signed char or unsigned char , never plain char .

6.

You should also be aware of the following compiler limits. Many compilers will
exceed these limits but no ANSI compiler should enforce tighter limits.

 31 Arguments per function call
 32767 Bytes in an object
 257 Case labels in a switch
 509 Characters in a source line
 509 Characters in a string constant
 15 Levels of compound statement nesting
 127 Constants in an enum
 15 Levels of do, while and for nesting
 12 Levels of referencing on a declaration
 32 Levels of expressions within expressions
 511 External identifiers in a translation unit
 8 Levels of header file nesting
 127 Local identifiers in a block
 15 Levels of if and switch nesting
 8 Levels of #if, #ifdef and #ifndef nesting
 1024 Macros in a translation unit
 127 Members of a structure or union
 31 Parameters in a function definition
 31 Parameters in a macro
 6 Significant characters in an external identifier
 31 Significant characters in an internal identifier
 15 Levels of struct and union definition nesting

Profiling

Efficiency, Economy and Portability - Portability

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.portability.html (2 of 2) [02/04/2002 09:25:01]

Efficiency, Economy and
Portability - Profiling
Chapter chap12 section 7

This section briefly describes the facilities available to the Unix user to study the
performance of programs.

Simply measuring the execution times of a program is straightforward. The Unix
command time is used in the following manner.

time <commands to run program>

The following examples show how time may be used. It will be noticed that there
are two slightly different versions of the time command. Normally users will just
type time rather than the full path names.

$ /usr/bin/time isp -4 -5 -6 main > x
239 erroneous records
 2.7 real 1.5 user 0.3 sys
$ /usr/5bin/time isp -4 -5 -6 main > x
239 erroneous records

real 2.7
user 1.5
sys 0.3

bash$ csh
scitsc% time isp -4 -5 -6 main > x
239 erroneous records
1.5u 0.3s 0:02 84% 0+224k 2+3io 0pf+0w

The three numbers are elapsed time, CPU time in user mode and CPU time in
system mode. They are all expressed in seconds.

If you are using the C shell rather than the Bourne or Bash shells then you can
obtain rather more information as shown below.

scitsc% time isp -4 -5 -6 main > x
239 erroneous records
1.5u 0.2s 0:02 88% 0+224k 28+2io 25pf+0w

The first three times are the user time, system time and elapsed time. The elapsed
time is expressed in minutes. The remaining figures are the total CPU time as a

Efficiency, Economy and Portability - Profiling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.profiling.and.timing.html (1 of 5) [02/04/2002 09:25:04]

percentage of the elapsed time, the average amount of shared and non-shared
memory in Kbytes, the number of block input and output operations and finally the
number of page faults and swaps.

To obtain more information about the time a program spends executing particular
routines it is necessary to profile the program. Under the Unix system this is done
by compiling the program with the "-p" flag on the compiler command line, running
it normally and using the utility "prof" to examine the "mon.out" file that the
profiled program generates.

Suppose the program "isp.c" were compiled using the command

cc -o isp -p isp.c

and then run using the command

isp -4 -5 -6 main > x

This would generate a mon.out file in the current directory. The results of the
profiling can be displayed using the command

prof isp

This would, typically, produce the following output.

 %time cumsecs #call ms/call name
 36.2 0.68 8933 0.08 _getfield
 15.4 0.97 8933 0.03 _isbner
 10.1 1.16 9039 0.02 _memccpy
 7.4 1.30 110 1.27 _read
 7.4 1.44 mcount
 3.7 1.51 73494 0.00 .mul
 3.2 1.57 2630 0.02 __doprnt
 3.2 1.63 65068 0.00 _strlen
 3.2 1.69 8933 0.01 _yearer
 2.7 1.74 8933 0.01 _priceer
 2.1 1.78 26799 0.00 _strcat
 1.6 1.81 7424 0.00 _atoi
 1.6 1.84 22663 0.00 _isblank
 0.5 1.85 8166 0.00 .rem
 0.5 1.86 8934 0.00 _fgets
 0.5 1.87 2 5.00 _fstat
 0.5 1.88 1 10.00 _main
 0.0 1.88 6 0.00 .udiv
 0.0 1.88 3 0.00 .umul
 0.0 1.88 3 0.00 .urem

Efficiency, Economy and Portability - Profiling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.profiling.and.timing.html (2 of 5) [02/04/2002 09:25:04]

