
C LANGUAGE TUTORIAL
This tutorial teaches the entire C programming language. It is composed of 13
chapters which should be studied in order since topics are introduced in a logical
order and build upon topics introduced in previous chapters. It is to the students
benefit to download the source code for the example programs, then compile and
execute each program as it is studied. The diligent student will modify the example
program in some way, then recompile and execute it to see if he understands the
material studied for that program. This will provide the student with valuable
experience using his compiler.

The recommended method of study is to print the text for one or two chapters,
download the example programs, and study the material by loading the example
programs in the compiler's editor for viewing. Following successful completion of
each chapter, additional chapters can be downloaded as progress is made.

Version 2.8 - Sept 8, 1996 - (Files restructured on March 15, 1997)

This tutorial is distributed as shareware which means that you do not have to pay to
use it. However, the author spent a good deal of time and financial resources to
develop this tutorial and requests that you share in the financial burden in a very
small way, but only if you felt the tutorial was valuable to you as an aid in learning
to program in C. If you wish to remit a small payment to the author, full instructions
for doing so will be given by clicking the link below. If you do not wish to remit any
payment, please feel free to use the tutorial anyway. In either case, I hope you find
programming in C to be rewarding and profitable. I personally think it is an
excellent language.

How to Remit Payment For this Tutorial!

Introduction - What is C and why study it?

Chapter 1 - Getting Started

Chapter 2 - Program Structure

Chapter 3 - Program Control

Chapter 4 - Assignment & Logical Compare

Chapter 5 - Functions, Variables, & Prototyping

Chapter 6 - The C Preprocessor

Chapter 7 - Strings and Arrays

Chapter 8 - Pointers

Chapter 9 - Standard Input/Output

Chapter 10 - File Input/Output

C Language Tutorial

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/clist.htm (1 of 2) [02/04/2002 09:07:02]

Chapter 11 - Structures

Chapter 12 - Dynamic Allocation

Chapter 13 - Character and Bit Manipulation

Download the HTML Documentation - (chtm.zip) Download all of the above
documents in one packed file. This file (about 155k) contains the 14 files listed
above (plus the diagrams) which can be downloaded and unpacked for use locally.
The content of this file is identical to the content of the above files. There are no
executable files in this group of files.

Download the Source Code - (csrc.zip) Download all example programs. This file
(about 41k) contains 79 source files which are all explained in the 13 chapters of
text. There are no executable files in this group of files.

Download the Answers to Exercises- (cans.zip) Download the authors answers to all
of the programming exercises. This file (about 11k) contains 27 source files. There
are no executable files in this group of files.

Download the pkunzip executable - (pkunzip.exe) Download pkunzip.exe version
2.04 to unzip the source code. This executable is pre-registered for your use in
unzipping any Coronado Enterprises tutorial files. It will unpack and generate the
zipped files in the current directory and all will be ASCII source code files. To
unzip the source code files, execute the following DOS command;

 pkunzip csrc.zip

Or, to unzip the answers to programming exercises, execute the following DOS
command;

 pkunzip cans.zip

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Language Tutorial

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/clist.htm (2 of 2) [02/04/2002 09:07:02]

ftp://ftp.swcp.com/pub/users/dodrill/chtml.zip
ftp://ftp.swcp.com/pub/users/dodrill/csrc.zip
ftp://ftp.swcp.com/pub/users/dodrill/cans.zip
ftp://ftp.swcp.com/pub/users/dodrill/pkunzip.exe
mailto:dodrill@swcp.com

CORONADO ENTERPRISES TUTORIALS

HOW TO REGISTER

AMOUNT OF PAYMENT

If you are satisfied with the quality of the tutorial(s) which you are interested in, you
can submit a registration fee to help defray the cost of developing the tutorial and to
provide funds for developing additional tutorials or programming information.
There is no fixed fee for using one or more tutorials, so you should consider the
following amounts as suggested fees. You can pay whatever you think the
information is worth.

Registration Fee for any single tutorial - $15.00 suggested.

Registration Fee to cover all tutorials - $25.00 suggested.

Registration Fee for educational institutions - One half of the above amounts.
(please register as a group with a single payment if possible to reduce paperwork.)

METHOD OF PAYMENT

Method 1 - Mastercard or Visa via email.

Method 2 - Mastercard or Visa via Post Office

Method 3 - Check or Money Order via Post Office

WHAT YOU WILL RECEIVE FOR REGISTERING

You will receive a hardcopy receipt and a thank you if you send a postal address,
and an email receipt and a thank you if you only provide an email address. There is
really nothing additional to offer you since all of the tutorials are available for
downloading in their entirity from this Web site. There is no "crippleware" within
this web site, nor will there ever be.

Crippleware is limited capability software for which a payment is required to get the
full version.

Thank you for your interest in our tutorials and for visiting our Web site.

Coronado Enterprises - Last update, March 13, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

How to Register

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/order.htm [02/04/2002 09:07:05]

mailto:dodrill@swcp.com

PAYMENT - Mastercard or Visa via email

Send email payment to Coronado Enterprises dodrill@swcp.com

If you feel that email is safe enough to transmit your Mastercard or Visa number,
this is the most convenient and quickest means of registration. Include at least the
following information;

Your card type, Mastercard or Visa .

The cardholders's name on the card.

Your card number.

The expiration date of your card.

The tutorial(s) you are registering for.

The amount you wish to remit.

If you wish to receive a hardcopy receipt via US Post Office mail, include your
complete postal address. If you do not include a postal address, you will receive an
email receipt indicating receipt of the payment.

Any other comments or suggestions will be helpful for improving the current
tutorials, and developing additional tutorials or teaching aids in the future.

Coronado Enterprises - Last update, March 13, 1997

Email payment

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/paymve.htm [02/04/2002 09:07:07]

mailto:dodrill@swcp.com

PAYMENT - Mastercard or Visa via Post Office

Print this form, fill it out and mail it to;

Coronado Enterprises 12501 Coronado Ave NE Albuquerque, New Mexico, USA
87122

Name___

Address___

Address___

City, State, Zip__

Card type; Visa________ Mastercard________

Cardholders name__

Card number__

Expiration date______________________

Which tutorial(s)__

Amount you wish to remit______________

Any other comments or suggestions will be helpful for improving the current
tutorials, and developing additional tutorials or teaching aids in the future.

Coronado Enterprises - Last update, March 13, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

Post office payment

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/paymvp.htm [02/04/2002 09:07:21]

mailto:dodrill@swcp.com

PAYMENT - Check or money order via Post Office

Print this form, fill it out and mail it to;

Coronado Enterprises 12501 Coronado Ave NE Albuquerque, New Mexico, USA
87122

Name___

Address___

Address___

City, State, Zip__

Which tutorial(s)__

Amount you wish to remit______________

We can only accept checks drawn on a United States Bank

Any other comments or suggestions will be helpful for improving the current
tutorials, and developing additional tutorials or teaching aids in the future.

Coronado Enterprises - Last update, March 13, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

Payment by Check

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/payckp.htm [02/04/2002 09:07:24]

mailto:dodrill@swcp.com

Introduction to the C Tutorial

C IS USUALLY FIRST
The programming language C was originally developed by Dennis Ritchie of Bell
Laboratories and was designed to run on a PDP-11 with a UNIX operating system.
Although it was originally intended to run under UNIX, there has been a great
interest in running it under the MS-DOS operating system on the IBM PC and
compatibles. It is an excellent language for this environment because of the
simplicity of expression, the compactness of the code, and the wide range of
applicability. Also, due to the simplicity and ease of writing a C compiler, it is
usually the first high level language available on any new computer, including
microcomputers, minicomputers, and mainframes.

C is not the best beginning language because it is somewhat cryptic in nature. It
allows the programmer a wide range of operations from high level down to a very
low level, approaching the level of assembly language. There seems to be no limit to
the flexibility available. One experienced C programmer made the statement, "You
can program anything in C", and the statement is well supported by my own
experience with the language. Along with the resulting freedom however, you take
on a great deal of responsibility because it is very easy to write a program that
destroys itself due to the silly little errors that a good Pascal compiler will flag and
call a fatal error. In C, you are very much on your own as you will soon find.

I ASSUME YOU KNOW NOTHING ABOUT C

In order to successfully complete this tutorial, you will not need any prior knowlede
of the C programming language. I will begin with the most basic concepts of C and
take you up to the highest level of C programming including the usually
intimidating concepts of pointers, structures, and dynamic allocation. To fully
understand these concepts, it will take a good bit of time and work on your part
because they are not particularly easy to grasp, but they are very powerful tools.
Enough said about that, you will see their power when we get there, just don't allow
yourself to worry about them yet.

Programming in C is a tremendous asset in those areas where you may want to use
Assembly Language but would rather keep it a "simple to write" and "easy to
maintain" program. It has been said that a program written in C will pay a premium
of a 20 to 50% increase in runtime because no high level language is as compact or
as fast as Assembly Language. However, the time saved in coding can be
tremendous, making it the most desirable language for many programming chores.
In addition, since most programs spend 90 percent of their operating time in only 10
percent or less of the code, it is possible to write a program in C, then rewrite a
small portion of the code in Assembly Language and approach the execution speed

C Tutorial - Introduction

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/intro.htm (1 of 3) [02/04/2002 09:07:29]

of the same program if it were written entirely in Assembly Language.

Even though the C language enjoys a good record when programs are transported
from one implementation to another, there are differences in compilers that you will
find anytime you try to use another compiler. Most of the differences become
apparent when you use nonstandard extensions such as calls to the DOS BIOS when
using MS-DOS, but even these differences can be minimized by careful choice of
programming constructs.

Throughout this tutorial, every attempt will be made to indicate to you what
constructs are available in every C compiler because they are part of the ANSI-C
standard, the accepted standard of C programming.

WHAT IS THE ANSI-C STANDARD?

When it became evident that the C programming language was becoming a very
popular language available on a wide range of computers, a group of concerned
individuals met to propose a standard set of rules for the use of the C programming
language. The group represented all sectors of the software industry and after many
meetings, and many preliminary drafts, they finally wrote an acceptable standard for
the C language. It has been accepted by the American National Standards Institute
(ANSI), and by the International Standards Organization (ISO). It is not forced upon
any group or user, but since it is so widely accepted, it would be economic suicide
for any compiler writer to refuse to conform to the standard.

YOU MAY NEED A LITTLE HELP

Modern C compilers are very capable systems, but due to the tremendous versatility
of a C compiler, it could be very difficult for you to learn how to use it effectively.
If you are a complete novice to programming, you will probably find the installation
instructions somewhat confusing. You may be able to find a colleague or friend that
is knowledgeable about computers to aid you in setting up your compiler for initial
use.

This tutorial cannot cover all aspects of programming in C, simply because there is
too much to cover, but it will instruct you in all you need for the majority of your
programming in C, and it will introduce essentially all of the C language. You will
receive instruction in all of the programming constructs in C, but what must be
omitted are methods of programming, since these can only be learned by
experience. More importantly, it will teach you the vocabulary of C so that you can
go on to more advanced techniques using the programming language C. A diligent
effort on your part to study the material presented in this tutorial will result in a
solid base of knowledge of the C programming language. You will then be able to
intelligently read technical articles or other textbooks on C and greatly expand your
knowledge of this modern and very popular programming language.

C Tutorial - Introduction

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/intro.htm (2 of 3) [02/04/2002 09:07:29]

HOW TO USE THIS TUTORIAL

This tutorial is written in such a way that the student should sit before his computer
and study each example program by displaying it on the monitor and reading the
text which corresponds to that program. Following his study of each program, he
should then compile and execute it and observe the results of execution with his
compiler. This enables the student to gain experience using his compiler while he is
learning the C programming language. It is strongly recommended that the student
study each example program in the given sequence then write the programs
suggested at the end of each chapter in order to gain experience in writing C
programs.

THIS IS WRITTEN PRIMARILY FOR MS-DOS

This tutorial is written primarily for use on an IBM-PC or compatible computer but
can be used with any ANSI standard compiler since it conforms so closely to the
ANSI standard. In fact, a computer is not even required to study this material since
the result of execution of each example program is given in comments at the end of
each program.

RECOMMENDED READING AND REFERENCE MATERIAL

"The C Programming Language - Second Edition", Brian W. Kernigan & Dennis M.
Ritchie, Prentice Hall, 1988

This is the definitive text of the C programming language and is required reading for
every serious C programmer. Although the first edition was terse and difficult to
read, the second edition is easier to read and extremely useful as both a learning
resource and a reference guide.

Any ANSI-C textbook

Each student should posess a copy of a book that includes a definition of the entire
ANSI-C specification and library. Go to a good bookstore and browse for one.

Return to Table of Contents

Advance to Chapter 1

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Introduction

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/intro.htm (3 of 3) [02/04/2002 09:07:29]

mailto:dodrill@swcp.com

C Tutorial - Chapter 1

GETTING STARTED
WHAT IS AN IDENTIFIER?

Before you can do anything in any language, you must know how to name an
identifier. An identifier is used for any variable, function, data definition, etc. In the
C programming language, an identifier is a combination of alphanumeric characters,
the first being a letter of the alphabet or an underline, and the remaining being any
letter of the alphabet, any numeric digit, or the underline.

Two rules must be kept in mind when naming identifiers.

The case of alphabetic characters is significant. Using INDEX for a variable
name is not the same as using index and neither of them is the same as using
InDeX for a variable name. All three refer to different variables.

1.

According to the ANSI-C standard, at least 31 significant characters can be
used and will be considered significant by a conforming ANSI-C compiler. If
more than 31 are used, all characters beyond the 31st may be ignored by any
given compiler.

2.

WHAT ABOUT THE UNDERLINE?

The underline can be used as part of a variable name, and adds greatly to the
readability of the resulting code. It is used by some, but not all, experienced C
programmers. A few underlines are used for illustration in this tutorial. Since most
compiler writers use the underline as the first character for variable names internal
to the system, you should refrain from using the underline to begin an identifier to
avoid the possibility of a name clash. To get specific, identifiers with two leading
underscores are reserved for the compiler as well as identifiers beginning with a
single underscore and using an upper case alphabetic character for the second. If
you make it a point of style to never use an identifier with a leading underline, you
will not have a naming clash with the system.

It adds greatly to the readability of a program to use descriptive names for variables
and it would be to your advantage to do so. Pascal and Ada programmers tend to use
long descriptive names, but most C programmers tend to use short cryptic names.
Most of the example programs in this tutorial use very short names for that reason,
but a few longer names are used for illustrative purposes.

KEYWORDS

There are 32 words defined as keywords in C. These have predefined uses and
cannot be used for any other purpose in a C program. They are used by the compiler
as an aid to compiling the program. They are always written in lower case. A

C Tutorial - Chapter 1

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap01.htm (1 of 3) [02/04/2002 09:07:35]

complete list follows;

 auto double int struct
 break else long switch
 case enum register typedef
 char extern return union
 const float short unsigned
 continue for signed void
 default goto sizeof volatile
 do if static while

In addition to this list of keywords, your compiler may define a few more. If it does,
they will be listed in the documentation that came with your compiler. Each of the
above keywords will be defined, illustrated, and used in this tutorial.

WE NEED DATA AND A PROGRAM

Any computer program has two entities to consider, the data, and the program. They
are highly dependent on one another and careful planning of both will lead to a well
planned and well written program. Unfortunately, it is not possible to study either
completely without a good working knowledge of the other. For that reason, this
tutorial will jump back and forth between teaching methods of program writing and
methods of data definition. Simply follow along and you will have a good
understanding of both. Keep in mind that, even though it seems expedient to
sometimes jump right into coding the program, time spent planning the data
structures will be well spent and the quality of the final program will reflect the
original planning.

HOW THIS TUTORIAL IS WRITTEN

As you go through the example programs, you will find that every program is
complete. There are no program fragments that could be confusing. This allows you
to see every requirement that is needed to use any of the features of C as they are
presented. Some tutorials I have seen give very few, and very complex examples.
They really serve more to confuse the student. This tutorial is the complete opposite
because it strives to cover each new aspect of programming in as simple a context as
possible.

Throughout this tutorial, keywords, variable names, and function names will be
given in boldface as an aid to clarity. These terms will be completely defined
throughout the tutorial.

RESULT OF EXECUTION

The result of executing each program will be given in comments at the end of the
program listing after the comment is defined in about the fourth program of chapter
2. If you feel confident that you completely understand the program, you can simply

C Tutorial - Chapter 1

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap01.htm (2 of 3) [02/04/2002 09:07:35]

refer to the result of execution to see if you understand the result. In this case, it will
not be necessary for you to compile and execute every program. It would be a good
exercise for you to compile and execute some of them however, because all C
compilers will not generate exactly the same results and you need to get familiar
with your own compiler.

Example program ------> FIRSTEX.C

At this point, you should compile and execute FIRSTEX.C if you have not yet done
so, to see that your C compiler is properly loaded and operating. Don't worry about
what the program does yet. In due time you will understand it completely.

Note that this program will compile and execute properly with any good compiler.

A WORD ABOUT COMPILERS

All of the example programs in this tutorial will compile and execute correctly with
any good ANSI compatible C compiler. Some compilers have gotten extremely
complex and hard to use for a beginning C programmer, and some only compile and
build Microsoft Windows programs. Fortunately, most of the C compilers available
have a means of compiling a standard C program which is written for the DOS
environment and includes none of the Windows extensions. You should check your
documentation for the capabilities and limitations of your compiler. If you have not
yet purchased a C compiler, you should find one that is ANSI-C compliant, and that
also has the ability to generate a DOS executable if you are planning to use the DOS
operating system.

ANSWERS TO PROGRAMMING EXERCISES

There are programming exercises at the end of most of the chapters. You should
attempt to do original work on each of the exercises before referring to the answers
(all of which are zipped into cans.zip) in order to gain your own programming
experience. These answers are given for your information in case you are
completely stuck on how to solve a particular problem. These answers are not meant
to be the only answer, since there are many ways to program anything, but they are
meant to illustrate one way to solve the suggested programming problem.

The answers are all in source files named in the format CHnn_m.C where nn is the
chapter number, and m is the exercise number. If more than one answer is required,
an A, B, or C is included following the exercise number.

Return to Table of Contents

Advance to Chapter 2

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 1

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap01.htm (3 of 3) [02/04/2002 09:07:35]

mailto:dodrill@swcp.com

C Tutorial - Chapter 2

GETTING STARTED IN C
YOUR FIRST C PROGRAM

Example program ------> TRIVIAL.C

The best way to get started with C is to actually study a program, so load the file
named TRIVIAL.C and display it on the monitor. You are looking at the simplest
possible C program. There is no way to simplify this program or to leave anything
out. Unfortunately, the program doesn't do anything.

The word main is very important, and must appear once, and only once in every C
program. This is the point where execution is begun when the program is run. We
will see later that this does not have to be the first statement in the program but it
must exist as the entry point. Following the main program name is a pair of
parentheses which are an indication to the compiler that this is a function. We will
cover exactly what a function is in due time. For now, I suggest that you simply
include the pair of parentheses.

The two curly brackets in lines 2 and 3, properly called braces, are used to define
the limits of the program itself. The actual program statements go between the two
braces and in this case, there are no statements because the program does absolutely
nothing. You can compile and run this program, but since it has no executable
statements, it does nothing. Keep in mind, however, that it is a valid C program.
When you compile this program, you may get a warning. You can ignore the
warning and we will discuss it later in this tutorial, or you can modify the program
so that it appears as follows;

 int main()
 {
 return 0;
 }

This modified program must compile on any good C compiler since it conforms to
the ANSI-C standard. We will explain the difference in these two programs later in
this tutorial.

A PROGRAM THAT DOES SOMETHING

Example program ------> WRTSOME.C

For a much more interesting program, load the program named WRTSOME.C and
display it on your monitor. It is the same as the previous program except that it has
one executable statement between the braces plus the obligatory return statement.

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (1 of 6) [02/04/2002 09:07:43]

The executable statement is a call to a function supplied as a part of your C library.
Once again, we will not worry about what a function is, but only how to use this one
named printf(). In order to output text to the monitor, the desired text is put within
the function parentheses and bounded by quotation marks. The end result is that
whatever text is included between the quotation marks will be displayed on the
monitor when the program is run.

Notice the semi-colon at the end of line 5. C uses a semi-colon as a statement
terminator, so the semi-colon is required as a signal to the compiler that this line is
complete. This program is also executable, so you can compile and run it to see if it
does what you think it should. It should cause the text between the quotation marks
to appear on the monitor when you execute it.

You can ignore the statements in lines 1 and 7 in this program and similar
statements in each of the remaining programs in this chapter. These will be fully
described later in this tutorial. We will also define why the word int is used at the
begining of line 3. We have a few preliminary topics to cover before we get to these
items.

ANOTHER PROGRAM WITH MORE OUTPUT

Example program ------> WRTMORE.C

Load the program WRTMORE.C and display it on your monitor for an example
with more output and another small but important concept. You will see that there
are four executable statements in this program, each one being a call to the function
printf(). The top line will be executed first, then the next, and so on, until the fourth
line is complete. The statements are executed sequentially from top to bottom.

Notice the funny character near the end of the first line, namely the backslash. The
backslash is used in the printf() statement to indicate that a special control character
is following. In this case, the "n" indicates that a newline is requested. This is an
indication to return the cursor to the left side of the monitor and move down one
line. Any place within printed text that you desire, you can put a newline character
to start a new line. You could even put it in the middle of a word and split the word
between two lines.

A complete description of this program is now possible. The first printf() outputs a
line of text and returns the carriage. (Of course, there is no carriage, but the cursor is
moved to the next line on the monitor. The terminology carries over from the days
of teletypes.) The second printf() outputs a line of text but does not return the
carriage so that the third line is appended to the end of the second, then followed by
two carriage returns, resulting in a blank line. Finally the fourth printf() outputs a
line followed by a carriage return and the program is complete.

After compiling and executing WRTMORE.C, the following text should be

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (2 of 6) [02/04/2002 09:07:43]

displayed on your monitor;

This is a line of text to output.
And this is another line of text.

This is a third line.

Compile and execute this program to see if it gives you this output. It would be a
good idea at this time for you to experiment by adding additional lines of printout to
see if you understand how the statements really work. Add a few carriage returns in
the middle of a line to prove to yourself that it works as stated, then compile and
execute the modified program. The more you modify and compile the example
programs included with this tutorial, the more you will learn as you work your way
through it.

LET'S PRINT SOME NUMBERS

Example program ------> ONEINT.C

Load the file named ONEINT.C and display it on the monitor for our first example
of how to work with data in a C program. The entry point main() should be clear to
you by now as well as the beginning brace. The first new thing we encounter is line
5 containing int index; which is used to define an integer variable named
index. The word int is a keyword in C, and can not be used for anything else. It
defines a variable that can store a whole number within a predefined range of
values. We will define an actual range later. The variable name, index, can be any
name that follows the rules for an identifier and is not one of the keywords for C.
The final character on the line, the semi-colon, is the statement terminator as
discussed earlier.

Note that, even though we have defined a variable, we have not yet assigned a value
to it, so it contains an undefined value. We will see in a later chapter that additional
integers could also be defined on the same line, but we will not complicate the
present situation.

Observing the main body of the program, you will notice that there are three
statements that assign a value to the variable index, but only one at a time. The
statement in line 7 assigns the value of 13 to index, and its value is printed out by
line 8. (We will see how shortly. Trust me for the time being.) Later, the value of 27
is assigned to index, and finally 10 is assigned to it, each value being printed out. It
should be intuitively clear that index is indeed a variable and can store many
different values but only one value at a time of course.

Please note that many times the words "printed out" are used to mean "displayed on
the monitor". You will find that in many cases experienced programmers take this
liberty, probably due to the printf() function being used for monitor display.

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (3 of 6) [02/04/2002 09:07:43]

HOW DO WE PRINT NUMBERS?

To keep our promise, let's return to the printf() statements for a definition of how
they work. Notice that they are all identical and that they all begin just like the
printf() statements we have seen before. The first difference occurs when we come
to the % character. This is a special character that signals the output routine to stop
copying characters to the output and do something different, usually to output the
value of a variable. The % sign is used to signal the output of many different types
of variables, but we will restrict ourselves to only one for this example. The
character following the % sign is a d, which signals the output routine to get a
decimal value and output it. Where the decimal value comes from will be covered
shortly. After the d, we find the familiar \n, which is a signal to return the video
"carriage", and the closing quotation mark.

All of the characters between the quotation marks define the pattern of data to be
output by this statement. Following the output pattern, there is a comma followed by
the variable name index. This is where the printf() statement gets the decimal value
which it will output because of the %d we saw earlier. The system substitutes the
current value of the variable named index for the %d and copies it to the monitor.
We could add more %d output field descriptors anywhere within the brackets and
more variables following the description to cause more data to be printed with one
statement. Keep in mind however, that the number of field descriptors and the
number of variable definitions must be the same or the runtime system will generate
something we are not expecting.

Much more will be covered at a later time on all aspects of input and output
formatting. A reasonably good grasp of these fundamentals are necessary in order to
understand the following lessons. It is not necessary to understand everything about
output formatting at this time, only a fair understanding of the basics.

Compile and run ONEINT.C and observe the output. Two programming exercises at
the end of this chapter are based on this program.

HOW DO WE ADD COMMENTS IN C?

Example program ------> COMMENTS.C

Load the file named COMMENTS.C and observe it on your monitor for an example
of how comments can be added to a C program. Comments are added to make a
program more readable to you but represent nonsense to the compiler, so we must
tell the compiler to ignore the comments completely by bracketing them with
special characters. The slash star combination is used in C for comment delimiters,
and are illustrated in the program at hand. Please note that the program does not
illustrate good commenting practice, but is intended to illustrate where comments
can go in a program. It is a very sloppy looking program.

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (4 of 6) [02/04/2002 09:07:43]

The slash star combination in line 3 introduces the first comment and the star slash
at the end of that line terminates this comment. Note that this comment is prior to
the beginning of the program illustrating that a comment can precede the program
itself. Good programming practice would include a comment prior to the program
with a short introductory description of the program. The comment in line 5 is after
the main program entry point and prior to the opening brace for the program code
itself.

The third comment starts after the first executable statement in line 7 and continues
for four lines. This is perfectly legal because a comment can continue for as many
lines as desired until it is terminated. Note carefully that if anything were included
in the blank spaces to the left of the three continuation lines of the comment, it
would be part of the comment and would not be compiled, but totally ignored by the
compiler. The last comment, in line 15, is located following the completion of the
program, illustrating that comments can go nearly anywhere in a C program.

Experiment with this program by adding comments in other places to see what will
happen. Comment out one of the printf() statements by putting comment delimiters
both before and after it and see that it does not get executed and therefore does not
produce a line of printout.

Comments are very important in any programming language because you will soon
forget what you did and why you did it. It will be much easier to modify or fix a
well commented program a year from now than one with few or no comments. You
will very quickly develop your own personal style of commenting.

Some C compilers will allow you to "nest" comments which can be very handy if
you need to "comment out" a section of code during debugging. Since nested
comments are not a part of the ANSI-C standard, none will be used in this tutorial.
Check the documentation for your compiler to see if they are permitted with your
implementation of C. Even though they may be allowed, it is a good idea to refrain
from their use, since they are rarely used by experienced C programmers, and using
them may make it difficult to port your code to another compiler if the need should
arise.

GOOD FORMATTING STYLE

Example program ------> GOODFORM.C

Load the file GOODFORM.C and observe it on your monitor. It is an example of a
well formatted program. Even though it is very short and therefore does very little, it
is very easy to see at a glance what it does. With the experience you have already
gained in this tutorial, you should be able to very quickly grasp the meaning of the
program in it's entirety. Your C compiler ignores all extra spaces and all carriage
returns giving you considerable freedom in formatting your program. Indenting and
adding spaces is entirely up to you and is a matter of personal taste. Compile and

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (5 of 6) [02/04/2002 09:07:43]

run the program to see if it does what you expect it to do.

Example program ------> UGLYFORM.C

Now load and display the program UGLYFORM.C and observe it. How long will it
take you to figure out what this program will do? It doesn't matter to the compiler
which format style you use, but it will matter to you when you try to debug your
program. Compile this program and run it. You may be surprised to find that it is the
same program as the last one, except for the formatting. Don't get too worried about
formatting style yet. You will have plenty of time to develop a style of your own as
you learn the C language. Be observant of styles as you see C programs in
magazines and books.

This covers some of the basic concepts of programming in C, but as there are many
other things to learn, we will forge ahead to additional program structure. It will
definitely be to your advantage to do the programming exercises at the end of each
chapter. They are designed to augment your studies and teach you to use your
compiler.

PROGRAMMING EXERCISES
Write a program to display your name on the monitor.1.

Modify the program to display your address and phone number on separate
lines by adding two additional printf() statements.

2.

Remove line 7 from ONEINT.C by commenting it out, then compile and
execute the resulting program to see the value of an uninitialized variable.
This can be any value within the allowable range for that variable. If it
happens to have the value of zero, that is only a coincidence, but then zero is
the most probable value to be in an uninitialized variable because there are
lots of zero values floating around in a computer's memory. It is actually legal
for the program to abort if you refer to a variable that you failed to initialize,
but few compilers, if any, will actually do so.

3.

Add the following two lines just after the last printf() of ONEINT.C to see
what it does. Study it long enough to completely understand the result.

4.

printf("Index is %d\n it still is %d\n it is %d",

 index, index, index);

Return to Table of Contents

Advance to Chapter 3

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 2

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap02.htm (6 of 6) [02/04/2002 09:07:43]

mailto:dodrill@swcp.com

C Tutorial - Chapter 3

PROGRAM CONTROL
THE WHILE LOOP

The C programming language has several structures for looping and conditional
branching. We will cover them all in this chapter and we will begin with the while
loop.

The while loop continues to loop while some condition is true. When the condition
becomes false, the looping is discontinued. It therefore does just what it says it does,
the name of the loop being very descriptive.

Example program ------> WHILE.C

Load the program WHILE.C and display it for an example of a while loop. We
begin with a comment and the program entry point main(), then go on to define an
integer variable named count within the body of the program. The variable is set to
zero and we come to the while loop itself. The syntax of a while loop is just as
shown here. The keyword while is followed by an expression of something in
parentheses, followed by a compound statement bracketed by braces. As long as the
expression in the parenthesis is true, all statements within the braces will be
repeatedly executed. In this case, since the variable count is incremented by one
every time the statements are executed, it will eventually reach 6. At that time the
statement will not be executed because count is not less than 6, and the loop will be
terminated. The program control will resume at the statement following the
statements in braces.

We will cover the compare expression, the one in parentheses, in the next chapter.
Until then, simply accept the expressions for what you think they should do and you
will be correct for these simple cases.

Several things must be pointed out regarding the while loop. First, if the variable
count were initially set to any number greater than 5, the statements within the loop
would not be executed at all, so it is possible to have a while loop that never is
executed. Secondly, if the variable were not incremented in the loop, then in this
case, the loop would never terminate, and the program would never complete.
Finally, if there is only one statement to be executed within the loop, it does not
need delimiting braces but can stand alone.

Compile and run this program after you have studied it enough to assure yourself
that you understand its operation completely. Note that the result of execution is
given for this program, (and will be given for all of the remaining example programs
in this tutorial) so you do not need to compile and execute every program to see the

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (1 of 7) [02/04/2002 09:07:57]

results. Be sure to compile and execute some of the programs however, to gain
experience with your compiler.

You should make some modifications to any programs that are not completely clear
to you and compile them until you understand them completely. The best way to
learn is to try various modifications yourself.

We will continue to ignore the #include statement and the return statement in the
example programs in this chapter. We will define them completely later in this
tutorial.

THE DO-WHILE LOOP

Example program ------> DOWHILE.C

A variation of the while loop is illustrated in the program DOWHILE.C, which you
should load and display. This program is nearly identical to the last one except that
the loop begins with the keyword do, followed by a compound statement in braces,
then the keyword while, and finally an expression in parentheses. The statements in
the braces are executed repeatedly as long as the expression in the parentheses is
true. When the expression in parentheses becomes false, execution is terminated,
and control passes to the statements following this statement.

Several things must be pointed out regarding the do-while loop. Since the test is
done at the end of the loop, the statements in the braces will always be executed at
least once. Secondly, if the variable i were not changed within the loop, the loop
would never terminate, and hence the program would never terminate.

It should come as no surprise to you that these loops can be nested. That is, one loop
can be included within the compound statement of another loop, and the nesting
level has no limit. This will be illustrated later.

Compile and run this program to see if it does what you think it should do.

THE FOR LOOP

Example program ------> FORLOOP.C

Load and display the file named FORLOOP.C on your monitor for an example of a
program with a for loop. The for loop consists of the keyword for followed by a
rather large expression in parentheses. This expression is really composed of three
fields separated by semi-colons. The first field contains the expression "index =
0" and is an initializing field. Any expressions in this field are executed prior to the
first pass through the loop. There is essentially no limit as to what can go here, but
good programming practice would require it to be kept simple. Several initializing
statements can be placed in this field, separated by commas.

The second field, in this case containing "index < 6", is the test which is done

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (2 of 7) [02/04/2002 09:07:57]

at the beginning of each pass through the loop. It can be any expression which will
evaluate to a true or false. (More will be said about the actual value of true and false
in the next chapter.)

The expression contained in the third field is executed each time the loop is
exercised but it is not executed until after those statements in the main body of the
loop are executed. This field, like the first, can also be composed of several
operations separated by commas.

Following the for() expression is any single or compound statement which will be
executed as the body of the loop. A compound statement is any group of valid C
statements enclosed in braces. In nearly any context in C, a simple statement can be
replaced by a compound statement that will be treated as if it were a single
statement as far as program control goes. Compile and run this program.

The while is convenient to use for a loop when you don't have any idea how many
times the loop will be executed, and the for loop is usually used in those cases when
you are doing a fixed number of iterations. The for loop is also convenient because
it moves all of the control information for a loop into one place, between the
parentheses, rather than at both ends of the code. It is your choice as to which you
would rather use. Depending on how they are used, it is possible with each of these
two loops to never execute the code within the loop at all. This is because the test is
done at the beginning of the loop, and the test may fail during the first iteration. The
do-while loop however, due to the fact that the code within the loop is executed
prior to the test, will always execute the code at least once.

THE IF STATEMENT

Example program ------> IFELSE.C

Load and display the file IFELSE.C for an example of our first conditional
branching statement, the if. Notice first, that there is a for loop with a compound
statement as its executable part containing two if statements. This is an example of
how statements can be nested. It should be clear to you that each of the if statements
will be executed 10 times.

Consider the first if statement. It starts with the keyword if followed by an
expression in parentheses. If the expression is evaluated and found to be true, the
single statement following the if is executed, and if false, the following statement is
skipped. Here too, the single statement can be replaced by a compound statement
composed of several statements bounded by braces. The expression "data == 2"
is simply asking if the value of data is equal to 2. This will be explained in detail in
the next chapter. (Simply suffice for now that if "data = 2" were used in this
context, it would mean a completely different thing. You must use the double equal
sign for comparing values.)

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (3 of 7) [02/04/2002 09:07:57]

NOW FOR THE IF-ELSE

The second if is similar to the first with the addition of a new keyword, the else in
line 17. This simply says that if the expression in the parentheses evaluates as true,
the first expression is executed, otherwise the expression following the else is
executed. Thus, one of the two expressions will always be executed, whereas in the
first example the single expression was either executed or skipped. Both will find
many uses in your C programming efforts. Compile and run this program to see if it
does what you expect.

THE BREAK AND CONTINUE

Example program ------> BREAKCON.C

Load the file named BREAKCON.C for an example of two new statements. Notice
that in the first for loop, there is an if statement that calls a break if xx equals 8.
The break will jump out of the loop you are in and begin executing statements
immediately following the loop, effectively terminating the loop. This is a valuable
statement when you need to jump out of a loop depending on the value of some
results calculated in the loop. In this case, when xx reaches the value of 8, the loop
is terminated and the last value printed will be the previous value, namely 7. The
break always jumps out of the loop just past the terminating brace.

The next for loop starting in line 15, contains a continue statement which does not
cause termination of the loop but jumps out of the present iteration. When the value
of xx reaches 8 in this case, the program will jump to the end of the loop and
continue executing the loop, effectively eliminating the printf() statement during
the pass through the loop when xx is eight. The continue statement always jumps to
the end of the loop just prior to the terminating brace. At that time the loop is
terminated or continues based on the result of the loop test.

Be sure to compile and execute this program.

THE SWITCH STATEMENT

Example program ------> SWITCH.C

Load and display the file SWITCH.C for an example of the biggest construct yet in
the C language, the switch. The switch is not difficult, so don't let it intimidate you.
It begins with the keyword switch followed by a variable in parentheses which is
the switching variable, in this case truck. As many cases as needed are then
enclosed within a pair of braces. The reserved word case is used to begin each case,
followed by the value of the variable for that case, then a colon, and the statements
to be executed.

In this example, if the variable named truck contains the value 3 during this pass of
the switch statement, the printf() in line 13 will cause "The value is

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (4 of 7) [02/04/2002 09:07:57]

three\n" to be displayed, and the break statement will cause us to jump out of
the switch. The break statement here works in much the same manner as the loop, it
jumps out just past the closing brace.

Once an entry point is found, statements will be executed until a break is found or
until the program drops through the bottom of the switch braces. If the variable
truck has the value 5, the statements will begin executing at line 17 where "case
5 :" is found, but the first statements found are where the case 8 statements are.
These are executed and the break statement in line 21 will direct the execution out
of the bottom of the switch just past the closing brace. The various case values can
be in any order and if a value is not found, the default portion of the switch will be
executed.

It should be clear that any of the above constructs can be nested within each other or
placed in succession, depending on the needs of the particular programming project
at hand. Note that the switch is not used as frequently as the loop and the if
statements. In fact, the switch is used infrequently but should be completely
understood by the serious C programmer. Be sure to compile and run SWITCH.C
and examine the results.

THE EVIL GOTO STATEMENT

Example program ------> GOTOEX.C

Load and display the file GOTOEX.C for an example of a file with some goto
statements in it. To use a goto statement, you simply use the reserved word goto
followed by the symbolic name to which you wish to jump. The name is then placed
anywhere in the program followed by a colon. You can jump nearly anywhere
within a function, but you are not permitted to jump into a loop, although you are
allowed to jump out of a loop.

This particular program is really a mess but it is a good example of why software
writers are trying to eliminate the use of the goto statement as much as possible. The
only place in this program where it is reasonable to use the goto is the one in line 23
where the program jumps out of the three nested loops in one jump. In this case it
would be rather messy to set up a variable and jump successively out of each of the
three nested loops but one goto statement gets you out of all three in a very concise
manner.

Some persons say the goto statement should never be used under any circumstances,
but this is narrow minded thinking. If there is a place where a goto will clearly do a
neater control flow than some other construct, feel free to use it. It should not be
abused however, as it is in the rest of the program on your monitor.

Entire books are written on "gotoless" programming, better known as Structured
Programming.

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (5 of 7) [02/04/2002 09:07:57]

Compile and run GOTOEX.C and study its output. It would be a good exercise to
rewrite it and see how much more readable it is when the statements are listed in
order.

FINALLY, A MEANINGFUL PROGRAM

Example program ------> TEMPCONV.C

Load the file named TEMPCONV.C for an example of a useful, even though
somewhat limited program. This is a program that generates a list of centigrade and
fahrenheit temperatures and prints a message out at the freezing point of water and
another at the boiling point of water.

Of particular importance is the formatting. The header is several lines of comments
describing what the program does in a manner that catches the readers attention and
is still pleasing to the eye. You will eventually develop your own formatting style,
but this is a good way to start. Also if you observe the for loop, you will notice that
all of the contents of the compound statement are indented 3 spaces to the right of
the for keyword, and the opening and closing braces are lined up under the "f" in
for. This makes debugging a bit easier because the construction becomes very
obvious. (The next example program will illustrate two additional methods of
formatting braces.) You will also notice that the printf() statements that are in the if
statements within the big for loop are indented three additional spaces because they
are part of yet another construct.

This is the first program in which we used more than one variable. The three
variables are simply defined on three different lines and are used in the same
manner as a single variable was used in previous programs. By defining them on
different lines, we have an opportunity to define each with a comment. It would be
possible to define them on one line, but to do so would remove the ability to include
a comment on each line. This is illustrated in the next program. Be sure to compile
and execute the current program.