 0.0 1.88 1 0.00 ___start_libm
 0.0 1.88 110 0.00 __filbuf
 0.0 1.88 2 0.00 __findbuf
 0.0 1.88 1 0.00 __findiop
 0.0 1.88 2 0.00 __wrtchk
 0.0 1.88 4 0.00 __xflsbuf
 0.0 1.88 1 0.00 _exit
 0.0 1.88 1 0.00 _fflush
 0.0 1.88 1 0.00 _fopen
 0.0 1.88 1 0.00 _fprintf
 0.0 1.88 3 0.00 _free
 0.0 1.88 1 0.00 _freopen
 0.0 1.88 1 0.00 _getpagesize
 0.0 1.88 2 0.00 _ioctl
 0.0 1.88 2 0.00 _isatty
 0.0 1.88 2630 0.00 _localeconv
 0.0 1.88 3 0.00 _malloc
 0.0 1.88 1 0.00 _on_exit
 0.0 1.88 1 0.00 _open
 0.0 1.88 2629 0.00 _printf
 0.0 1.88 1 0.00 _profil
 0.0 1.88 4 0.00 _sbrk
 0.0 1.88 4 0.00 _write

Many of the routines mentioned in the above list are library routines and routines
called by library routines, however it is clear that the program is spending a lot of
time in user routines called getfields() and isbner() . A quick examination of the
source code for the routine isbner revealed the following code fragment

 int j;
 int cksum = 0;
 if(strlen(fld)==0 || isblank(fld))return "";
 if(strlen(fld)!=13) return "K";

The repeated calls to strlen() represent a possible inefficiency. After recoding the
program as shown below

 int cksum = 0;
 int l;
 if((l=strlen(fld))==0 || isblank(fld))return "";
 if(l!=13) return "K";

profiling gave the following results

 %time cumsecs #call ms/call name

Efficiency, Economy and Portability - Profiling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.profiling.and.timing.html (3 of 5) [02/04/2002 09:25:04]

 28.0 0.53 8933 0.06 _getfield
 14.8 0.81 mcount
 12.7 1.05 8933 0.03 _isbner
 11.6 1.27 9039 0.02 _memccpy
 10.6 1.47 110 1.82 _read
 5.8 1.58 56889 0.00 _strlen
 2.6 1.63 73494 0.00 .mul
 2.6 1.68 2630 0.02 __doprnt
 2.1 1.72 1 40.00 _main
 1.6 1.75 8934 0.00 _fgets
 1.6 1.78 22663 0.00 _isblank
 1.6 1.81 8933 0.00 _priceer
 1.1 1.83 8166 0.00 .rem
 1.1 1.85 2629 0.01 _printf
 1.1 1.87 26799 0.00 _strcat
 1.1 1.89 8933 0.00 _yearer
 0.0 1.89 6 0.00 .udiv
 0.0 1.89 3 0.00 .umul
 0.0 1.89 3 0.00 .urem
 0.0 1.89 1 0.00 ___start_libm
 0.0 1.89 110 0.00 __filbuf
 0.0 1.89 2 0.00 __findbuf
 0.0 1.89 1 0.00 __findiop
 0.0 1.89 2 0.00 __wrtchk
 0.0 1.89 4 0.00 __xflsbuf
 0.0 1.89 7424 0.00 _atoi
 0.0 1.89 1 0.00 _exit
 0.0 1.89 1 0.00 _fflush
 0.0 1.89 1 0.00 _fopen
 0.0 1.89 1 0.00 _fprintf
 0.0 1.89 3 0.00 _free
 0.0 1.89 1 0.00 _freopen
 0.0 1.89 2 0.00 _fstat
 0.0 1.89 1 0.00 _getpagesize
 0.0 1.89 2 0.00 _ioctl
 0.0 1.89 2 0.00 _isatty
 0.0 1.89 2630 0.00 _localeconv
 0.0 1.89 3 0.00 _malloc
 0.0 1.89 1 0.00 _on_exit
 0.0 1.89 1 0.00 _open
 0.0 1.89 1 0.00 _profil
 0.0 1.89 4 0.00 _sbrk
 0.0 1.89 4 0.00 _write

Efficiency, Economy and Portability - Profiling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.profiling.and.timing.html (4 of 5) [02/04/2002 09:25:04]