ANOTHER POOR PROGRAMMING EXAMPLE

Example program ------> DUMBCONV.C

Recalling UGLYFORM.C from the last chapter, you saw a very poorly formatted
program. If you load and display DUMBCONV.C you will have an example of poor
formatting which is much closer to what you will find in practice. This is the same
program as TEMPCONV.C with the comments removed and the variable names
changed to remove the descriptive aspect of the names. Although this program does
exactly the same as the last one, it is much more difficult to read and understand.
You should begin to develop good programming practices now by studying this
program to learn what not to do.

It would be beneficial for you to remove the indentation from the last two example

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (6 of 7) [02/04/2002 09:07:57]

programs to see how much more difficult it is to understand the structure of the
program without the indentations.

OUR FIRST STYLE PROGRAM

Example program ------> STYLE1.C

This program does nothing practical except to illustrate various styles of formatting
and how to combine some of the constructs introduced in this chapter. There is
nothing in this program that we have not studied so far in this tutorial. The program
is heavily commented and should be studied in detail by the diligent C student to
begin learning proper C programming style. Like all other example programs, this
one can be compiled and executed, and should be.

PROGRAMMING EXERCISES
Write a program that writes your name on the monitor ten times. Write this
program three times, once with each looping method.

1.

Write a program that counts from one to ten, prints the values on a separate
line for each, and includes a message of your choice when the count is 3 and a
different message when the count is 7.

2.

Return to Table of Contents

Advance to Chapter 4

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 3

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap03.htm (7 of 7) [02/04/2002 09:07:57]

mailto:dodrill@swcp.com

C Tutorial - Chapter 4

ASSIGNMENT & LOGICAL COMPARES
Throughout this chapter, references are given to various ranges of variables. This
refers to the range of values that can be stored in any given variable. Your compiler
may use a different range for some of the variables since the ANSI standard does not
define specific limits for all data types. Consult the documentation for your compiler
for the exact range of each of the variable types.

INTEGER ASSIGNMENT STATEMENTS

Example program ------> INTASIGN.C

Load the file named INTASIGN.C and display it for an example of assignment
statements. Three variables are defined for use in the program and the remainder of
the program is merely a series of illustrations of various kinds of assignment
statements. All three variables are defined on one line and have unknown values
stored in them initially.

The first two lines of the assignment statements, lines 8 and 10, assign numerical
values to the variables named a and b, and the next five lines illustrate the five basic
arithmetic functions and how to use them. The fifth is the modulo operator and gives
the remainder if the two variables were divided. It can only be applied to integral
type variables, which will be defined later. Lines 15 and 16 illustrate how to combine
some of the variables in relatively complex math expressions. All of the above
examples should require no comment except to say that none of the equations are
meant to be particularly useful except as illustrations.

Precedence of operators is a very important topic that you will need to study in detail
at some point, but for now we will only need a few rules. When you have mixed
arithmetic expressions, the multiplication and division operations are completed
before the addition and subtraction operations when they are all at the same logical
level. Therefore when evaluating a * b + c / d, the multiplication and division are
done first, then the addition is performed. However in the expression a * (b + c / d),
the addition follows the division, but preceeds the multiplication because the
operations are at two different logical levels as defined by the parentheses.

The expressions in lines 17 and 18 are perfectly acceptable as given, but we will see
later in this chapter that there is another way to write these for more compact code.

VERY STRANGE LOOKING CODE

This brings us to lines 20 and 21 which may appear to you as being very strange. The
C compiler scans the assignment statement from right to left, (which may seem a bit
odd since we do not read that way), resulting in a very useful construct, namely the

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (1 of 14) [02/04/2002 09:08:43]

one given here. The compiler finds the value 20, assigns it to c, then continues to the
left finding that the latest result of a calculation should be assigned to b. Thinking
that the latest calculation resulted in a 20, it assigns that value to b also, and
continues the leftward scan assigning the value 20 to a also. This is a very useful
construct when you are initializing a group of variables. The statement in line 21
illustrates that it is possible to actually do some calculations to arrive at the value
which will be assigned to all three variables. The values of a, b, and c, prior to the
beginning of the statement in line 21 are used to calculate a value, which is then
assigned to each of the three variables.

As an aid to understanding, line 23 is given which contains parentheses to group the
terms together in a meaningful way. Lines 20 and 23 are identical statements.

The program has no output, so compiling and executing this program will be very
uninteresting. Since you have already learned how to display some integer results
using the printf() function, it would be to your advantage to add some output
statements to this program to see if the various statements do what you think they
should do. You will need to add #include <stdio.h> to the beginning of the program
if you are going to add printf() statements to the program.

You can add your own assignment statements also to gain experience with them.

DEFINITIONS FIRST THEN EXECUTABLE STATEMENTS

This would be a good time for a preliminary definition of a rule to be followed in C.
The variable definitions are always given before any executable statements in any
program block. This is why the variables are defined at the beginning of a block in
this program and in every C program. If you try to define a new variable after some
executable statements, your compiler will issue an error. A program block is any unit
of one or more statements surrounded by braces. Actually, the block can even be
empty but then there is no real need for it, except as a placeholder in early phases of
code development. More will be said about blocks later.

ADDITIONAL DATA TYPES

Example program ------> MORTYPES.C

Loading and editing MORTYPES.C will illustrate how some additional data types
can be used. Once again we have defined a few integer type variables which you
should be fairly familiar with by now, but we have added two new types, the char,
and the float.

The char type of data is nearly the same as the integer except that it can only be
assigned numerical values between -128 and 127 on most microcomputer
implementations of C, since it is usually stored in one byte of memory. Some
implementations of C use a larger memory element for a char and will therefore
cover a wider range of usable values. The char type of data is usually used for

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (2 of 14) [02/04/2002 09:08:43]

ASCII data, more commonly known as text. The text you are reading was originally
written on a computer with a word processor that stored the words in the computer
one character per byte. In contrast, the int data type is stored in two bytes of
computer memory on nearly all microcomputers, but can be larger on some
machines. In fact, most modern microcomputers are 32 bit machines that store an int
in four bytes.

Keep in mind that, even though the char type variable was designed to hold a
representation of an ASCII character, it can be used very effectively to store a very
small value if desired. Much more will be discussed on this topic in chapter 7 when
we discuss strings.

DATA TYPE MIXING

It would be profitable at this time to discuss the way C handles the two types char
and int. Most operations in C that are designed to operate with integer type variables
will work equally well with character type variables because they are an integral
variable, which means that they have no fractional part. Those operations, when
called on to use a char type variable, will actually promote the char data into integer
data before using it. For this reason, it is possible to mix char and int type variables
in nearly any way you desire. The compiler will not get confused, but you might. It is
good not to rely on this too much, but to carefully use only the proper types of data
where they should be used.

The second new data type is the float type of data, commonly called floating point
data. This is a data type which usually has a very large range, a relatively large
number of significant digits, and a large number of computer words are required to
store it. The float data type has a decimal point associated with it and several bytes
of memory are required to store a single float type variable.

HOW TO USE THE NEW DATA TYPES

The first three lines of the program assign values to all nine of the defined variables
so we can manipulate some of the data between the different types.

Since, as mentioned above, a char data type is in reality an integral data type which
is automatically promoted to int when necessary, no special considerations need be
taken to promote a char to an int, and a char type data field can be assigned to an
int variable. When going the other way, an int type variable can be assigned to a
char type variable and will translate correctly to a char type variable if the value is
within the range of the char, possibly -128 to 127. If the value is outside of the range
of char, most C compilers simply truncate the most significant bits and use the least
significant bits.

Line 16 illustrates the simplicity of translating an int into a float. Simply assign it
the new value and the system will do the proper conversion. When converting from
float to int however, there is an added complication. Since there may be a fractional

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (3 of 14) [02/04/2002 09:08:43]

part of the floating point number, the system must decide what to do with it. By
definition, it will truncate it and throw away the fractional part.

This program produces no output, and we haven't covered a way to print out char
and float type variables, so you can't really get in to this program and play with the
results. The next program will cover these topics for you.

Be sure to compile and run this program after you are sure you understand it
completely. Note that the compiler may issue warnings about type conversions when
compiling this program. They can be ignored because of the small values we are
using to illustrate the various type conversions.

SOME TYPICAL SIZES

This list gives you some typical values for the various types available in C. Your
compiler may offer different limits and sizes since there is a lot of latitude in what a
compiler may offer. The values in this list are for Microsoft Visual C++ version 1.5
(16 bits) and Visual C++ version 2.0 (32 bits).

Type Name Bytes Range
 ------------- 16 bit system -------------
char 1 -128 to 127
signed char 1 -128 to 127
unsigned char 1 0 to 255
short 2 -32,768 to 32,767
unsigned short 2 0 to 65,535
int 2 -32,768 to 32,767
unsigned int 2 0 to 65,535
long 4 -2,147,483,648 to 2,147,483,647
unsigned long 4 0 to 4,294,967,295
float 4 3.4E+/-38 (7 digits)
double 8 1.7E+/-308 (15 digits)
long double 10 1.2E+/-4932 (19 digits)

 ------------- 32 bit system -------------
char 1 -128 to 127
signed char 1 -128 to 127
unsigned char 1 0 to 255
short 2 -32,768 to 32,767
unsigned short 2 0 to 65,535
int 4 -2,147,483,648 to 2,147,483,647
unsigned int 4 0 to 4,294,967,295
long 4 -2,147,483,648 to 2,147,483,647
unsigned long 4 0 to 4,294,967,295
float 4 3.4E+/-38 (7 digits)
double 8 1.7E+/-308 (15 digits)

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (4 of 14) [02/04/2002 09:08:43]

long double 10 1.2E+/-4932 (19 digits)

The diligent student will notice that the only difference in these two lists are in the
sizes and ranges of the int type variables, both signed and unsigned. The ANSI-C
standard says that an int type has the "natural size suggested by the architecture of
the execution environment", so the ranges for the compiler listed above matches the
standard exactly.

One other point about the above table must be made at this time. The unadorned
char is permitted to be either signed or unsigned at the discretion of the compiler
writer. The writers of the Microsoft compiler chose to make char default to a signed
char, as do most compiler writers, but you have a choice since most compilers
provide a switch to select the default to unsigned char.

Some useful constants are available for your use in determining the range limits of
the standard types. For example, the names INT_MIN and INT_MAX are available
in the file "limits.h" as constants which can be used in your code. INT_MAX is the
largest possible number that can be stored in an int type variable using the compiler
that you are currently using. When you switch to a new compiler, which you will
almost certainly do someday, INT_MAX will refer to the largest value that can be
stored with that compiler. Even if you switch to a new operating system with 64 bits
or even 128 bits, INT_MAX will still refer to the largest int available on your new
system. The file "limits.h" contains a large number of such limits, all of which are
available for your use simply by including the file in your program. It is a text file
which can be opened in any editor and studied, a highly recommended exercise for
you at this time.

LOTS OF VARIABLE TYPES

Example program ------> LOTTYPES.C

Load the file LOTTYPES.C and display it on your screen. This file contains most of
the standard simple data types available in the programming language C. Consult
your compiler documentaion for a complete list of all types avialable with your
compiler. There are other types, but they are the compound types (ie - arrays and
structures) that we will cover in due time in this tutorial.

Observe the file. First we define a simple int, followed by a long int . Next we have
a short int which has a range that may be identical to that for the int variable. The
unsigned is next and is defined as the same size as the int but with no sign. It should
be pointed out that when the long, short, or unsigned is desired, the int is optional
and is left out by most experienced programmers. Your compiler may differ
significantly from the ranges given in the above table, so you should check the
documentation for your compiler for the exact ranges for each type.

The double is a floating point number but covers a greater range than the float and
has more significant digits for more precise calculations. It also requires more

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (5 of 14) [02/04/2002 09:08:44]

memory to store a value than the simple float. The long double will cover a much
larger range and store more significant digits, but it will also take longer to do
calculations because of the increased size of data being used.

Another diversion is in order at this point. Your compiler probably has no provision
for floating point math, only double floating point math. It will promote a float to a
double before doing calculations and therefore only one math library will be needed.
Of course, this is transparent to you, so you don't need to worry about it. Because of
this, you may think that it would be best to simply define every floating point
variable as double, since they are promoted before use in any calculations, but that
may not be a good idea. A float variable may require only 4 bytes of storage and a
double may require 8 bytes of storage, so if you have a large volume of floating
point data to store, the double will obviously require much more memory. If you
don't need the additional range or significant digits, you should use the float type
rather than the double. The compiler makes all floating point literals, such as the
value 3.14159 in line 19, double constants by default. Some compilers will then
issue a warning about line 19 because we are assigning a double to a float. You can
safely ignore the warning at this time.

After defining the data types in the program under consideration, a numerical value
is assigned to each of the defined variables in order to demonstrate the means of
outputting each to the monitor.

SOME LATE ADDITIONS

As any programming language evolves, additional constructs are added to fill some
previously overlooked need. Two new keywords have been added to C with the
release of the ANSI-C standard. They are not illustrated in example programs, but
they will be discussed here. The two new keywords are const and volatile and are
used to tell the compiler that variables of these types will need special consideration.
A constant is declared with the const keyword and declares a value that cannot be
changed by the program. If you inadvertently try to modify an entity defined as a
const, the compiler will generate an error. This is an indication to you that something
is wrong. Declaring an entity as const allows the optimizer to do a better job which
could make your program run a little faster. Since constants can never have a value
assigned to them in the executable part of the program, they must always be
initialized. If volatile is used, it declares a value that may be changed by the program
but it may also be changed by some outside influence such as a clock update pulse
incrementing the stored value. This prevents the optimizer from getting too
ambitious and optimizing away something that it thinks will never be changed.

Examples of use in declaring constants of these two types are given as;

 const int index1 = 2;
 const index2 = 6;
 const float big_value = 126.4;

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (6 of 14) [02/04/2002 09:08:44]

 volatile const int index3 = 12;
 volatile int index4;

THE CONVERSION CHARACTERS

Following is a list of some of the conversion characters and the way they are used in
the printf() statement. A complete list of all of the conversion characters should be
included with the documentation for your compiler. You do not need to understand
all of these at this time, but you should know that there is a lot of flexibility available
when you are ready to use it.

 d decimal notation
 i decimal notation (new ANSI standard extension)
 o octal notation
 x hexadecimal notation
 u unsigned notation
 c character notation
 s string notation
 f floating point notation

Each of these is used following a percent sign to indicate the type of output
conversion desired. The following fields may be added between those two
characters.

 - left justification in its field
 (n) a number specifying minimum field width
 . to separate n from m
 (m) significant fractional digits for a float
 l to indicate a long

These are all used in the examples which are included in the program named
LOTTYPES.C, with the exception of the string notation which will be covered later
in this tutorial. Lines 33 through 35 illustrate how to set the field width to a desired
width, and lines 39 and 40 illustrate how to set the field width under program
control. The field width for the float type output in lines 43 through 47 should be self
explanatory. Compile and run this program to see what effect the various fields have
on the output.

You now have the ability to display any of the data fields in the previous programs
and it would be to your advantage to go back and see if you can display some of the
fields anyway you desire.

COMBINING THE VARIOUS TYPES

Example program ------> COMBINE.C

Examine the file named COMBINE.C for examples of combining variables of the
various types in a program. Many times it is necessary to multiply an int type

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (7 of 14) [02/04/2002 09:08:44]

variable times a float type variable and C allows this by providing a strict set of rules
it will follow in order to do such combinations.

Five variables of three different types are declared in lines 4 through 6, and three of
them are initialized so we have some data to work with. Line 8 gives an example of
adding an int variable to a float variable and assigning the result to a char type
variable. The cast is used to control the type of addition and is indicated by defining
the desired type within parentheses in front of the variable as shown. This forces
each of the two variables to the char type prior to doing the addition. In some cases,
when the cast is used, the actual bit patterns must be modified internally in order to
do the type coercion. Lines 9 through 11 perform the same addition by using
different kinds of type casting to achieve the final result. Note that the addition is not
the same in all three cases because the addition is done using different types, so
could conceivably result in different answers.

Lines 13 through 15 illustrate the use of the cast to multiply two float variables. In
two of the cases the intermediate results are cast to the int type, with the result being
cast back to the float type. The observant student will notice that these three lines
will not necessarily produce the same result.

Be sure to compile and execute this program. When you do, you may get a lot of
type conversion warnings which can be ignored at this point. In this program, we are
illustrating things that can be done with no regard to whether it is good to do so in a
production program. Note that all of the warnings can be eliminated by including the
proper cast when we use different types.

LOGICAL COMPARES

Example program ------> COMPARES.C

Load and view the file named COMPARES.C for many examples of compare
statements in C. We begin by defining and initializing nine variables to use in the
following compare statements.

The first group of compare statements represents the simplest kinds of compares
because they simply compare two variables. Either variable could be replaced with a
constant and still be a valid compare, but using two variables for the compare is the
general case. The first compare checks to see if the value of x is equal to the value of
y and it uses the double equal sign for the comparison. Since x is equal to y, the
variable z will be assigned the value of -13. A single equal sign could be used here
but it would have a different meaning as we will see shortly. The second comparison
checks to see if the current value of x is greater than the current value of z.

The third compare introduces the not operator, the exclamation, which can be used to
invert the result of any logical compare. The fourth checks for the value of b less
than or equal to the value of c, and the last checks for the value of r not equal to the
value of s. As we learned in the last chapter, if the result of the compare is true, the

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (8 of 14) [02/04/2002 09:08:44]

statement following the if clause will be executed and the results are given in the
comments.

Note that "less than" and "greater than or equal to" are also available, but are not
illustrated here.

It would be well to mention the different format used for the if statement in this
example program. A carriage return is not required as a statement separator and by
putting the conditional clause on the same line as the if, it adds to the readability of
the overall program in this case.

MORE COMPARES

The compares in the second group are a bit more involved. Starting with the first
compare, we find a rather strange looking set of conditions in the parentheses. To
understand this we must understand just what a true or false is in the C language. A
false is defined as a value of zero, and true is defined as any non-zero value. Any
integer or character type of variable can be used for the result of a true/false test, or
the result can be an implied integer or character.

Look at the first compare of the second group of compare statements. The
conditional expression "r != s" will evaluate as a true since the value of r was set
to 0.0 in line 13, so the result of the compare will be a non-zero value. With all
ANSI-C compilers, it will be set to a 1. Good programming practice would be to not
use the resulting 1 in any calculations, but only for logical control. Even though the
two variables that are compared are float variables, the logical result will be of type
int. There is no explicit variable to which it will be assigned so the result of the
compare is an implied int. Finally, the resulting number, is assigned to the integer
variable x. If double equal signs were used, the phantom value, namely 1, would be
compared to the value of x, but since the single equal sign is used, the value 1 is
simply assigned to the variable named x, as though the statement were not in
parentheses. Finally, since the result of the assignment in the parentheses was
non-zero, the entire expression is evaluated as true, and z is assigned the value of
1000. Thus we accomplished two things in this statement, we assigned x a new
value, and we assigned z the value of 1000. We covered a lot in this statement so you
may wish to review it before going on. The important things to remember are the
values that define true and false, and the fact that several things can be assigned in a
conditional statement. The value assigned to the variable x was probably a 1, but
remember that the only requirement is that it is nonzero. The ANSI-C standard says
that the result of a comparison operation, (>, >=, <, or <=) must be 1 or 0, but does
not state the result of an equality operation. If you assume 0 or 1 will be returned,
and only use it for control, you will not get into trouble.

The example in line 20 should help clear up some of the above in your mind. In this
example, x is assigned the value of y, and since the result is 11, the condition is
non-zero, which is true, and the variable z is assigned 222.

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (9 of 14) [02/04/2002 09:08:44]

The third example of the second group in line 21, compares the value of x to zero. If
the result is true, meaning that if x is not zero, then z is assigned the value of 333,
which it will be. The last example in this group illustrates the same concept, since the
result will be true if x is non-zero. The compare to zero in line 21 is not actually
needed and the result of the compare is true. The third and fourth examples of this
group are therefore logically identical. Of course we assign a different value to z in
each case.

ADDITIONAL COMPARE CONCEPTS

The third group of compares will introduce some additional concepts, namely the
logical "and" and the logical "or" operators. We assign the value of 77 to the three
integer variables simply to get started again with some defined values. The first
compare of the third group contains the new control &&, which is the logical "and"
which results in a true if both sides of the "and" are true. The entire statement reads,
if x equals y and if x equals 77 then the result is true. Since this is true, the variable z
is set equal to 33. Note that only integral types can be "anded", so float and double
types cannot be used here.

The next compare in this group introduces the || operator which is the logical "or"
operator which results in a true if either side of the "or" is true. The statement reads,
if x is greater than y or if z is greater than 12 then the result is true. Since z is greater
than 12, it doesn't matter if x is greater than y, because only one of the two
conditions must be true for the result to be true. The result is true, therefore z will be
assigned the value of 22. Once again, float and double cannot be "ored".

LOGICAL EVALUATION (SHORT CIRCUIT)

When a compound expression is evaluated, the evaluation proceeds from left to right
and as soon as the result of the outcome is assured, evaluation stops. Therefore, in
the case of an "and" evaluation, when one of the terms evaluates to false, evaluation
is discontinued because additional true terms cannot make the result ever become
true. In the case of an "or" evaluation, if any of the terms is found to be true,
evaluation stops because it will be impossible for additional terms to cause the result
to be false. In the case of additionally nested terms, the above rules will be applied to
each of the nested levels. This is called short-circuit evaluation since the remaining
terms are not evaluated.

Going on to the next example in group three in line 29, we find three simple
variables used in the conditional part of the compare. Since all three are non-zero, all
three are true, and therefore the "and" of the three variables is true, leading to the
result being true, and z is assigned the value of 11. Note that since the variables, r, s,
and t are float type variables, they could not be used this way.

Continuing on to line 30 we find three assignment statements in the compare part of
the if statement. If you understood the above discussion, you should have no

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (10 of 14) [02/04/2002 09:08:44]

difficulty understanding that the three variables are assigned their respective new
values, and the result of all three are non-zero, leading to a resulting value of true.

THIS IS A TRICK, BE CAREFUL

The last example of the third group contains a bit of a trick, but since we have
covered it above, it is nothing new to you. Notice that the first part of the compare
evaluates to false since x is not currently 2. The remaining parts of the compare are
not evaluated, because it is a logical "and" so it will definitely be resolved as a false
because the first term is false. If the program was dependent on the value of y being
set to 3 in the next part of the compare, it will fail because evaluation will cease
following the false found in the first term. Likewise, the variable named z will not be
set to 4, and the variable r will not be changed. This is because C uses short circuit
evaluation as discussed earlier.

POTENTIAL PROBLEM AREAS

The last group of compares illustrate three possibilities for getting into a bit of
trouble. All three have the common result that the variable z will not be handled
properly, but for different reasons. In line 37, the compare evaluates as true, but the
semicolon following the second parentheses terminates the if clause, and the
assignment statement involving z is always executed as the next statement. The if
therefore has no effect because of the misplaced semicolon. This is actually a null
statement and is legal in C, but the programmer probably did not intend to include
the extra semicolon.

The statement in line 38 is much more straightforward because the variable x will
always be equal to itself, therefore the inequality will never be true, and the entire
statement will never do a thing, but is wasted effort. The statement in line 39 will
always assign 0 to x and the compare will therefore always be false, never executing
the conditional part of the if statement.

The conditional statement is extremely important and must be thoroughly understood
to write efficient C programs. If any part of this discussion is unclear in your mind,
restudy it until you are confident that you understand it thoroughly before proceeding
onward. Compile and run this program. You may gets lots of conversion warnings
which you can either ignore or fix up the code with casts to eliminate. Add some
printout to see the results of some of the operations.

THE CRYPTIC PART OF C

Example program ------> CRYPTIC.C

There are three constructs used in C that make no sense at all when first encountered
because they are not intuitive, but they may increase the efficiency of the compiled
code and are used extensively by experienced C programmers. You should therefore
be exposed to them and learn to use them because they will appear in most, if not all,

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (11 of 14) [02/04/2002 09:08:44]

of the programs you see in the publications. Load and examine the file named
CRYPTIC.C for examples of the three new constructs.

In this program, some variables are defined and initialized in the same statements for
use later. The statement in line 8 simply adds 1 to the value of x, and should come as
no surprise to you. The next two statements also add one to the value of x, but it is
not intuitive that this is what happens. It is simply by definition that this is true.
Therefore, by definition of the C language, a double plus sign either before or after a
variable increments that variable by 1. Additionally, if the plus signs are before the
variable, the variable is incremented before it is used, and if the plus signs are after
the variable, the variable is used, then incremented. In line 11, the value of y is
assigned to the variable z, then y is incremented because the plus signs are after the
variable y. In the last statement of the incrementing group of example statements,
line 12, the value of y is incremented then its value is assigned to the variable z. To
use the proper terminology, line 9 uses the postincrement operator and line 10 uses
the preincrement operator.

The next group of statements illustrate decrementing a variable by one. The
definition works exactly the same way for decrementing as it does for incrementing.
If the minus signs are before the variable, the variable is decremented, then used, and
if the minus signs are after the variable, the variable is used, then decremented. The
proper terminology is the postdecrement operator and the predecrement operator.

You will use this construct a lot in your C programs.

THE CRYPTIC ARITHMETIC OPERATOR

Another useful but cryptic operator is the arithmetic operator. This operator is used
to modify any variable by some constant value. The statement in line 23 adds 12 to
the value of the variable a. The statement in line 24 does the same, but once again, it
is not intuitive that they are the same. Any of the four basic functions of arithmetic,
+, -, *, or /, can be handled in this way, by putting the operation desired in front of
the equal sign and eliminating the second reference to the variable name. It should be
noted that the expression on the right side of the arithmetic operator can be any valid
expression, the examples are kept simple for your introduction to this new operator.

Just like the incrementing and decrementing operators, the arithmetic operator is
used extensively by experienced C programmers and it would pay you well to
understand it thoroughly.

THE CONDITIONAL EXPRESSION

The conditional expression is just as cryptic as the last two, but once again it is very
useful so it would pay you to understand it. It consists of three expressions separated
by a question mark and a colon. The expression prior to the question mark is
evaluated to determine if it is true or false. If it is true, the expression between the
question mark and the colon is evaluated, and if the compare expression is not true,

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (12 of 14) [02/04/2002 09:08:44]

the expression following the colon is evaluated. The result of one of the evaluations
is used for the assignment as illustrated in line 30. The final result is identical to that
of an if statement with an else clause. This is illustrated by the example in lines 32
through 35 of this group of statements. The conditional expression has the advantage
of more compact code that may compile to fewer machine instructions in the final
program.

Lines 37 and 38 of this example program are given to illustrate a very compact way
to assign the greater of the two variables a or b to the variable c, and to assign the
lessor of the same two variables to the variable c. Notice how efficient the code is in
these two examples.

TO BE CRYPTIC OR NOT TO BE CRYPTIC

Several students of C have stated that they didn't like these three cryptic constructs
and that they would simply never use them. This would be fine if they never have to
read anybody else's program, or use any other programs within their own. You will
find many functions that you wish to use within a program but need a small
modification to use it, requiring you to understand another person's code. It would
therefore be to your advantage to learn these new constructs, and use them. They will
be used in the remainder of this tutorial, so you will be exposed to them.

This has been a long chapter but it contained important material to get you started in
using C. In the next chapter, we will go on to the building blocks of C, the functions.
At that point, you will have enough of the basic materials to allow you to begin
writing meaningful programs.

STYLE ISSUES

We have no specific issues of style in this chapter other than some of the coding
styles illustrated in the example programs. Most of these programs are very
nontypical of real C programs because there is never a need to list all of the possible
compares in a real program, for example. You can use the example programs as a
guide to good style even though they are not real programs.

WHAT IS AN l-value AND AN r-value?

You will sometimes see a reference to an l-value or a
r-value in writings about C or in the documentation
for your C compiler. Every variable has an r-value
which is defined as the actual value stored in the
variable, and it also has an l-value which is defined as
the name of the variable. Therefore, the variable
depicted graphically in figure 4-1 has an l-value of
index, and an r-value of 137 since 137 is the value
stored in the variable at this time.

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (13 of 14) [02/04/2002 09:08:44]

The definition for this variable would be given as follows;

int index = 137;

PROGRAMMING EXERCISES
Write a program that will count from 1 to 12 and print the count, and its
square, for each count.

1.

Write a program that counts from 1 to 12 and prints the count and its inversion
to 5 decimal places for each count. This will require a floating point number.

2.

Write a program that will count from 1 to 100 and print only those values
between 32 and 39, one to a line. Use the incrementing operator for this
program.

3.

Return to Table of Contents

Advance to Chapter 5

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 4

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap04.htm (14 of 14) [02/04/2002 09:08:44]

mailto:dodrill@swcp.com

C Tutorial - Chapter 5

FUNCTIONS, VARIABLES, AND
PROTOTYPES
OUR FIRST USER DEFINED FUNCTION

Example program ------> SUMSQRES.C

Load and examine the file SUMSQRES.C for an example of a C program with
functions. Actually this is not the first function we have encountered because the
main program we have been using all along is technically a function, as is the
printf() function. The printf() function is a library function that was supplied with
your compiler.

We will finally define what line 3 is for in this chapter but not until we get to about
the fourth example program, so continue to wait patiently and ignore that line for the
time being.

Notice the executable part of this program which begins in line 10 with a line of
code that simply says "header();", which is the way to call any function. The
parentheses are required because the C compiler uses them to determine that it is a
function call and not simply a misplaced variable. When the program comes to this
line of code, the function named header() is called, its statements are executed, and
control returns to the statement following this call. Continuing on, we come to a for
loop which will be executed 7 times and which calls another function named
square() each time through the loop. Finally, a function named ending() will be
called and executed. For the moment ignore the variable name index in the
parentheses of the call to square(). We have seen that this program calls a header, 7
square calls, and an ending. Now we need to define the functions.

DEFINING THE FUNCTIONS

Following the main program you will see a function beginning in line 19 that
follows all of the rules set forth so far for a main program except that it is named
header(). This is the function which is called from line 10 of the main program.
Each of these statements are executed, and when they are all complete, control
returns to the main program, or more properly, the main() function.

The first statement sets the variable named sum equal to zero because we plan to
use it to accumulate a sum of squares. Since the variable named sum is defined prior
to the main program, it is available for use in any of the functions which are defined
after the variable is defined. It is called a global variable, and its scope is the entire
program including all functions. It is also sometimes referred to as a file variable

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (1 of 13) [02/04/2002 09:09:04]

because it is available throughout the file. More will be said about the scope of
variables near the end of this chapter. The statement in line 22 outputs a header
message to the monitor. Program control then returns to the main() function since
there are no additional statements to execute in this function. Essentially, we drop
out of the bottom of the function and return to the caller where we begin executing
statements immediately following where the call was made from.

It should be clear to you that the two executable lines from this function could be
moved to the main program, replacing the header call, and the program would do
exactly the same thing that it does as it is now written. This does not minimize the
value of functions, it merely illustrates the operation of this simple function in a
simple way. You will find functions to be very valuable in C programming.

PASSING A VALUE TO A FUNCTION (CLASSIC METHOD)

Going back to the main program, and the for loop specifically, we find the new
construct from the end of the last lesson used in the last part of the for loop, namely
the index++ used in line 11. You should get familiar with this construct, as you
will see it in a lot of C programs.

In the call to the function named square(), we have an added feature, the variable
name index within the parentheses. This is an indication to the compiler that when
you jump to the function, you wish to take along the value of index to use during
the execution of that function. Looking ahead at the function named square() in line
26, we find that another variable name is enclosed in its parentheses, the variable
number. This is the name we prefer to call the variable passed to the function when
we are executing code within the function. We can call it anything we wish as long
as it follows the rules of naming an identifier and is not a keyword. Since the
function must know what type the variable is, it is defined following the function
name but before the opening brace of the function itself. Therefore, line 23
containing the expression "int number;" tells the function that the value passed
to it will be an int type variable. With all of that out of the way, we now have the
value of index from the main program passed to the function square(), but renamed
number, and available for use within the function. This is the classic style of
defining function variables and has been in use since C was originally defined. A
newer and much better method is gaining in popularity due to its many benefits and
will be discussed later in this chapter.

Following the opening brace of the function, we define another variable named
numsq for use only within the function itself, (more about that later) and proceed
with the required calculations. We set the variable named numsq equal to the square
of the value of number, then add numsq to the current total stored in the variable
named sum. You should remember that the expression "sum += numsq;" has the
same meaning as "sum = sum + numsq;" from the last lesson. We print the
number and its square in line 33, and return to the main program.

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (2 of 13) [02/04/2002 09:09:04]

MORE ABOUT PASSING A VALUE TO A FUNCTION

When we passed the value of the variable named index to the function, a little more
happened than meets the eye. We didn't pass the variable named index to the
function, we actually passed a copy of the value. In this way, the original value is
protected from accidental corruption by the called function. We could have
modified the variable named number in any way we wished in the function named
square(), and when we returned to the main program, the variable named index
would not have been modified. We thus protect the value of a variable in the calling
function from being accidentally corrupted, but we cannot return a value to the
calling function from a called function using this technique. We will find a well
defined method of returning values to the main() function or to any calling function
when we get to arrays and another method when we get to pointers. Until then, the
only way you will be able to communicate back to the calling function will be with
global variables. We have already hinted at global variables above, and will discuss
them in detail later in this chapter.

Continuing in the main() function, we come to the last function call, the call to the
function named ending() in line 13. This line calls the last function which has no
local variables defined. It prints out a message with the value of the variable sum
contained in it to end the program. The program ends by returning to the main()
functoin and finding nothing else to do, so the program terminates. Compile and run
this program and observe the output.

NOW TO CONFESS A LITTLE LIE

I told you a short time ago that the only way to get a value back to the calling
function was through use of a global variable, but there is another way which we
will discuss after you load and display the program named SQUARES.C. In this
example program we will see that it is simple to return a single value from a called
function to the calling function. But once again, it is true that to return more than
one value, we will need to study either arrays or pointers.

Example program ------> SQUARES.C

In the main() function, we define two integers and begin a for loop in line 8 which
will be executed 8 times. The first statement within the for loop is "y =
squ(x);", which is a new and rather strange looking construct. From past
experience, we should have no trouble understanding that the squ(x) portion of the
statement is a call to the function named squ() taking along the value of x as a
parameter. Looking ahead to line 20 of the function itself, we find that the function
prefers to call the input variable input, and it proceeds to square the value of input
and call the result square. Finally, a new kind of a statement appears in line 26, the
return statement. The value within the parentheses is assigned to the function itself
and is returned as a usable value in the main program. Thus, the function call

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (3 of 13) [02/04/2002 09:09:04]

"squ(x)" is assigned the value of the square and returned to the main program
such that the variable named y is then set equal to that value. If the variable named x
were therefore assigned the value 4 prior to this call, y would then be set to 16 as a
result of the code in line 10.

The parentheses around the return value in line 26 are not required, but are included
by many experienced C programmers.

Another way to think of this is to consider the grouping of characters squ(x) as
another variable with a value that is the square of x, and this new variable can be
used any place it is legal to use a variable of its type. The values of the variables x
and y are then printed out.

To illustrate that the grouping of squ(x) can be thought of as just another variable,
another for loop is introduced in line 14 in which the function call is placed within
the printf() statement rather than assigning it to a new variable.

One last point must be made, the type of variable returned must be defined in order
to make sense of the data, but the compiler will default the type to int if none is
specified. If any other type is desired, it must be explicitly defined. How to do this
will be demonstrated in the next example program. We are simply using the default
return type in this program.

Be sure to compile and run this program which also uses the classic method of
defining function variables. Once again, any warnings can be ignored.

FLOATING POINT FUNCTIONS

Example program ------> FLOATSQ.C

Load the program FLOATSQ.C for an example of a function in the classic style
with a float type of return. It begins by defining a global floating point variable
named z which we will use later. Then in the main part of the program, an integer is
defined, followed by two floating point variables, and then by two strange looking
definitions. The expressions sqr() and glsqr() look like function calls. This is the
proper way to define that a function will return a value that is not of type int, but of
some other type, in this case float. This tells the compiler that when a value is
returned from either of these two functions, it will be of type float. This is, once
again, the classic method of defining functions and is all but obsolete now. Note that
neither function is actually called by the code in line 9, these only declare the return
type for these two functions.

Now refer to the function named sqr() starting in line 29 and you will see that the
function name is preceded by the keyword float. This is an indication to the
compiler that this function will return a value of type float to any program that calls
it. The type of the function return is now compatible with the call to it. The line
following the function name contains float inval;, which indicates to the

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (4 of 13) [02/04/2002 09:09:04]

compiler that the variable passed to this function from the calling program will be of
type float. Since we told the caller we would be returning a float type, we actually
return the value in line 35 so everything matches up.

The function named glsqr() beginning in line 39, will also return a float type
variable, but it uses a global variable for input. It does the squaring right within the
return statement and therefore has no need to define a separate variable to store the
product. The function sqr() could have done the squaring right in the return also, but
was done separately as an illustration of what can be done.

The overall structure of this program should pose no problem and will not be
discussed in any further detail. As is customary with all example programs, compile
and run this program and ignore any warnings you may get.

THE CLASSIC STYLE

The three programs we have studied in this chapter so far use the classic style of
function definition. Although this was the first style defined for C, it is rapidly being
replaced with a more modern method of function definition because the modern
method does so much for you in detecting and flagging errors. As you read articles
on C, you will see programs written in the classic style, so you need to be capable of
reading them. This is the reason the classic style was included in this chapter. It
would be highly recommended, however, that you learn and use the modern method
which will be covered shortly in this tutorial. In fact, you are advised to never use
the classic style for any of your programming efforts.

The book by Kernigan and Ritchie, "The C Programming Language - Second
Edition" is the definitive text of the classic style of C programming.

The remainder of this tutorial will use the modern method as recommended and
defined by the ANSI-C standard. If you have an older compiler, it may not work on
some of these files and it will be up to you to modify the programs as needed to
conform to the classic style. Actually, the ANSI-C standard is used so universally, if
you have a non-ANSI compiler you should use it only as a doorstop and purchase a
good ANSI compatible compiler for the rest of your studies.

THE RETURN TYPE OF main()

In the original K&R definition of C, all functions returned an int type variable by
default, unless the author specified something different. Since explicitly returning a
value when leaving a function was optional, most C was written in the following
manner;

 main()
 {
 ...
 }

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (5 of 13) [02/04/2002 09:09:04]

When prototyping was added to the language (which we will study shortly), many
programmers apparently thought the main() function didn't return anything, so used
the void type for a return and it became a common practice to write the main()
function as follows;

 void main()
 {
 ...
 }

When the ANSI-C standard was finalized the only return type approved by the
standard is an int type variable. A good compiler will check that the program
actually returns a value by requiring that an integer is returned from each exit point.
This led to the following form for main();
 int main()
 {
 ...
 return 0;
 }

Apparently because of the inertia behind the use of a void return, many compiler
writers added the void return as an extension to permit the use of legacy code
without modifications. Some compilers therefore support the void return but the int
return is the only method approved by the ANSI-C standard.

In order to make your code as portable as possible, you should always use the last
form above.

You can finally see why we have been adding the line that returns a value of zero to
the operating system. This indicates to the operating system that the program
executed normally.

SCOPE OF VARIABLES

Example program ------> SCOPE.C

Load the next program, SCOPE.C, and display it for a discussion of the scope of
variables in a program. You can ignore the 4 statements in lines 2 through 5 of this
program for a few moments. We will discuss them later. We will spend a good deal
of time in this program and cover a lot of new topics. Many of the topics covered
here will not seem to be particularly useful, but stay with it because they are very
important.

WHAT IS A GLOBAL VARIABLE?

The variable defined in line 7 is a global variable named count which is available to
any function in the program since it is defined before any of the functions. It is

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (6 of 13) [02/04/2002 09:09:04]

always available because it exists during all the time that the program is being
executed. (That will make sense shortly.) Farther down in the program, another
global variable named counter is defined in line 29 which is also global but is not
available to the main() function since it is defined following the main() function. A
global variable is any variable that is defined outside of any function. Note that both
of these variables are sometimes referred to as external variables because they are
external to any functions, and they are sometimes also called file variables.