Timing

Efficiency, Economy and Portability - Profiling

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.profiling.and.timing.html (5 of 5) [02/04/2002 09:25:04]

Efficiency, Economy and Portability
- Timing and Clock functions
Chapter chap12 section 8

There are ANSI functions that allow the programmer to determine elapsed time and CPU
time from within the program. The two library functions clock() and time() are used. The
first of these, clock() , returns the amount of CPU time the program has used measured in
some arbitrary units. The returned value should be stored in a variable of type clock_t The
second of these, time() , returns the real time, sometimes called the time-of-day or
wall-clock-time usually mesured in seconds from some arbitrary origin. It returns -1 if this
information is not available. To convert CPU times to seconds they should be divided by the
constant CLOCKS_PER_SEC which may conveniently be cast to double. The use of both
functions is illustrated by the following program.

#include <time.h>
main()
{
 int i;
 time_t start,now;
 clock_t start_cpu,now_cpu;
 start=time(NULL);
 start_cpu = clock();
 for(i=0;i<10000000;i++); /* timing this loop */
 now=time(NULL);
 now_cpu = clock();
 printf("Elapsed time = %d seconds\n",now-start);
 printf("CPU Time = %7.3lf seconds\n",
 (now_cpu-start_cpu)/(double)CLOCKS_PER_SEC);
}

which produced the following output

Elapsed time = 10 seconds
CPU Time = 4.200 seconds

There are some further functions that may be used to convert real times to more useful
forms. These are localtime() and gmtime() that convert a time in seconds from an aribtrary
origin to a date/time structure whose elements give the day of the week, the month etc., etc.
The functions asctime() and strftime() convert a date/time structure to a character string. The
function ctime() converts from time in seconds to a character string.

localtime() gives a date/time structure containing the local time and gmtime() gives it in
GMT. The format of the strings produced by asctime() and ctime() are standard, strftime()
has an elaborate formatting capability and its output is sensitive to the locale. The non-ANSI

Efficiency, Economy and Portability - Timing and Clock functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.timing.html (1 of 3) [02/04/2002 09:25:07]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/timer1.c

function strptime() which does the opposite of strftime() may sometimes be encountered and
is useful in processing logs and such like data files.

Note . The arbitrary origin for time() is often Jan 1st, 1970, especially on Unix-based
systems. Since the time is held in seconds in a 32-bit number this means that this scheme
will fail sometime around Jan 19th, 2038. Are you worried ?

The format of the date/structure known as a struct tm defined in the header time.h is

struct tm
{
 int tm_sec; /* seconds after minute */
 int tm_min; /* minutes after hour */
 int tm_hour; /* hours since midnight */
 int tm_mday; /* day of the month */
 int tm_mon; /* month of year [0-11] */
 int tm_year; /* year since 1900 */
 int tm_wday; /* days since Sunday */
 int tm_yday; /* days since Jan 1 */
 int tm_isdet; /* daylight saving time */
};

The following program demonstrates the simple use of time() , localtime() and asctime()

#include <stdio.h>
#include <time.h>
main()
{
 time_t now;
 struct tm date_time;
 now = time(NULL);
 date_time = *localtime(&now);
 printf("Date is %s",asctime(&date_time));
}

producing the output

Date is Thu Jan 7 14:46:00 1993

There are several rather quirky aspects of these functions. The time() function takes a single
parameter which may be a pointer to a variable of type time_t The value returned by time()
is also placed in the location addressed by the parameter if the parameter is not NULL. The
function localtime() takes a pointer to a variable of type time_t as parameter and returns a
pointer to an object of type struct tm The function asctime() takes a pointer to an object of
type struct tm as parameter. The formatted string generated by asctime() (and ctime())
includes a new-line character. Most of these quirks are for backwards compatability with
very early versions of C and Unix.

The next example reads in an integer and displays the date the relevant number of days into
the future or past.

Efficiency, Economy and Portability - Timing and Clock functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.timing.html (2 of 3) [02/04/2002 09:25:07]

ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/date.c
ftp://scitsc.wlv.ac.uk//pub/cprog/examples//chap12/otherdays.c

#include <stdio.h>
#include <time.h>
main()
{
 int diff;
 time_t now;
 time_t new;
 time(&now);
 now = (now/86400)*86400;
 do
 {
 printf("Enter Difference ");
 scanf("%ld",&diff);
 if(!diff)break;
 new = now+diff*86400;
 if(new<0)
 printf("Out of range\n");
 else
 printf("Date is %s",ctime(&new));
 } while(1);
}

A typical log is listed below

Enter Difference 100
Date is Sat Apr 17 01:00:00 1993
Enter Difference 200
Date is Mon Jul 26 01:00:00 1993
Enter Difference 2609
Date is Tue Feb 29 00:00:00 2000
Enter Difference 1148
Date is Thu Feb 29 00:00:00 1996
Enter Difference 5000
Date is Sat Sep 16 01:00:00 2006
Enter Difference -200
Date is Sun Jun 21 01:00:00 1992
Enter Difference -1000
Date is Fri Apr 13 01:00:00 1990
Enter Difference 0

The variation in the displayed times has arisen because the functions are making some
attempt to allow for daylight saving time.

Efficiency, Economy and Portability - Timing and Clock functions

http://www.scit.wlv.ac.uk/~jphb/cbook/html/chap12.timing.html (3 of 3) [02/04/2002 09:25:07]