Global variables are automatically initialized to zero when they are defined.
Therefore, the variables named count and counter will both be initialized to a value
of 0.

Return to the main() function and you will see the variable named index defined as
an int in line 11. Ignore the word register for the moment. This variable is only
available within the main() function because that is where it is defined. In addition,
it is an automatic variable, which means that it only comes into existence when the
function in which it is contained is invoked, and ceases to exist when the function is
finished. This really means nothing here because the main() function is always in
operation, even when it gives control to another function. Another integer is defined
within the for loop braces named stuff. Any pairing of braces can contain variable
definitions which will be valid and available only while the program is executing
statements within those braces. The variables will be automatic variables and will
cease to exist when execution leaves the braces. The variable named stuff will
therefore be created and destroyed 8 times, once for each pass through the loop.

MORE ON AUTOMATIC VARIABLES

Observe the function named head1() in line 30 which looks a little funny because of
void being used twice. The purpose of the use of the word void will be explained
shortly. The function contains a variable named index, which has nothing to do with
the variable named index in line 11 of the main() function, except that both are
automatic variables. When the program is not actually executing statements in this
function, this variable named index does not even exist. When head1() is called, the
variable is generated, and when head1() completes its task, the variable in head1()
named index is eliminated completely from existence. (The automatic variable is
stored on the stack. This topic will be covered later.) Keep in mind however that this
does not affect the variable of the same name in the main() function, since it is a
completely separate entity.

Automatic variables therefore, are automatically generated and disposed of when
needed. The important thing to remember is that from one call of a function to the
next call, the value of an automatic variable is not preserved and must therefore be
reinitialized.

WHAT ARE STATIC VARIABLES?

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (7 of 13) [02/04/2002 09:09:04]

An additional variable type must be mentioned at this point, the static variable. By
putting the keyword static in front of a variable definition within a function, the
variable or variables in that definition are static variables and will stay in existence
from call to call of the particular function. A static variable is initialized once, at
load time, and is never reinitialized during execution of the program.

By putting the static keyword in front of an external variable, one outside of any
function, it makes the variable private and not accessible to use in any other file.
(This is a completely different use of the same keyword.) This implies that it is
possible to refer to external variables in other separately compiled files, and that is
true. Examples of this usage will be given in chapter 14 of this tutorial. They are not
illustrated here.

USING THE SAME NAME AGAIN

Refer to the function named head2(). It contains another definition of the variable
named count. Even though count has already been defined as a global variable in
line 7, it is perfectly all right to reuse the name in this function. It is a completely
new variable that has nothing to do with the global variable of the same name, and
causes the global variable to be unavailable within this function. This allows you to
write programs using existing functions without worrying about what names were
used for global variables or in other functions because there can be no conflict. You
only need to worry about the variables that interface with the functions.

WHAT IS A REGISTER VARIABLE?

Now to fulfill a promise made earlier about what a register variable is. A computer
can keep data in a register or in memory. A register is much faster in operation than
memory but there are very few registers available for the programmer to use. If
there are certain variables that are used extensively in a program, you can designate
that those variables are to be stored in a register in order to speed up the execution
of the program. The method of doing this is illustrated in line 11. Your compiler
probably allows you to use one or more register variables and will ignore additional
requests if you request more than are available. The documentation for your
compiler should list how many registers are available with your compiler. It will
also inform you of what types of variables can be stored in a register. If your
compiler does not allow the use of register variables, the register request will simply
be ignored.

WHAT IS PROTOTYPING?

A prototype is a model of a real thing and when programming in ANSI-C, you have
the ability to define a model of each function for the compiler. The compiler can
then use the model to check each of your calls to the function and determine if you
have used the correct number of arguments in the function call and if they are of the
correct type. By using prototypes, you let the compiler do some additional error

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (8 of 13) [02/04/2002 09:09:04]

checking for you. The ANSI standard for C contains prototyping as part of its
recommended standard. Every ANSI-C compiler will have prototyping available, so
you should learn to use it. Much more will be said about prototyping throughout the
remainder of this tutorial.

Returning to lines 3, 4, and 5 in SCOPE.C, we have the prototypes for the three
functions contained within the program. The first void in each line tells the compiler
that these particular functions do not return a value, so that the compiler would flag
the statement index = head1(); as an error because nothing is returned to
assign to the variable named index. The word void within the parentheses tells the
compiler that this function requires no parameters and if a variable were included, it
would be an error and the compiler would issue a warning message. If you wrote the
statement head1(index);, it would be a error. This allows you to use type
checking when programming in C in much the same manner that it is used in Pascal,
Modula-2, or Ada, although the type checking in C is relatively weak.

You should begin using prototype checking at this time, for all of the functions you
define. Your compiler may have an option that will require a prototype for every
function. This should be enabled and left enabled. Check your documentation for
the details of how to do it. Prototyping will be used throughout the remainder of this
tutorial. If your compiler does not support prototyping and the modern method of
function definition, you will have to modify the remaining example programs. A
much better solution would be to purchase a better compiler.

Line 2 of SCOPE.C tells the system to go to the standard directory where include
files are stored and get a copy of the file named stdio.h which contains the
prototypes for the standard input and output functions so they can be checked for
proper variable types. Don't worry about the include yet, it will be covered in detail
later in this tutorial. Be sure to compile and execute this program.

STANDARD FUNCTION LIBRARIES

Every compiler comes with some standard predefined functions which are available
for your use. These are mostly input/output functions, character and string
manipulation functions, and math functions. We will cover many of these in
subsequent chapters. Prototypes are defined for you by the writer of your compiler
for all of the functions that are included with your compiler. A few minutes spent
studying your reference guide will give you an insight in where the prototypes are
defined for each of the functions. Most compilers have additional functions
predefined that are not standard but allow the programmer to get the most out of his
particular computer. In the case of the IBM-PC and compatibles, most of these
functions allow the programmer to use the BIOS services available in the operating
system, or to write directly to the video monitor or to any place in memory. These
will not be covered in any detail as you will be able to study these unique aspects of
your compiler on your own. Several of these kinds of functions are used in the

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (9 of 13) [02/04/2002 09:09:04]

example programs in chapter 14.

WHAT IS RECURSION?

Example program ------> RECURSON.C

Recursion is another of those programming techniques that seem very intimidating
the first time you come across it, but if you will load and display the example
program named RECURSON.C, we will take all of the mystery out of it. This is
probably the simplest recursive program that it is possible to write and it is therefore
a stupid program in actual practice, but for purposes of illustration, it is excellent.

Recursion is nothing more than a function that calls itself. It is therefore in a loop
which must have a way of terminating. In the program on your monitor, the variable
named index is set to 8 in line 9, and is used as the argument to the function named
count_dn(). The function simply decrements the variable, prints it out in a message,
and if the variable is greater than zero, it calls itself, where it decrements the
variable again, prints it, etc. etc. etc. Finally, the variable will reach zero, and the
function will not call itself again. Instead, it will return to the prior time it called
itself, and return again, and again, until finally it will return to the main() function
and from there return to the operating system.

For purposes of understanding you can think of it as having 8 copies of the function
named count_dn() available and it simply called all of them one at a time, keeping
track of which copy it was in at any given time. That is not what actually happened,
but it is a reasonable illustration for you to begin understanding what it was really
doing.

WHAT DID IT DO?

A better explanation of what actually happened is in order. When you called the
function from itself, it stored all of the variables and all of the internal flags it needs
to complete the function in a block somewhere. The next time it called itself, it did
the same thing, creating and storing another block of everything it needed to
complete that function call. It continued making these blocks and storing them away
until it reached the last function when it started retrieving the blocks of data, and
using them to complete each function call. The blocks were stored on an internal
part of the computer called the stack. This is a part of memory carefully organized
to store data just as described above. It is beyond the scope of this tutorial to
describe the stack in detail, but it would be good for your programming experience
to read some material describing the stack. A stack is used in nearly all modern
computers for internal housekeeping chores.

In using recursion, you may desire to write a program with indirect recursion as
opposed to the direct recursion described above. Indirect recursion would be when a
function A calls the function B, which in turn calls A, etc. This is entirely

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (10 of 13) [02/04/2002 09:09:04]

permissible, the system will take care of putting the necessary things on the stack
and retrieving them when needed again. There is no reason why you could not have
three functions calling each other in a circle, or four, or five, etc. The C compiler
will take care of all of the details for you.

The thing you must remember about recursion is that at some point, something must
go to zero, or reach some predefined point to terminate the loop. If not, you will
have an infinite loop, and the stack will fill up and overflow, giving you an error and
stopping the program rather abruptly.

ANOTHER EXAMPLE OF RECURSION

Example program ------> BACKWARD.C

The program named BACKWARD.C is another example of recursion, so load it and
display it on your screen at this time. This program is similar to the last one except
that it uses a character array. Each successive call to the function named
forward_and_backwards() causes one character of the message to be printed.
Additionally, each time the function ends, one of the characters is printed again, this
time backwards as the string of recursive function calls is retraced.

This program uses the modern method of function definition and includes full
prototype definitions. The modern method of function definition moves the types of
the variables into the parentheses along with the variable names themselves. The
final result is that the line containing the function definition looks more like the
corresponding line in a language with relatively strong type checking such as Pascal,
Modula-2, or Ada. The prototype in line 5 is simply a copy of the function header in
line 20 followed by a semicolon. The designers of C even allow you to include a
variable name along with each type. The name is ignored by the compiler but
including the name in the prototype could give you a good idea of how the variable
is used, acting like a comment.

Don't worry about the character array defined in line 9 or the other new material
presented here. After you complete chapter 7 of this tutorial, this program will make
sense. It was felt that introducing a second example of recursion was important so
this file is included here. You will note that this program actually does something
useful with recursion, but it would be mighty easy to duplicate the action of the
program without recursion. We will study some programs later where recursion is
required.

Compile and run this program and observe the results.

THE FLOAT SQUARE PROGRAM WITH PROTOTYPES

Example program ------> FLOATSQ2.C

Load and display the program named FLOATSQ2.C which is an exact copy of the

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (11 of 13) [02/04/2002 09:09:04]

program FLOATSQ.C which we considered earlier with prototyping added. The use
of prototyping is a good practice for all C programmers to get into.

Several things should be mentioned about this program. First, the word float at the
beginning of lines 32 and 41 indicate to the compiler that these functions are
functions that return float type values. Also, since prototypes for the functions are
given before main(), the functions are not required to be identified in line 12 as they
were in line 9 of FLOATSQ.C earlier in this chapter. Notice also that the type of the
variable named inval is included within the parentheses in lines 4 and 32.

After you compile and execute this program, ignoring any warnings, remove the
parameter from line 17 to see what kind of error message you get.

A CONFUSING PROBLEM THAT COMES UP AT TIMES

Suppose we wrote the following line of code in the FLOATSQ2.C program,

 printf(" ... ", sqr(5.0), glsqr());

It may come as a surprise to you, but the order in which the two functions are called,
is undefined as far as the ANSI-C standard is concerned. One compiler writer may
call sqr() first, and another may call glsqr() first, and either method is correct. In
this case, it makes no difference which is called first, but in some cases it does
matter such as if something is printed out in both functions. The result returned from
each call will be used in the correct location, but the order of evaluation is
undefined. Rest assured that this will come up at some point in your future
programming efforts so you need to be aware of it.

MORE STYLE ISSUES

Example program ------> STYLE2.C

The example named STYLE2.C is given as an illustration of various ways to format
a function. You will note different ways to define the input parameters. Examples
three and four are both the same style, but example four illustrates the style when
nothing is passed in or returned. This style states very clearly that nothing is needed
or returned and it cannot be construed as an oversight. Spend some time studying
these function examples, then begin developing the style you will use. If you are
like most programmers, you will develop a style that you plan to use forever, then
change it every few months or on every new project.

PROGRAMMING EXERCISES
Rewrite TEMPCONV.C from an earlier chapter, and move the temperature
calculation to a function.

1.

Write a program that writes your name on the monitor 10 times by calling a
function to do the writing. Move the called function ahead of the main
function to see if your C compiler will allow it.

2.

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (12 of 13) [02/04/2002 09:09:04]

Add prototyping to the programs named SUMSQRES.C and SQUARES.C,
and change the function definitions to the modern method.

3.

Return to Table of Contents

Advance to Chapter 6

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 5

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap05.htm (13 of 13) [02/04/2002 09:09:04]

mailto:dodrill@swcp.com

C Tutorial - Chapter 6

THE C PREPROCESSOR
AIDS TO CLEAR PROGRAMMING

The preprocessor is a program that is executed just prior to the execution of the compiler.
It's operation is transparent to you but it does a very important job. It removes all comments
from the source and performs a lot of textual substitution based on your code, passing the
result to the compiler for the actual compilation of your code.

Example program ------> DEFINE.C

Load and display the file named DEFINE.C for your first look at some defines and macros.
Notice lines 4 through 7 of the program, each starting with #define. This is the way all
defines and macros are declared. Before the actual compilation starts, the compiler goes
through a preprocessor pass to resolve all of the defines. In the present case, it will find
every place in the program where the word START is found and it will replace it with the 0
since that is the definition. The compiler itself will never see the word START, so as far as
the compiler is concerned, the zeros were always there. Note that if the word is found in a
string constant or in a comment, it will not be changed.

It should be clear to you that putting the word START in your program instead of the
numeral 0 is only a convenience to you and actually acts like a comment since the word
START helps you to understand what the zero is used for.

In the case of a very small program, such as that before you, it doesn't really matter what
you use. If, however, you had a 2000 line program before you with 27 references to START,
it would be a completely different matter. If you wanted to change all of the STARTs in the
program to a new number, it would be simple to change the one #define statement to the
new value. If this technique were not used, it would be difficult to find and change all of the
references to it manually, and possibly disastrous if you missed one or two of the references.

In the same manner, the preprocessor will find all occurrences of the word ENDING and
change them to 9, then the compiler will operate on the changed file with no knowledge that
ENDING ever existed.

It is a fairly common practice in C programming to use all capital letters for a symbolic
constant such as START and ENDING and use all lower case letters for variable names.
You can use any method you choose since it is mostly a matter of personal taste.

WHAT IS A MACRO?

A macro is nothing more than another define, but since it is capable of at least appearing to
perform some logical decisions or some math functions, it has a unique name. Consider line
6 of the program on your monitor for an example of a macro. In this case, anytime the
preprocessor finds the word MAX followed by a group in parentheses, it expects to find two
terms in the parentheses and will do a replacement of the terms into the second part of the
definition. Thus the first term will replace every A in the second part of the definition and
the second term will replace every B in the second part of the definition. When line 16 of the

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (1 of 6) [02/04/2002 09:09:17]

program is reached, index will be substituted for every A, and count will be substituted for
every B. Therefore, before line 16 is given to the compiler, it will be modified to the
following;

 mx = ((index)>(count)?(index):(count))

Once again, it must be stated that string constants and comments will not be affected.
Remembering the cryptic construct we studied a couple of chapters ago will reveal that mx
will receive the maximum value of index or count. In like manner, the MIN macro will
result in mn receiving the minimum value of index or count. These two particular macros
are very common in C programs.

When defining a macro, it is imperative that there is no space between the macro name and
the opening parenthesis. If there is a space, the compiler cannot determine that it is a macro,
but will handle it like a simple substitution define statement.

The results of the macro usage are then printed out in line 18. There are a lot of seemingly
extra parentheses in the macro definition but they are not extra, they are essential. We will
discuss the extra parentheses in our next example program. Be sure to compile and execute
DEFINE.C before going on to the next example program.

LET'S LOOK AT A WRONG MACRO

Example program ------> MACRO.C

Load the file named MACRO.C and display it on your screen for a better look at a macro
and its use. Line 4 defines a macro named WRONG that appears to evaluate the cube of A,
and indeed it does in some cases, but it fails miserably in others. The second macro named
CUBE actually does get the cube in most but not all cases. We will soon see why it fails in
some cases.

Consider the program itself where the CUBE of i+offset is calculated in line 20. If i is 1,
which it is the first time through, then we will be looking for the cube of 1+5 = 6, which will
result in 216. When using CUBE, we group the values like this, (1+5)*(1+5)*(1+5) = 6*6*6
= 216. However, when we use WRONG, we group them as 1+5*1+5*1+5 = 1+5+5+5 = 16
which is a wrong answer. The parentheses are therefore required to properly group the
variables together. It should be clear to you that either CUBE or WRONG would arrive at a
correct answer for a single term replacement such as we did in the last program. The correct
values of the cube and the square of the numbers are printed out as well as the wrong values
for your inspection.

In line 7 we define the macro ADD_WRONG according to the above rules but we still have
a problem when we try to use the macro in lines 28 and 29. In line 29 when we say we want
the program to calculate 5*ADD_WRONG(i) with i = 1, we get the result 5*1 + 1 which
evaluates to 5 + 1 or 6, and this is most assuredly not what we had in mind. We really
wanted the result to be 5*(1 + 1) = 5*2 = 10 which is the answer we get when we use the
macro named ADD_RIGHT, because of the extra parentheses around the entire expression
in the definition given in line 8. A little time spent studying the program and the result will
be worth your effort in understanding how to use macros.

In order to prevent the above problems, most experienced C programmers include

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (2 of 6) [02/04/2002 09:09:17]

parentheses around each variable in a macro and additional parentheses around the entire
expression. This will allow any macro to work correctly, and it is the reason the macro
named CUBE is still in error. It needs parentheses around the entire expression.

The remainder of the program is simple and will be left to your inspection and
understanding.

CONDITIONAL COMPILATION - PART 1

Example program ------> IFDEF.C

The example program named IFDEF.C is our first illustration of a conditional compilation.
OPTION_1 is defined in line 4, and is considered defined for the entire program. Therefore
when the preprocessor gets to line 6, it keeps the text between lines 6 and 8 in the program
and passes it to the compiler. If OPTION_1 was not defined when we reach line 6, the
preprocessor would throw away line 7 and the compiler would never see it. Likewise line 18
is conditionally compiled based on whether OPTION_1 is defined or not. This is a very
useful construct, but not the way we are using it here. Generally it is used to include a
feature if we are using a certain processor, a certain operating system, or even a special
piece of hardware.

You should compile and execute the program as is, then comment out line 4 so that
OPTION_1 will not be defined, and recompile and execute the program. You will see that
the extra line will not be printed because it will be thrown away by the preprocessor. Keep
in mind that the preprocessor does only textual substitution or text removal and you will be
able to use it effectively.

Line 26 illustrates an undefine command to the preprocessor. This removes the fact that
OPTION_1 was defined and from this point on, the program acts as though it were never
defined. Of course, it does no good here since the program is completed and there are no
executable statements following the undefine, but it does illustrate the undefine statement.

You should move the undefine to line 5, recompile and execute the program, and you will
see that it acts as though OPTION_1 was never defined.

CONDITIONAL COMPILATION - PART 2

Example program ------> IFNDEF.C

The next example program illustrates the preprocessor directive which includes code if a
symbol in not defined. The ifndef directive reads literally, "if not defined", and with that
much definition, its operation should be intuitive. This program will be a real exercise in
logic for the diligent student, but should be understandable with a little effort. The symbol
OPTION_1 is reversed from the last program and the symbol PRINT_DATA is used to
enable printing if it is not defined. If it is not defined, there will be some printout. This
example program, much like the last one, is rather silly but illustrates the use of preprocessor
directives. The next program is a little more practical.

CONDITIONAL COMPILATION - PART 3

Example program ------> DEBUGEX.C

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (3 of 6) [02/04/2002 09:09:17]

The program named DEBUGEX.C is a good illustration of a very practical use of the
preprocessor. In this program we define a symbol named MY_DEBUG at the beginning of
the program. When we reach the code in the main() function we see why it is defined.
Apparently we do not have enough information to complete this code, so we sort of slopped
it in until we have a chance to talk to Bill and Linda about how to do these calculations. In
the meantime, we wish to continue work on other parts of the program, so we use the
preprocessor to temporarily throw away this uncompilable code for us. Because of the
obnoxious message we put into line 15, it will be impossible for us to forget about the bad
state of affairs we left the code in, so we are forced to come back later and clean it up.

In this case, we are only concerned with a few lines of code, but it could be a large block of
code we are working with. We could also be using this technique to handle several large
blocks of code, some of which are in other modules, until Bill returns to explain the analysis
and we can complete the undefined blocks.

MULTIPLE FILE PROGRAMS

For very small programs, it is expedient to include all of the code in a single file, and
compile that one file for the final resulting code. It is not generally acceptable to do this
because all but the most trivial programs are too big to place in a single file because the file
gets to be very cumbersome to work with. It is not at all unusual for a C program to be made
up of over a thousand source files. It is, of course, necessary for these files to communicate
and work together as one large program.

Even though it is best not to use global variables, a variable that is defined outside of any
function, it is sometimes expedient to use a few. Sometimes these variables need to be
referenced by two or more different files, and C provides a way to do this. Consider the
following three file portions.

 FILE1.C FILE2.C FILE3.C
int index; extern int index; extern int index;
extern int count; int count;
 static int value; int value;
 int main();
static void one(); void two(); void three();

The variable named index defined in FILE1.C is available to any other file for use because it
is defined globally. The other two files make use of the same variable by declaring it as an
extern variable. In essence, they are telling the compiler, "I wish to use the variable named
index which is defined somewhere else". Anytime index is referred to in either of the other
two files, the variable of that name is used from FILE1.C, and it can be read, or modified by
any of the three files. This provides an easy way to pass data from any file to any other file,
but it could lead to problems. It would be very easy for any of these files to modify index in
some way not meant to and corrupt the data. It could be very difficult to determine which
file corrupted the value of index.

The variable named count is defined in FILE2.C and referred to in the same manner defined
above within FILE1.C, but is not available for use in FILE3.C because it is not declared in
it. A static variable, such as value in FILE2.C cannot be referenced in any other file but is
hidden in the declaring file by definition. A completely separate variable named value is

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (4 of 6) [02/04/2002 09:09:17]

defined in FILE3.C that has nothing to do with the variable of the same name in FILE2.C. In
this case, FILE1.C could declare value as an external variable and refer to that variable in
FILE3.C if desired.

The main() entry point can only be called by the operating system to get the program
started, but the functions two() and three() can be called from anywhere within the three
files because they are global functions. The function one() however, because it is declared
static, can only be called from within the file in which it is declared. It cannot be called from
within FILE2.C or FILE3.C. It is sometimes expedient to "hide" a function within a file, and
it is often referred to as a local function as opposed to being a global function.

Note that some systems use only 6 characters of an external variable or function name as
significant, and some are case sensitive. Check the documentation for your compiler to see if
you are restrained by these limitations.

WHAT IS AN ENUMERATION VARIABLE?

Example program ------> ENUM.C

Load and display the program named ENUM.C for an example of how to use the enum type
variable. Line 6 defines the first enum type variable named result which is a variable that
can take on any of the values contained within the braces. Actually the variable result is an
int type variable and can be assigned any of the values defined for an int type variable. The
names within the parentheses are int type constants and can be used anywhere it is legal to
use an int type constant. The constant WIN is assigned the value of 0, TIE the value 1,
BYE the value 2, etc.

In use, the variable named result is used just like any int variable would be used as can be
seen by its use in the program. The enum type of variable is intended to be used by you, the
programmer, as a coding aid since you can use a constant named MON for control
structures rather than the meaningless (at least to you) value of 1. Notice that days is
assigned the values of days of the week in the remainder of the program. If you were to use
a switch statement, it would be much more meaningful to use the labels SUN, MON, etc,
rather than the more awkward 0, 1, 2, etc.

All caps are used for the enumeration values in this program as a matter of personal taste
because they are all constants. There is no universal standard on this matter and each
programmer is free to do as he wishes. All caps for these values tends to be standard practice
however.

WHAT IS A PRAGMA?

A pragma is an instruction to your compiler to perform some particular action at compile
time. Although pragmas vary from compiler to compiler and are not standardized, they
perform some useful functions. Your compiler probably supports some way for you to select
the optimization method by inserting a pragma into the source code. If your compiler
provides a source listing file, you probably have pragmas to format the output listing to your
personal preference. Check your documentation for the pragmas that are provided by your
compiler.

PROGRAMMING EXERCISE

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (5 of 6) [02/04/2002 09:09:17]

Write a program to count from 7 to -5 by counting down. Use #define statements to
define the limits. (Hint, you will need to use a decrementing variable in the third part
of the for loop control.

1.

Return to Table of Contents

Advance to Chapter 7

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 6

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap06.htm (6 of 6) [02/04/2002 09:09:17]

mailto:dodrill@swcp.com

C Tutorial - Chapter 7

STRINGS AND ARRAYS
WHAT IS A STRING?

A string is a group of characters, usually letters of the alphabet. In order to format
your printout in such a way that it looks nice, has meaningful names and titles, and
is aesthetically pleasing to you and the people using the output of your program, you
need the ability to output text data. Actually you have already been using strings,
because the second program in this tutorial, way back in Chapter 2, output a
message that was handled internally as a string. A complete definition of a string is
a series of char type data terminated by a null character.

When C is going to use a string of data in some way, either to compare it with
another string, output it, copy it to another string, or whatever, the functions are set
up to do what they are called to do until a null, which is a zero, is detected. Such a
string is often called an ASCII-Z string. We will use a few ASCII-Z strings in this
chapter.

WHAT IS AN ARRAY?

An array is a series of homogeneous pieces of data that are all identical in type, but
the type can be quite complex as we will see when we get to the chapter of this
tutorial discussing structures. A string is simply a special case of an array, a series of
char type data.

Example program ------> CHRSTRG.C

The best way to see these principles is by use of an example, so load the program
CHRSTRG.C and display it on your monitor. The first thing new is in line 6 which
defines a char type of data entity. The square brackets define an array subscript in
C, and the 5 in the brackets defines 5 data fields of type char all defined as part of
the string variable. In the C language, all subscripts start at 0. We have 5 char type
variables named, name[0], name[1], name[2], name[3], and name[4]. You must
keep in mind that in C, the subscripts actually go from 0 to one less than the number
defined in the definition statement. This is due to the original definition of C and
these limits cannot be changed or redefined by the programmer.

HOW DO WE USE THE STRING?

The variable name is therefore a string which can hold up to 5 characters, but since
we need room for the NULL terminating character which counts as one of the five
characters, there are actually only four usable characters. To load something useful
into the string, we have 5 assignment statements, each of which assigns one
alphabetical character to one of the string characters. Finally, the last place in the

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (1 of 7) [02/04/2002 09:09:34]

string is filled with the numeral 0 as the end indicator and the string is complete. (A
define would allow us to use the symbol NULL instead of a zero, and this would
add greatly to the clarity of the program. It would be very obvious that this was a
NULL and not simply a zero for some other purpose.) Now that we have the string,
we will print it out with some other string data in the output statement, line 14.

The %s in the format portion of the printf() statement is the output definition used
to output a string. The system will output characters starting with the first one in the
string name until it comes to the null character, where it will quit. Notice that in the
printf() statement, only the name of the variable which happens to be name needs
to be given, with no subscript since we are interested in starting at the beginning.
(There is actually another reason that only the variable name is given without
brackets. The discussion of that topic will be given in the next chapter.) It is
important to realize that name by itself refers to the entire string, but name[] with
some value in the square braces refers to only a single character in the string.

OUTPUTTING PART OF A STRING

The printf() in line 15 illustrates that we can output any single character of the
string by using the %c and naming the particular character of the variable name we
want by including the subscript. Notice that the term with the square brackets refers
to only a single character in the string, so we output it with the %c notation which is
used to format and output a single character. The last printf() illustrates how we can
output part of the string by stating the starting point by using a subscript. The &
specifies the address of name[1]. We will study this in the next chapter but I
thought you would benefit from a little glimpse ahead, so don't worry about this
construct yet.

This example may make you feel that strings are rather cumbersome to use since
you have to set up each character one at a time. Strings would be very difficult to
use if they had to be defined like we defined the string in this program, but we only
did this so you could see the internal structure of the string. The next example
program will illustrate that strings are very easy to use. Be sure to compile and
execute this program.

SOME STRING FUNCTIONS

Example program ------> STRINGS.C

Load the example program STRINGS.C for an example of some ways to use strings.
First we define four strings in lines 7 and 8. Next we come to a new function that
you will find very useful, the strcpy() function, or string copy. It copies from one
string to another until it comes to the null character in the source string. Remember
that the null is actually a zero and is added to the character string by the system. It is
easy to remember which one gets copied to which if you think of them like an
assignment statement. Thus if you were to say, for example, x = 23;, the data is

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (2 of 7) [02/04/2002 09:09:34]

copied from the right entity to the left one. In the strcpy() function, the data is also
copied from the right entity to the left, so that after execution of the first statement,
the string variable name1 will contain the string "Rosalinda", but without the double
quotes, they are the compiler's way of knowing that you are defining a string. The
term "Rosalinda" is actually a string constant in exactly the same way that 23 is an
integer constant as used in the expression index = 23. It should be clear that line 10
is copying a string constant into a string variable.

Likewise, the string "Zeke" is copied into name2 in line 11, then the title string is
copied into the string named title. The title and both names are then printed out.
Note that it is not necessary for the destination string to be exactly the same size as
the string it will be called upon to store, only that it is at least as long as the source
string plus one more character for the terminating null.

ALPHABETICAL SORTING OF STRINGS

The next function we will look at is the strcmp() or the string compare function
illustrated in line 18. It will return a 1 if the first string is larger than the second,
zero if they are the same length and have the same characters, and -1 if the first
string is smaller than the second. One of the strings, depending on the result of the
compare is copied into the string variable mixed using line 19 or 21, and the largest
name alphabetically is printed out in line 23. It should come as no surprise to you
that Zeke wins because it is alphabetically larger. Length doesn't matter, only
relative position in the alphabet. It might be wise to mention that the result would
also depend on whether the letters were upper or lower case. There are also
functions available with your C compiler to change the case of a string to all upper
or all lower case if you desire. These will be used in an example program later in
this tutorial.

COMBINING STRINGS

Lines 25 through 28 illustrate another new feature, the strcat(), or string
concatenation function. This function simply adds the characters from one string
onto the end of another string taking care to adjust the null so everything is still all
right. In this case, name1 is copied into mixed, then two blanks are concatenated to
mixed, and finally name2 is concatenated to the combination. The result is printed
out with both names in the one string variable mixed.

Strings are not difficult to use and are extremely useful, but they do require some
care in their use. It is an error to copy a string into a string that has been defined as
shorter than the source, but the compiler will perform the copy and will overwrite a
portion of your program or some other data. There is no way for the compiler to
warn you of this, so you must be careful when using strings.

A quick check of the documentation for one compiler revealed about 18 string
functions available for use. Some are used for copying strings with upper limits on

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (3 of 7) [02/04/2002 09:09:34]

how many characters can be copied. There are string functions to search for certain
characters in a string, and others for adding characters to the front, middle, or end of
a string. And of course you can remove characters from anywhere also. It would pay
you to read your compiler documentation to see just what string functions are
available for your use. It could greatly simplify something you will be doing in the
near future if you know what is available. You should spend some time getting
familiar with strings before proceeding on to the next topic. We included the file
named string.h in line 3 because it contains prototypes for all of the string
functions. A little time spent examining this file would be time well spent.

Compile and run this program and observe the results for compliance with this
definition.

AN ARRAY OF INTEGERS

Example program ------> INTARRAY.C

Load the file INTARRAY.C and display it on your monitor for an example of an
array of integers. Notice that the array is defined in much the same way we defined
an array of char in order to do the string manipulations in the last example program.
We have 12 integer variables to work with, plus one more named index. The names
of the variables are values[0], values[1], ... , and values[11]. In lines 9 and 10 we
have a loop to assign nonsense, but well defined, data to each of the 12 variables,
then print all 12 out in lines 12 and 13. Note carefully that each element of the array
is simply an int type variable capable of storing an integer value. The only
difference between the variables index and values[2], for example, is in the way
you address them. You should have no trouble following this program, but be sure
you understand it. Compile and execute it to see if it does what you expect it to do.

AN ARRAY OF FLOATING POINT DATA

Example program ------> BIGARRAY.C

Load and display the program named BIGARRAY.C for an example of a program
with an array of float type data. This program has an extra feature to illustrate how
strings can be initialized. Line 4 of the program illustrates how to initialize a string
of characters. Notice that the square brackets are empty leaving it up to the compiler
to count the characters and allocate enough space for our string plus the terminating
null. Another string is initialized in line 11 of the body of the program but it must be
declared static here. This prevents it from being allocated as an automatic variable
and allows it to retain the string once the program is started. There is nothing else
new here, the variables are assigned nonsense data and the results of all the
nonsense are printed out along with a header. This program should also be easy for
you to follow, so study it until you are sure of what it is doing before going on to the
next topic. Once again, the float array can corrupt a program if it is used to write
past the end of the array.

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (4 of 7) [02/04/2002 09:09:34]

When you compile this program, you may get a few warnings of type conversions.
You should have enough knowledge of C at this point to eliminate the warnings by
including a few casts at the right places. If you desire, you can safely ignore the
warnings.

GETTING DATA BACK FROM A FUNCTION

Example program ------> PASSBACK.C

Back in chapter 5 when we studied functions, I hinted to you that there was a way to
get data back from a function by using an array, and that is true. Examine the
program PASSBACK.C for an example of doing that. In this program, we define an
array of 20 variables named matrix in line 8, then assign some nonsense data to the
variables, and print out the first five. In line 16 we call the function dosome() taking
along the entire array by putting the name of the array in the parentheses as the
actual parameter.

The function dosome() beginning in line 25 has a name in its parentheses also but it
prefers to call the array list internally. The function needs to be told that it is really
getting an array passed to it and that the array is of type int. Line 25 does that by
defining list as an integer type variable and including the square brackets to indicate
an array. It is not necessary to tell the function how many elements are in the array.
Generally a function works with an array until some end-of-data marker is found,
such as a null for a string, or some other previously defined data or pattern. Many
times, another piece of data is passed to the function with a count of how many
elements to work with. In our present illustration, we will use a fixed number of
elements to keep it simple.

So far nothing is different from the previous functions we have called except that we
have passed more data points to the function this time than we ever have before,
having passed 20 integer values, the entire array. We print out the first 5 again in
lines 29 and 30 to see if they did indeed get passed here. In lines 32 and 33 we add
ten to each of the elements and print out the new values. Finally we return to the
main program and print out the same 5 data points. We find that we have modified
the data stored in the calling program from within the function, and when we
returned to the main program, we brought the changes back. Compile and run this
program to verify this conclusion.

ARRAYS PASS DATA BOTH WAYS

We stated during our study of functions that when we passed data to a function, the
system made a copy to use in the function which was thrown away when we
returned. This is not the case with arrays. The actual input array is made available to
the function and the function can modify it any way it wishes to. The result of the
modifications will be available back in the calling program. This may seem strange
to you that arrays are handled differently from single point data, but they are. It

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (5 of 7) [02/04/2002 09:09:34]

really does make sense, but you will have to wait until we get to pointers to
understand it.

A HINT AT A FUTURE LESSON

Another way of getting data back from a function to the calling program is by using
a pointer which we will discuss in the next chapter. When we get there we will find
that the name of an array is in reality a pointer to a list of values. Don't let that worry
you now, it will make sense when we get there. In the meantime, concentrate on
arrays and understand the basics of them because when we get to the study of
structures we will be able to define some pretty elaborate arrays.

MULTI-DIMENSIONAL ARRAYS

Example program ------> MULTIARY.C

Load and display the file named MULTIARY.C for an example of a program with
doubly dimensioned arrays. The variable big is an 8 by 8 array that contains 8 times
8 or 64 elements total. The first element is big[0][0], and the last is big[7][7].
Another array named large is also defined which is not square to illustrate that the
array need not be square. Both are filled with data, one representing a multiplication
table, and the other being formed into an addition table.

To illustrate that individual elements can be modified at will, one of the elements of
big is assigned the value from one of the elements of large after being multiplied by
22 in line 17. Next big[2][2] is assigned the arbitrary value of 5, and this value is
used for the subscripts of the assignment statement in line 19. The assignment
statement in line 19 is in reality big[5][5] = 177; because each of the subscripts
contain the value 5. This is only done to illustrate that any valid expression can be
used for a subscript. It must only meet two conditions, it must be an integer
(although a char will work just as well), and it's value must be within the range of
the subscript it is being used for.

The entire matrix variable big is printed out in a square form in lines 21 through 26
so you can check the values to see if they did get set the way you expected them to.

PROGRAMMING EXERCISES
Write a program with three short strings, about 6 characters each, and use
strcpy() to copy the string literals "one", "two", and "three" into them.
Concatenate the three strings into one larger string defined with 30 characters
and print the result out 10 times.

1.

Define two integer arrays, each 10 elements long, called array1 and array2.
Using a loop, put some kind of nonsense data in each and add them term for
term into another 10 element array named arrays. Finally, print all results in a
table with an index number.

2.

Define a string of some selected length, assign a word or phrase to it, and3.

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (6 of 7) [02/04/2002 09:09:34]

print it out as a string, then print it out as individual characters. Finally, print
it out backwards by using a for loop with a decrementing third term. A useful
function for the first term of the for loop is strlen() which returns the length
of the string by counting characters up to, but not including, the terminating
null.

Return to the Table of Contents

Advance to Chapter 8

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 7

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap07.htm (7 of 7) [02/04/2002 09:09:34]

mailto:dodrill@swcp.com

C Tutorial - Chapter 8

POINTERS
WHAT IS A POINTER?

Example program ------> POINTER.C

Simply stated, a pointer is an address. Instead of being a variable, it is a pointer to a
variable stored somewhere in the address space of the program. It is always best to
use an example so load the file named POINTER.C and display it on your monitor
for an example of a program with some pointers in it.

For the moment, ignore the data definition statement where we define index and
two other fields beginning with a star. It is properly called an asterisk, but for
reasons we will see later, let's agree to call it a star. If you observe the statement in
line 8, it should be clear that we assign the value of 39 to the variable named index.
This is no surprise, we have been doing it for several programs now. The statement
in line 9 however, says to assign to pt1 a strange looking value, namely the variable
index with an ampersand in front of it. In this example, pt1 and pt2 are pointers,
and the variable named index is a simple variable. Now we have a problem similar
to the old chicken and egg problem. We need to learn how to use pointers in a
program, but to do so requires that first we define the means of using the pointers in
the program.

The following two rules will be somewhat confusing to you at first, but we need to
state the definitions before we can use them. Take your time, and the whole thing
will clear up very quickly.

TWO VERY IMPORTANT RULES

The following two rules are very important when using pointers and must be
thoroughly understood.

A variable name with an ampersand in front of it defines the address of the
variable and therefore points to the variable. You can therefore read line nine
as "pt1 is assigned the value of the address of index".

1.

A pointer with a star in front of it refers to the value of the variable pointed to
by the pointer. Line twelve of the program can be read as "The stored
(starred) value to which the pointer pt1 points is assigned the value 13". This
is commonly referred to as dereferencing the pointer. Now you can see why it
is convenient to think of the asterisk as a star, it sort of sounds like the word
store.

2.

MEMORY AIDS

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (1 of 10) [02/04/2002 09:10:10]

Think of & as an address.1.

Think of * as a star referring to stored.2.

Assume for the moment that pt1
and pt2 are pointers (we will see
how to define pointers shortly). As
pointers, they do not contain a
variable value but an address of a
variable and can be used to point
to a variable. Figure 8-1 is a
graphical representation of the
data space as it is configured just
prior to executing line 8. A box
represents a variable, and a box with a dot in it represents a pointer. At this time the
pointers are not pointing at anything, so they have no arrows emanating from the
boxes. Executing line 8 stores the value 39 in index.

Continuing execution of the
program, we come to line 9 which
assigns the address of the variable
index to the pointer pt1 which
causes pt1 to point to index. Since
we have a pointer to index, we can
manipulate the value of index by
using either the variable name
itself, or the pointer. Figure 8-2
depicts the condition of the data
space after executing line 9 of the program.