	www.scit.wlv.ac.uk
	Programming in C
	Introduction to C Programming - Introduction
	Introduction to C Programming - Basics of Programming
	Introduction to C Programming - Programming Errors
	Introduction to C Programming - C Standards and History
	Introduction to C Programming - The "hello world" Program
	Introduction to C Programming - Writing strings
	Introduction to C Programming - Program Layout
	Introduction to C Programming - C and C++
	Introduction to C Programming - Character Codes
	Introduction to C Programming - Exercises
	Chapter 1 review questions
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Chapter 1 Review Question Answer
	Programming With Integers - Introduction
	Programming With Integers - A Simple program to add up two numbers
	Programming With Integers - Storing Numbers
	Arithmetic and Data Types - Introduction
	Programming With Integers - Keyword List
	Programming With Integers - Initial Values of Variables
	Programming With Integers - Input of Numbers
	Programming With Integers - Programming Errors
	Programming With Integers - Output of Numbers
	Programming With Integers - Reading in Two Numbers
	Programming With Integers - Control of Output Layout
	Programming With Integers - Input Errors
	Programming With Integers - Input Layout
	Addresses, Pointers, Arrays and Strings - Strings
	Programming With Integers - C and C++
	Programming With Integers - Exercises
	Arithmetic - Introduction
	Arithmetic - Expressions
	Arithmetic - Evaluation of Expressions
	Arithmetic - Operator Precedence
	Arithmetic - Types of Operators
	Arithmetic - Assignment Operators
	Arithmetic - The ++ and -- Operators
	Arithmetic - Summary of Arithmetic Operators
	Arithmetic - Program Layout
	Arithmetic - Order of Evaluation of Functional Parameters
	Arithmetic - Exercises
	Arithmetic and Data Types - Floating Point Numbers
	Arithmetic and Data Types - Floating point data type mismatch in printf()
	Arithmetic and Data Types - Display of floating point numbers
	Arithmetic and Data Types - Accuracy of floating point arithmetic
	Arithmetic and Data Types - Integer Data Types
	Arithmetic and Data Types - The effect of precision specification on integer output
	Arithmetic and Data Types - Unsigned Integer Data Types
	Arithmetic and Data Types - Bitwise Operations
	Arithmetic and Data Types - The character Data Type
	Arithmetic and Data Types - Mixed Data Type Arithmetic
	Arithmetic and Data Types - The usual arithmetic conversions and promotions
	Arithmetic and Data Types - Casts
	Arithmetic and Data Types - Operator Precedences
	Arithmetic and Data Types - C and C++
	Arithmetic and Data Types - Exercises
	Addresses, Pointers, Arrays and Strings - String input using "s" conversion
	Addresses, Pointers, Arrays and Strings - String input using scanset conversion
	Addresses, Pointers, Arrays and Strings - String input using c conversion
	Addresses, Pointers, Arrays and Strings - String input using the gets() library functions
	Addresses, Pointers, Arrays and Strings - The library function sprintf() and puts()
	The Pre-Processor and standard libraries - Mathematical functions
	The Pre-Processor and standard libraries - String handling
	Addresses, Pointers, Arrays and Strings - Arrays of Strings
	Addresses, Pointers, Arrays and Strings - Library string handling functions
	The Pre-Processor and standard libraries - The #define directive
	Loops and Conditions - Introduction
	Loops and Conditions - Relational and Logical Operators
	Loops and Conditions - The logical operators
	Loops and Conditions - The trinary (?:) operator
	Loops and Conditions - If and Else statements
	Loops and Conditions - Exercises
	Loops and Conditions - The dangling else problem
	Loops and Conditions - The equality and assignment operators
	Loops and Conditions - Local variables in compound statements
	Loops and Conditions - The while, break and continue statements
	Loops and Conditions - The do statement
	Switch and For Statements, Command Line and File Handling - The for statement
	Switch and For Statements, Command Line and File Handling - The switch statement
	Addresses, Pointers, Arrays and Strings - Introduction
	Addresses, Pointers, Arrays and Strings - Addresses
	Addresses, Pointers, Arrays and Strings - Aggregates and Arrays
	Functions and storage organisation - Multi-Dimensional Aggregates and Arrays
	Addresses, Pointers, Arrays and Strings - MSDOS Memory Models
	Addresses, Pointers, Arrays and Strings - Array and Aggregate Initialisation
	Functions and storage organisation - Exercises
	Addresses, Pointers, Arrays and Strings - Operator Precedence
	Switch and For Statements, Command Line and File Handling - File Handling
	Addresses, Pointers, Arrays and Strings - Library Functions for processing strings
	Switch and For Statements, Command Line and File Handling - stdin, stdout and stderr
	Addresses, Pointers, Arrays and Strings - Exrecises
	Functions and storage organisation - Introduction
	Functions and storage organisation - Functions
	Functions and storage organisation - Prototypes
	Functions and storage organisation - Pre ANSI Function Declarations
	Functions and storage organisation - Aggregates and Arrays as Function Parameters
	Functions and storage organisation - Pointers to Functions
	Functions and storage organisation - Recursion
	Functions and storage organisation - Storage Classes
	Functions and storage organisation - The Stack
	Functions and storage organisation - Storage qualifiers
	The Pre-Processor and standard libraries - Introduction
	The Pre-Processor and standard libraries - Compiling and Linking
	The Pre-Processor and standard libraries - The #include directive
	The Pre-Processor and standard libraries - Standard library header files
	The Pre-Processor and standard libraries - The ctype macros
	Switch and For Statements, Command Line and File Handling - Introduction
	The Pre-Processor and standard libraries - Standard input and output functions and macros
	The Pre-Processor and standard libraries - Function Like Macros
	Switch and For Statements, Command Line and File Handling - Command Line Arguments
	Switch and For Statements, Command Line and File Handling - Direct Access Files
	Switch and For Statements, Command Line and File Handling - Records and Fields
	Switch and For Statements, Command Line and File Handling - Exercises
	Structures, Unions and Typedefs - Introduction
	Structures, Unions and Typedefs - Basic Structures
	Structures, Unions and Typedefs - Simple examples of structures
	Structures, Unions and Typedefs - Use of Structures
	Structures, Unions and Typedefs - Extended use of structures
	Structures, Unions and Typedefs - Unions
	Structures, Unions and Typedefs - Alignment Constraints
	Structures, Unions and Typedefs - Typedefs
	Structures, Unions and Typedefs - Bit Fields
	Structures, Unions and Typedefs - enum data types
	The Pre-Processor and standard libraries - The #ifdef and #endif Directives
	The Pre-Processor and standard libraries - Exercises
	Separate Compilation of C Modules - Introduction
	Separate Compilation of C Modules - Compilation
	Separate Compilation of C Modules - The extern keyword
	Separate Compilation of C Modules - Simple use of Separate Compilation
	Separate Compilation of C Modules - Using Separate Compilation for Program Development
	Separate Compilation of C Modules - Static (Private) Functions
	Separate Compilation of C Modules - Scope Rules
	Separate Compilation of C Modules - Private Libraries
	Separate Compilation of C Modules - The make utility
	Efficiency, Economy and Portability - Introduction
	Efficiency, Economy and Portability - Efficiency, Economy and Portability defined
	Efficiency, Economy and Portability - The "Hello World" Program
	Efficiency, Economy and Portability - Efficient Coding
	Efficiency, Economy and Portability - Economic Coding
	Efficiency, Economy and Portability - Portability
	Efficiency, Economy and Portability - Profiling
	Efficiency, Economy and Portability - Timing and Clock functions