Jumping ahead a little in the program, line 12 modifies the value of index by using
the pointer. Since the pointer pt1 points to the variable named index, putting a star
in front of the pointer name refers to the memory location to which it is pointing.
Line 12 therefore assigns the value of 13 to index. Anyplace in the program where it
is permissible to use the variable name index, it is also permissible to use the name
*pt1 since they are identical in meaning until the pointer is reassigned to some other
variable.

ANOTHER POINTER

Just to add a little intrigue to the
system, we have another pointer
defined in this program, pt2. Since
pt2 has not been assigned a value
prior to statement 10, it doesn't
point to anything, it contains

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (2 of 10) [02/04/2002 09:10:10]

garbage. Of course, that is also
true of any local variable until a
value is assigned to it. The
statement in line 10 assigns pt2
the same address as pt1, so that now pt2 also points to the variable named index.
We have copied the address from one pointer to another pointer. To continue the
definition from the last paragraph, anyplace in the program where it is permissible
to use the variable index, it is also permissible to use the name *pt2 because they
are now identical in meaning. This fact is illustrated in the printf() statement in line
11 since this statement uses the three means of identifying the same variable to print
out the same variable three times. Refer to figure 8-3 for the representation of the
data space at this time.

THERE IS ONLY ONE VARIABLE

Note carefully that, even though it
appears that there are three
variables, there is really only one
variable. The two pointers each
point to the single variable. This is
illustrated in the statement in line
12 which assigns the value of 13
to the variable index, because that
is where the pointer pt1 is
pointing. The printf() statement in
line 13 causes the new value of 13 to be printed out three times. Keep in mind that
there is really only one variable to be changed or printed, not three. We do have
three aliases for one variable, index, *pt1, and *pt2. Figure 8-4 is the graphical
representation of the data space at this time.

This is admittedly a very difficult concept, but since it is used extensively in all but
the most trivial C programs, it is well worth your time to stay with this material until
you understand it thoroughly.

HOW DO YOU DEFINE A POINTER?

Now to keep a promise and tell you how to define a pointer. Refer to line 6 of the
program and you will see our old familiar way of defining the variable index,
followed by two more definitions. The second definition can be read as "the storage
location to which pt1 points will be an int type variable". Therefore, pt1 is a pointer
to an int type variable. Likewise, pt2 is another pointer to an int type variable,
because it has a star (asterisk) in front of it. These two pointers can point to the same
int variable or to two different int variables.

A pointer must be defined to point to a specific type of variable. Following a proper
definition, it cannot be used to point to any other type of variable or it will result in a

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (3 of 10) [02/04/2002 09:10:10]

type incompatibility error.

Compile and run this program and observe that there is only one variable and the
single statement in line 12 changes the one variable which is displayed three times.
This material is so important that you should review it carefully if you do not fully
understand it at this time. It would be a good exercise for you to draw the graphics
yourself as you review the code for this program.

THE SECOND PROGRAM WITH POINTERS

Example program ------> POINTER2.C

In these few pages so far on pointers, we have covered a lot of territory, but it is
important territory. We still have a lot of material to cover so stay in tune as we
continue this important aspect of C. Load the next file named POINTER2.C and
display it on your monitor so we can continue our study.

In

this program we have defined several variables and two pointers. The first pointer
named there is a pointer to a char type variable and the second named pt points to
an int type variable. Notice also that we have defined two array variables named
strg and list. We will use them to show the correspondence between pointers and
array names.

Figure 8-5 depicts the data just prior to executing line 10. There are three variables,
two pointers, a string, and an array of ints, or we could say there are three variables,
two pointers, and two arrays. Each array is composed of the array itself and a
pointer which points to the beginning of the array according to the definition of an
array in C. This will be completely defined in the next paragraph. Each array is
composed of a number of identical elements of which only a few at the beginning

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (4 of 10) [02/04/2002 09:10:10]

and a few at the end are depicted graphically for convenience.

AN ARRAY NAME IS ACTUALLY A POINTER

In the C programming language, an array name is defined to be a constant pointer to
the beginning of the array. This will take some explaining. Refer to the example
program on your monitor. You will notice that in line 10 we assign a string constant
to the string variable named strg so we will have some data to work with. Next, we
assign the value of the first element to the variable one, a simple char variable.
Next, since the string name is a constant pointer to the first element of the string, by
definition of the C language, we can assign the same value to two by using the star
and the string name (*strg). Observe that the box with a dot pointing to a variable
can be used to access the variable just like in the last program. The result of the two
assignments are such that one now has the same value as two, and both contain the
character T, the first character in the string. Note that it would be incorrect to write
line 10 as two = *strg[0]; because the star takes the place of the square
brackets, or does the same job.

For all practical purposes, strg is a pointer to a char type variable. It does, however,
have one restriction that a true pointer does not have. It cannot be changed like a
variable, but must always contain the address of the first element of the string and
therefore always points to the beginning of its string. It is a pointer constant. Even
though it cannot be changed, it can be used to refer to other values than the one it is
defined to point to, as we will see in the next section of the program.

Moving ahead to line 16, the variable one is assigned the value of the ninth
character in the string (since the indexing starts at zero) and two is assigned the
same value because we are allowed to index a pointer to get to values farther ahead
in the string. Both variables now contain the character 'a'. Line 17 says to add 8 to
the value of the pointer strg, then get the value stored at that location and store it in
the variable two.

POINTER INDEXING

The C programming language takes care of indexing for us automatically by
adjusting the indexing for the type of variable the pointer is pointing to. In this case,
the index of 8 is simply added to the pointer value before looking up the desired
result because a char type variable is one byte long. If we were using a pointer to an
int type variable, the index would be doubled and added to the pointer before
looking up the value because an int type variable uses two bytes per value on most
16 bit microcomputers. It would multiply the index value by 4 before adding it to
the pointer if an int used four bytes, as it does on most 32 bit systems. When we get
to the chapter on structures, we will see that a variable can have many, even into the
hundreds or thousands, of bytes per variable, but the indexing will be handled
automatically for us by the system.

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (5 of 10) [02/04/2002 09:10:10]

The data space is now in the state defined graphically in figure 8-6. The string
named strg has been filled and the two variables named one and two have the letter
"a" stored in them. Since the pointer variable there is already a pointer, it can be
assigned the address of the 11th element of strg by the statement in line 20 of this
program. Remember that since there is a pointer to type char, it can be assigned
any value as long as that value represents a char type of address. It should be clear
that the pointers must be typed in order to allow the pointer arithmetic described in
the last paragraph to be done properly. The third and fourth outputs will be the
same, namely the letter c.

POINTER ARITHMETIC

Not all forms of arithmetic are permissible on a pointer. Only those things that make
sense, considering that a pointer is an address somewhere in the computer. It would
make sense to add a constant to an address, thereby moving it ahead in memory that
number of places. Likewise, subtraction is permissible, moving it back some
number of locations. Adding two pointers together would not make sense because
absolute memory addresses are not additive. Pointer multiplication is also not
allowed, as that would be a funny number. If you think about what you are actually
doing, it will make sense to you what is allowed, and what is not.

NOW FOR AN INTEGER POINTER

The
array
named
list is

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (6 of 10) [02/04/2002 09:10:10]

assigned a series of values from 100 to 199 in order to have some data to work with
in lines 24 and 25. Next, we assign the pointer pt the address of the 28th element of
the list and print out the same value both ways to illustrate that the system truly will
adjust the index for the int type variable. You should spend some time in this
program until you feel you fairly well understand these lessons on pointers.

Compile and execute POINTER2.C and study the output. At the termination of
execution, the data space will be as depicted in figure 8-7. Once again, it would be a
good exercise for you to attempt to draw the graphic for this program as you review
the code.

FUNCTION DATA RETURN WITH A POINTER

Example program ------> TWOWAY.C

You may recall that back in the lesson on functions we mentioned that there were
two ways to get variable data back from a function. One way is through use of the
array, and you should be right on the verge of guessing the other way. If your guess
is through use of a pointer, you are correct. Load and display the example program
named TWOWAY.C for an example of this.

In TWOWAY.C, there are two variables defined in the main program, pecans and
apples. Notice that neither of these is defined as a pointer. We assign values to both
of these and print them out, then call the function named fixup() taking both of
these values along with us. The variable pecans is simply sent to the function, but
the address of the variable apples is sent to the function. Now we have a problem.
The two arguments are not the same, the second is a pointer to a variable. We must
somehow alert the function to the fact that it is supposed to receive an integer
variable and a pointer to an integer variable. This turns out to be very simple. Notice
that the parameter definitions in line 23 defines nuts as an integer, and fruit as a
pointer to an integer. The call in the main program therefore is now in agreement

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (7 of 10) [02/04/2002 09:10:10]

with the function heading and the program interface will work just fine.

In the body of the
function, we print the two
values sent to the function,
then modify them and
print the new values out.
This should be perfectly
clear to you by now. The
surprise occurs when we
return to the main()
function and print out the
two values again. We will
find that the value of
pecans will be restored to the value it had prior to the function call because the C
language makes a copy of the item in question and takes the copy to the called
function, leaving the original intact as we explained earlier. In the case of the
variable apples, we made a copy of a pointer to the variable and took the copy of
the pointer to the function. Since we had a pointer to the original variable, even
though the pointer was a local copy, it pointed to the original variable and we could
change the value of apples from within the function. When we returned to the main
program, we found a changed value in apples when we printed it out.

This is illustrated graphically in figure 8-8. The state of the system is illustrated
following execution of line 27 of the program. The observant student will notice the
prototype in line 3. This allows the compiler to check the type of both parameters
when it gets to line 14 where the function is called.

By using a pointer in a function call, we can have access to the original data while
excuting code within the function and change it in such a way that when we return
to the calling program, we have a changed value of the original variable. In this
example, there was no pointer in the main program because we simply sent the
address to the function, but in many programs you will use pointers in function
calls. One of the places you will find need for pointers in function calls will be when
you request data input using standard input/output routines. These will be covered in
the next two chapters. Compile and run TWOWAY.C and observe the output.

POINTERS ARE VALUABLE

Even though you are probably somewhat intimidated by this time about the proper
use of pointers, you will find that after you gain experience, you will use them
profusely in many ways. You will also use pointers in every program you write
other than the most trivial because they are so useful. You should probably go over
this material carefully several times until you feel comfortable with it because it is
very important in the area of input/output which is next on the agenda.

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (8 of 10) [02/04/2002 09:10:10]

A POINTER TO A FUNCTION

Example program ------> FUNCPNT.C

Examine the example program named FUNCPNT.C for the most unusual pointer
yet. This program contains a pointer to a function, and illustrates how to use it.

Line 8 of this program defines function_pointer as a pointer to a function and not
to just any function, it points to a function with a single formal parameter of type
float. The function must also return nothing because of the void before the pointer
definition. The parentheses are required around the pointer name as illustrated or the
system will think it is a prototype definition for a function that returns a pointer to
void.

You will note the prototypes given in lines 4 through 6 that declare three functions
that use the same parameter and return type as the pointer. Since they are the same
as the pointer, the pointer can be used to refer to them as is illustrated in the
executable part of the program. Line 15 contains a call to the print_stuff() function,
and line 16 assigns the value of print_stuff to function_pointer. Because the name
of a function is defined as a pointer to that function, its name can be assigned to a
function pointer variable. You will recall that the name of an array is actually a
pointer constant to the first element of the array. In like manner, a function name is
actually a pointer constant which is pointing to the function itself. The pointer is
successively assigned the address of each of the three functions and each is called
once or twice as an illustration of how a pointer to a function can be used.

A function pointer can be passed to another function as a parameter and can be used
within the function to call the function which is pointed to. You are not permitted to
increment or add a constant to a function pointer, it can only be assigned the value
of a function with the same parameters and return with which it was initially
declared. It may take you a little time to appreciate the value of this construct, but
when you do understand it, you will see the flexibility built into the C programming
language.

A pointer to a function is not used very often but it is a very powerful construct
when needed. You should plan to do a lot of C programming before you find a need
for this technique. I mention it here only to prevent you being unduly intimidated by
this difficult concept. We will continue to study pointers by examining their use in
additional example programs.

PROGRAMMING EXERCISES
Define a character array and use strcpy() to copy a string into it. Print the
string out by using a loop with a pointer to print out one character at a time.
Initialize the pointer to the first element and use the double plus sign to
increment the pointer. Use a separate integer variable to count the characters
to print.

1.

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (9 of 10) [02/04/2002 09:10:10]

Modify the program from programming exercise 1 to print out the string
backwards by pointing to the end and using a decrementing pointer.

2.

Return to Table of Contents

Advance to Chapter 9

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 8

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap08.htm (10 of 10) [02/04/2002 09:10:10]

mailto:dodrill@swcp.com

C Tutorial - Chapter 9

STANDARD INPUT/OUTPUT
THE STDIO.H HEADER FILE

Example program ------> SIMPLEIO.C

Examine the file SIMPLEIO.C for our first look at a file with standard I/O. Standard
I/O refers to the places where most data is either read from, the keyboard, or written
to, the video monitor. Since they are used so much, they are used as the default I/O
devices and do not need to be named in the Input/Output instructions. This will
make more sense when we actually start to use them so let's look at the file in front
of you.

The first thing you should take notice of is the second line of the example file, the
line with #include <stdio.h>. This is very much like the #define we have
already studied, except that instead of a simple substitution, an entire file is read in
at this point. The system will find the file named stdio.h and read its entire contents
in, replacing this statement. Obviously then, the file named stdio.h must contain
valid C source statements that can be compiled as part of a program. You will recall
that we stated earlier that the preprocessor does textual substitution. This particular
file is composed of several standard #defines and prototypes to define some of the
standard I/O operations. The file is called a header file and you will find several
different header files on the source disks that came with your C compiler. Each of
the header files has a specific purpose and any or all of them can be included in any
program. Most header files contain definitions of a few types, function prototypes
for the functions in its group, and some macros.

Your C compiler uses the double quote marks to indicate that the search for the
include file will begin in the current directory, and if it not found there, the search
will continue in the include directory as set up in the environment for your compiler.
It also uses the "less than" and "greater than" signs to indicate that the file search
should begin in the directory specified in the environment. Most of the programs in
this tutorial use the "<" and ">" in the include statements. The next program uses the
double quotes to illustrate the usage. Note that this will result is a slightly slower
(but probably unnoticeable) compilation because the system will search the current
directory first. If you know the include file is not in the current directory, it is best to
use the "<" and ">" with the filename.

As many includes can be used as necessary, and it is perfectly all right for one
header file to include one or more additional header files. It is very common to
include four or five header files in a program.

It would be a profitable exercise for you to inspect the header file limits.h at this

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (1 of 10) [02/04/2002 09:10:26]

time for a complete definition of the sizes of all simple variables on your system.
You should be able to understand most of this file by this point in your study of C.

INPUT/OUTPUT OPERATIONS IN C

Actually the C programming language has no input or output operations defined as
part of the language, they must be user defined. Since everybody does not want to
reinvent his own input and output operations, the compiler writers have done a lot of
this for us and supplied us with several input functions and several output functions
to aid in our program development. The functions have become a standard, and you
will find the same functions available in every compiler. In fact, the industry
standard of the C language definition has become the book written by Kernigan and
Ritchie, and they have included these functions in their definition.

Occasionally, when reading literature about C, you will find an author refer to K &
R. This refers to the book, "The C Programming Language", written by Kernigan
and Ritchie. You would be advised to purchase a copy for reference. The second
edition of this book is available and is definitely the preferred edition. Note that the
book by Kernigan and Ritchie does not cover the ANSI-C standard, but it is still the
preferred book for a general reference to the C programming language. The major
item that is not covered is the use of prototypes, but you can easily integrate your
knowledge of prototypes into the concise descriptions of other C constructs given in
this book. Consider it a source of information after you gain some experience with C
because it is not a very good book to learn the language from.

You should print out the file named stdio.h and spend some time studying it. There
will be a lot that you will not understand about it, but parts of it will look familiar.
The name stdio.h is sort of cryptic for "standard input/output header", because that
is exactly what it is. It defines the standard input and output functions in the form of
#defines, macros, and prototypes for the functions. Don't worry too much about the
details of this now. You can always return to this topic later for more study if it
interests you, but you will really have no need to completely understand the
STDIO.H file. You will have a tremendous need to use it however, so these
comments on its use and purpose are necessary.

OTHER INCLUDE FILES

When you begin writing larger programs and splitting them up into separately
compiled portions, you will have occasion to use some definitions common to each
of the portions. It would be to your advantage to make a separate file containing the
definitions and use the #include to insert it into each of the files. If you want to
change any of the common statements, you will only need to change one file and
you will be assured of having all of the common statements agree. This is getting a
little ahead of ourselves but you now have an idea how the #include directive can be
used with your own files.

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (2 of 10) [02/04/2002 09:10:26]

BACK TO THE FILE NAMED SIMPLEIO.C

Let's continue our tour of the file in question. The one variable named c is defined
and a message is printed out with the familiar printf() function. We then find
ourselves in a continuous loop as long as the value of c is not equal to capital X. If
there is any question in your mind about the loop control, you should review chapter
3 before continuing. The two new functions within the loop are of paramount
interest in this program since they are new functions to us. These are functions to
read a character from the keyboard and display a character on the monitor.

The function getchar() reads a single character from the standard input device, the
keyboard, and assigns it to the variable named c. The next function putchar(), uses
the standard output device, the video monitor, and outputs the character contained in
the variable named c. The character is output at the current cursor location and the
cursor is advanced one space for the next character. The system is therefore taking
care of a lot of the overhead for us. The loop continues reading and displaying
characters until we type a capital X which terminates the loop.

Compile and run this program for a few surprises. When you type on the keyboard,
you will notice that what you type is displayed faithfully on the screen, and when
you hit the return key, the entire line is repeated. We only told it to output each
character once but it seems to be saving the characters up and redisplaying them. A
short explanation is in order.

THE OPERATING SYSTEM IS HELPING US OUT

We need to understand a little bit about how the operating system works to
understand what is happening here. When data is read from the keyboard, under
control of the operating system, the characters are stored in a buffer until a carriage
return is entered at which time the entire string of characters is given to the program.
When the characters are being typed, however, the characters are displayed one at a
time on the monitor. This is called echo, and happens in many of the applications
you run.

With the above paragraph in mind, it should be clear that when you are typing a line
of data into SIMPLEIO, the characters are being echoed by the operating system,
and when you return the carriage by hitting return or enter, the characters are given
to the program. As each character is given to the program, it displays it on the
screen resulting in a repeat of the line typed in. To better illustrate this, type a line
with a capital X somewhere in the middle of the line. You can type as many
characters as you like following the X and they will all display because the
characters are being read in by the operating system, echoed to the monitor, and
placed in the input buffer. The operating system doesn't think there is anything
special about a capital X. When the string is given to the program, however, the
characters are accepted by the program one at a time and sent to the monitor one at a
time, until a capital X is encountered. After the capital X is displayed, the loop is

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (3 of 10) [02/04/2002 09:10:26]

terminated, and the program is terminated. The characters on the input line
following the capital X are not displayed because the capital X signalled program
termination.

Compile and run SIMPLEIO.C. After running the program several times and feeling
confident that you understand the above explanation, we will go on to another
program.

Don't get discouraged by the above seemingly weird behavior of the I/O system. It is
strange, but there are other ways to get data into the computer. You will actually
find the above method useful for many applications, and you will find some of the
following useful also.

ANOTHER STRANGE I/O METHOD

Example program ------> SINGLEIO.C

Load the file named SINGLEIO.C and display it on your monitor for another
method of character I/O. Once again, we start with the standard I/O header file using
the double quote method of defining it. Then we define a variable named c, and we
print a welcoming message. Like the last program, we are in a loop that will
continue to execute until we type a capital X, but the action is a little different here.

Note that conio.h and the _getch() function described below are not a part of the
ANSI-C standard but are available on most C compilers written for DOS.

The function named _getch() is a get character function. It differs from the function
named getchar() in that it does not get tied up in DOS. It reads the character in
without echo, and puts it directly into the program where it is operated on
immediately. This function therefore reads a character, immediately displays it on
the screen, and continues the operation until a capital X is typed. Note that although
_getch() is available with most popular microcomputer C compilers, it is not
included in the ANSI standard and may not be available with all C compilers. It's
use may therefore make a program nonportable. If your compiler does not support
the _getch() function, you can simply ignore this example program.

When you compile and run this program, you will find that there is no repeat of the
lines when you hit a carriage return, and when you hit the capital X, the program
terminates immediately. No carriage return is needed to get it to accept the line with
the X in it, so this program operates a little differently from the last one. However,
we do have another problem here, since there is no linefeed with the carriage return.

NOW WE NEED A LINE FEED

Example program ------> BETTERIN.C

It is not apparent to you in most application programs but when you hit the enter

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (4 of 10) [02/04/2002 09:10:26]

key, the program supplies a linefeed to go with the carriage return. You need to
return to the left side of the monitor and you also need to drop down a line. The
linefeed is not automatic. We need to improve our program to do this also. If you
will load and display the program named BETTERIN.C, you will find a change to
incorporate this feature.

In BETTERIN.C, we have two additional statements at the beginning that will
define the character codes for the linefeed (LF), and the carriage return (CR). If you
look at any ASCII table you will find that the codes 10 and 13 are exactly as defined
here. In the main program, after outputting the character in line 16, we compare it to
CR, and if it is equal to CR, we also output a linefeed which is the LF. We could
have completely omitted the two #define statements and used the statement if (c
== 13) putchar(10); but it would not be very descriptive of what we are
doing here. The method used in this program represents better programming
practice.

You will notice that line 17 deviates from the usual style for an if statement, but we
have a choice. We can format the code any way we desire to improve the
readability. It is strictly a programmer's choice.

Compile and run BETTERIN.C to see if it does what we have said it should do. It
should display exactly what you type in, including a linefeed with each carriage
return, and should stop immediately when you type a capital X. If your compiler
does not support _getch(), use the getchar() function.

WHICH METHOD IS BEST?

We have examined two methods of reading characters into a C program, and are
faced with a choice of which one we should use. It really depends on the application
because each method has advantages and disadvantages.

When using the first method, the operating system is actually doing all of the work
for us by storing the characters in an input buffer and signaling us when a full line
has been entered. We could write a program that, for example, did a lot of
calculations, then went to get some input. While we were doing the calculations, the
operating system would be accumulating a line of characters for us, and they would
be there when we were ready for them. However, we could not read in single
keystrokes because the operating system would not report a buffer of characters to
us until it recognized a carriage return.

The second method, used in BETTERIN.C, allows us to get a single character, and
act on it immediately. We do not have to wait until the operating system decides we
can have a line of characters. We cannot do anything else while we are waiting for a
character because we are waiting for the input keystroke and tying up the entire
machine. This method is useful for highly interactive types of program interfaces. It
is up to you as the programmer to decide which is best for your needs.

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (5 of 10) [02/04/2002 09:10:26]

I should mention at this point that there is also an _ungetch() function that works
with the _getch() function and is also not a part of the ANSI-C standard library, but
is available with most DOS compilers. If you _getch() a character and find that you
have gone one too far, you can _ungetch() it back to the input device. This
simplifies some programs because you don't know that you don't want the character
until you get it. You can only _ungetch() one character back to the input device, but
that is sufficient to accomplish the task this function was designed for. It is difficult
to demonstrate this function in a simple program so its use will be up to you to study
when you need it. Another function that may be available with your compiler, but is
not part of the ANSI standard, is the _getche() function which is identical to the
_getch() function except that it echoes the character to the monitor for you.

The discussion so far in this chapter should be a good indication that, while the C
programming language is very flexible, it does put a lot of responsibility on you as
the programmer to keep many details in mind.

NOW TO READ IN SOME INTEGERS

Example programs ------> INTIN.C

Load and display the file named INTIN.C for an example of reading some formatted
data from the keyboard. The structure of this program is very similar to the last three
except that we define an int type variable and loop until the variable somehow
acquires the value of 100.

Instead of reading in a character at a time, as we have in the last three example
programs, we read in an entire integer value with one call using the function named
scanf(). This function is very similar to the printf() that you have been using for
quite some time by now except that it is used for input instead of output. Examine
the line with the scanf() and you will notice that it does not ask for the variable
valin directly, but gives the address of the variable since it expects to have a value
returned from the function. Recall that a function must have the address of a
variable in order to return a value to that variable in the calling program. Failing to
supply a pointer to the parameter in the scanf() function is the most common
problem encountered in using this function.

The function scanf() scans the input line until it finds the first data field. It ignores
leading blanks and in this case, it reads integer characters until it finds a blank or an
invalid decimal character, at which time it stops reading and returns the value.

Remembering our discussion above about the way the input buffer works, it should
be clear that nothing is actually acted on until a complete line is entered and it is
terminated by a carriage return. At this time, the buffer is input, and our program
will search across the line reading all integer values it can find until the line is
completely scanned. This is because we are in a loop and we tell it to find a value,

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (6 of 10) [02/04/2002 09:10:26]

print it, find another, print it, etc. If you enter several values on one line, it will read
each one in succession and display the values. Entering the value of 100 will cause
the program to terminate, and entering the value 100 with other values following,
will cause termination before the following values are considered.

IT MAKES WRONG ANSWERS SOMETIMES

If your system uses a 2 byte integer and you enter a number up to and including
32767, it will display correctly, but if you enter a larger number, it will appear to
make an error. For example, if you enter the value 32768, it will display the value of
-32768, entering the value 65536 will display as a zero. These are not errors but are
caused by the way an int variable is defined. The most significant bit of the 16 bit
pattern available for the integer variable is the sign bit, so there are only 15 bits left
for the value. The variable can therefore only have the values from -32768 to 32767,
any other values are outside the range of integer variables. This is up to you to take
care of in your programs. It is another example of the increased responsibility you
must assume using C rather than another high level language such as Pascal,
Modula-2, etc.

The above paragraph is true for 16 bit C compilers. There is an ever increasing
possibility that your compiler uses an integer value stored in a field size larger than
16 bits. If that is the case, the same principles will be true but with different limits
than those given above.

Compile and run this program, entering several numbers on a line to see the results,
and with varying numbers of blanks between the numbers. Try entering numbers
that are too big to see what happens, and finally enter some invalid characters to see
what the system does with nondecimal characters.

CHARACTER STRING INPUT

Example program ------> STRINGIN.C

Load and display the file named STRINGIN.C for an example of reading a string
variable from the keyboard. This program is identical to the last one except that
instead of an integer variable, we have defined a string variable with an upper limit
of 24 characters (remember that a string variable must have a null character at the
end). The variable in the scanf() does not need an & because big is an array variable
and by definition it is already a pointer. This program should require no additional
explanation. Compile and run it to see if it works the way you expect.

You probably got a surprise when you ran it because it separated your sentence into
separate words. When used in the string mode of input, scanf() reads characters into
the string until it comes to either the end of a line or a blank character. Therefore, it
reads a word, finds the blank following it, and displays the result. Since we are in a
loop, this program continues to read words until it exhausts the input buffer. We

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (7 of 10) [02/04/2002 09:10:26]

have written this program to stop whenever it finds a capital X in column 1, but
since the sentence is split up into individual words, it will stop anytime a word
begins with capital X. Try entering a 5 word sentence with a capital X as the first
character in the third word. You should get the first three words displayed, and the
last two simply ignored when the program stops.

Try entering more than 24 characters to see what the program does. In an actual
program, it is your responsibility to count characters and stop when the input buffer
is full. You may be getting the feeling that a lot of responsibility is placed on you
when writing in C. Along with this responsibility you get a lot of flexibility in the
bargain also. Because scanf() has no way to stop when the input array is full, it
should not be used for string input in a quality program. It was used here only as an
illustration of input programming.

INPUT/OUTPUT PROGRAMMING IN C

C was not designed to be used as a language for lots of input and output, but as a
systems language where a lot of internal operations are required. You would do well
to use another language for I/O intensive programming, but C could be used if you
desire. The keyboard input is very flexible, allowing you to get at the data in a very
low level way, but very little help is given you. It is therefore up to you to take care
of all of the bookkeeping chores associated with your required I/O operations. This
may seem like a real pain in the neck, but in any given program, you only need to
define your input routines once and then use them as needed. Don't let this worry
you. As you gain experience with C, you will easily handle your I/O requirements.

One final point must be made about these I/O functions. It is perfectly permissible to
intermix scanf() and getchar() functions during read operations. In the same
manner, it is also fine to intermix the output functions, printf() and putchar() in
any way you desire.

IN MEMORY I/O

Example program ------> INMEM.C

The next operation may seem a little strange at first, but you will probably see lots
of uses for it as you gain experience. Load the file named INMEM.C and display it
for another type of I/O, one that never accesses the outside world, but stays in the
computer.

In INMEM.C, we define a few variables, then assign some values to the ones named
numbers for illustrative purposes and then use an sprintf() function. The function
acts just like a normal printf() function except that instead of printing the line of
output to a device, it prints the line of formatted output to a character string in
memory. In this case the string goes to the string variable named line, because that
is the string name we inserted as the first argument in the sprintf() function. The

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (8 of 10) [02/04/2002 09:10:26]

spaces after the 2nd %d were put there to illustrate that the next function will search
properly across the line. We print the resulting string and find that the output is
identical to what it would have been by using a printf() instead of the sprintf() in
the first place. You will see that when you compile and run the program shortly.

Since the generated string is still in memory, we can now read it with the function
sscanf(). We tell the function in its first argument that line is the string to use for its
input, and the remaining parts of the line are exactly what we would use if we were
going to use the scanf() function and read data from some input device. Note that it
is essential that we use pointers to the data because we want to return data from a
function. Just to illustrate that there are different ways to declare a pointer, two
methods are used, but all are ultimately pointers. The first two simply declare the
address of the elements of the array, while the last three use the fact that result,
without the accompanying subscript, is a pointer. Just to keep it interesting, the
values are read back in reverse order. Finally, the values are displayed on the
monitor.

IS THAT REALLY USEFUL?

It seems sort of silly to read input data from within the computer but it does have a
real purpose. It is possible to read data from an input device using any of the
standard functions and then do a format conversion in memory. You could read in a
line of data, look at a few significant characters, then use these formatted input
routines to reduce the line of data to internal representation. That would sure beat
writing your own data formatting routines.

STANDARD ERROR OUTPUT

Example program ------> SPECIAL.C

Sometimes it is desirable to redirect the output from the standard output device to a
file. However, you may still want the error messages to go to the standard output
device, in our case the monitor. This next function allows you to do that. Load and
display SPECIAL.C for an example of this new function.

The program consists of a loop with two messages output, one to the standard output
device and the other to the standard error device. The message to the standard error
device is output with the function fprintf() and includes the device name stderr as
the first argument. Other than those two small changes, it is the same as our standard
printf() function. (You will see more of the fprintf() function in the next chapter,
but its operation fit in better as a part of this chapter.) Ignore the line with the exit
for the moment, we will return to it.

Compile and run this program, and you will find 12 lines of output on the monitor.
To see the difference, run the program again with redirected output to a file named
STUFF by entering the following line at the operating system prompt;

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (9 of 10) [02/04/2002 09:10:26]

 C:> special >stuff

This time you will only get the 6 lines output to the standard error device, and if you
look in your directory, you will find that the file named STUFF contains the other 6
lines, those to the standard output device. You can use I/O redirection with any of
the programs we have run so far, and as you may guess, you can also read from a
file using I/O redirection but we will study a better way to read from a file in the
next chapter. More information about I/O redirection can be found in your operating
system manual.

WHAT ABOUT THE exit(4) STATEMENT?

Now to keep our promise about the exit(4) statement. Redisplay the file named
SPECIAL.C on your monitor. The last statement exits the program and returns the
value of 4 to the operating system. Any number within a predefined range can be
used within the parentheses for communication with your operating system. If you
are operating in a DOS environment and executing code in a BATCH file, this
number can be tested with the ERRORLEVEL command.

Most compilers that operate in several passes return a 1 with this mechanism to
indicate that a fatal error has been detected and it would be a waste of time to go on
to another compilation pass resulting in even more errors. A return value of 0 would
indicate that no error was detected.

PROGRAMMING EXERCISES
Write a program to read in a character using a loop, and display the character
in its normal char form. Also display it as a decimal number. Check for a
dollar sign to use as the stop character. Use the _getch() form of input so it
will print immediately. Hit some of the special keys, such as function keys,
when you run the program for some surprises. You will get two inputs from
the special keys, the first being a zero which is the indication to the system
that a special key was hit.

1.

Add a character string to SINGLEIO.C and store the input characters in the
string. When the X is detected, add a terminating null to the string and print
out the string with a printf() function call.

2.

Return to Table of Contents

Advance to Chapter 10

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 9

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap09.htm (10 of 10) [02/04/2002 09:10:26]

mailto:dodrill@swcp.com

C Tutorial - Chapter 10

FILE INPUT/OUTPUT
OUTPUT TO A FILE

Example program ------> FORMOUT.C

Load and display the file named FORMOUT.C for your first example of writing
data to a file. We begin as before with the include statement for stdio.h, and include
the header for the string functions. Then we define some variables for use in the
example including a rather strange looking new type.

The type FILE is a structure (we will study structures in the next chapter) and is
defined in the stdio.h file. It is used to define a file pointer for use in file operations.
The definition of C requires a pointer to a FILE type to access a file, and as usual,
the name can be any valid variable name. Many writers use fp for the name of this
first example file pointer so I suppose we should start with it too.

OPENING A FILE

Before we can write to a file, we must open it. What this really means is that we
must tell the system that we want to write to a file and what the filename is. We do
this with the fopen() function illustrated in line 11 of the program. The file pointer,
fp in our case, will point to the structure for the file and two arguments are required
for this function, the filename first, followed by the file attribute. The filename is
any valid filename for your operating system, and can be expressed in upper or
lower case letters, or even mixed if you so desire. It is enclosed in double quotes.
For this example we have chosen the name TENLINES.TXT. This file should not
exist on your disk at this time. If you have a file with this name, you should change
its name or move it because when we execute this program, its contents will be
overwritten. If you don't have a file by this name, this program will create one and
write some data into it.

Note that we are not forced to use a string constant for the file name as we have
done here. This is only done here for convenience. We can use a string variable
which contains the filename then use any method we wish to fill in the name of the
file to open. This will be illustrated later in this chapter.

READING ("r")

The second parameter is the file attribute and can be any of three letters, "r", "w", or
"a", and must be lower case. There are actually additional attributes available in C to
allow more flexible I/O, and after you complete your study of this chapter, you
should check the documentation for your compiler to study the additional file
opening attributes. When an "r" is used, the file is opened for reading, a "w" is used

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (1 of 9) [02/04/2002 09:10:39]

to indicate a file to be used for writing, and an "a" indicates that you desire to
append additional data to the data already in an existing file. Opening a file for
reading requires that the file already exist. If it does not exist, the file pointer will be
set to NULL and can be checked by the program. It is not checked in this program,
but could be easily checked as follows.

 if (fp == NULL) {
 printf("File failed to open\n");
 exit (1);
 }

Good programming practice would dictate that all file pointers be checked to assure
proper file opening in a manner similar to the above code. The value of 1 used as the
parameter of exit() will be explained shortly.

WRITING ("w")

When a file is opened for writing, it will be created if it does not already exist and it
will be reset if it does, resulting in deletion of any data already there. If the file fails
to open for any reason, a NULL will be returned so the pointer should be tested as
above.

APPENDING ("a")

When a file is opened for appending, it will be created if it does not already exist
and it will be initially empty. If it does exist, the data input point will be set to the
end of the data already contained in the file so that new data will be added to any
data that already exists in the file. Once again, the return value can and should be
checked for proper opening.

OUTPUTTING TO THE FILE

The job of actually outputting to the file is nearly identical to the outputting we have
already done to the standard output device. The only real differences are the new
function names and the addition of the file pointer as one of the function arguments.
In the example program, fprintf() replaces our familiar printf() function name, and
the file pointer defined earlier is the first argument within the parentheses. The
remainder of the statement looks like, and in fact is identical to, the printf()
statement.

CLOSING A FILE

To close a file, use the function fclose() with the file pointer in the parentheses.
Actually, in this simple program, it is not necessary to close the file because the
system will close all open files before returning to the operating system. It would be
good programming practice for you to get in the habit of closing all files in spite of
the fact that they will be closed automatically, because that would act as a reminder

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (2 of 9) [02/04/2002 09:10:39]

to you of what files are open at the end of each program.

You can open a file for writing, close it, and reopen it for reading, then close it, and
open it again for appending, etc. Each time you open it, you could use the same file
pointer, or you could use a different one. The file pointer is simply a tool that you
use to point to a file and you decide what file it will point to.

Compile and run this program. When you run it, you will not get any output to the
monitor because it doesn't generate any. After running it, look in your current
directory for a file named TENLINES.TXT and examine it's contents. That is where
your output will be. Compare the output with that specified in the program. It should
agree. If you add the pointer test code described above, and if the file couldn't be
opened for any reason, there will be one line of text on the monitor and the file will
be empty.

Do not erase the file named TENLINES.TXT yet. We will use it in some of the
other examples in this chapter.

OUTPUTTING A SINGLE CHARACTER AT A TIME

Example program ------> CHAROUT.C

Load the next example file, CHAROUT.C, and display it on your monitor. This
program will illustrate how to output a single character at a time.

The program begins with the include statements, then defines some variables
including a file pointer. The file pointer is named point this time, but we could have
used any other valid variable name. We then define a string of characters to use in
the output function using a strcpy() function. We are ready to open the file for
appending and we do so with the fopen() function, except this time we use the lower
cases for the filename. This is done simply to illustrate that some operating systems
don't care about the case of the filename. Some operating systems, including UNIX,
are case sensitive for filenames, so you will need to fix the case before compiling
and executing this program. Notice that the file will be opened for appending so we
will add to the lines inserted during the last program. If the file could not be opened
properly, a NULL value is returned by the fopen() function.

Lines 14 through 18 check to see if the file opened properly and returns an error
indication to the operating system if it did not. The constant named
EXIT_FAILURE is defined in the stdlib.h file and is usually defined to have the
value of 1. The constant named EXIT_SUCCESS is also defined in the stdlib.h file
and is usually defined to have the value of 0. The operating system can use the
returned value to determine if the program operated normally and can take
appropriate action if neccessary. For example, if a two part program is to be
executed and the first part returns an error indication, there is no need to execute the
second part of the program. Your compiler probably executes in several passes with

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (3 of 9) [02/04/2002 09:10:39]

each successive pass depending on successful completion of the previous pass.

The program is actually two nested for loops. The outer loop is simply a count to
ten so that we will go through the inner loop ten times. The inner loop calls the
function putc() repeatedly until a character in the string named others is detected to
be a zero. This is the terminating null for the string.

THE putc() FUNCTION

The part of the program we are interested in is the putc() function in line 23. It
outputs one character at a time, the character being the first argument in the
parentheses and the file pointer being the second and last argument. Why the
designer of C made the pointer first in the fprintf() function, and last in the putc()
function is a good question for which there may be no answer. It seems like this
would have been a good place to have used some consistency.

When the textline others is exhausted, a newline is needed because a newline was
not included in the definition above. A single putc() is then executed which outputs
the \n character to return the carriage and do a linefeed.

When the outer loop has been executed ten times, the program closes the file and
terminates. Compile and run this program but once again there will be no output to
the monitor. You need to assure that TENLINES.TXT is in the current directory
prior to execution.

Following execution of the program, examine the contents of the file named
TENLINES.TXT and you will see that the 10 new lines were added to the end of the
10 that already existed. If you run it again, yet another 10 lines will be added. Once
again, do not erase this file because we are still not finished with it.

READING A FILE

Example program ------> READCHAR.C

Load the file named READCHAR.C and display it on your monitor. This is our first
program which can read from a file. This program begins with the familiar include
statements, some data definitions, and the file opening statement which should
require no explanation except for the fact that an "r" is used here because we want to
read from this file. In this program, we check to see that the file exists, and if it
does, we execute the main body of the program. If it doesn't exist, we print a
message and quit. If the file does not exist, the system will set the pointer equal to
NULL which we test in line 12. If the pointer is NULL we display a message and
terminate the program.

The main body of the program is one do while loop in which a single character is
read from the file and output to the monitor until an EOF (end of file) is detected
from the input file. The file is then closed and the program is terminated.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (4 of 9) [02/04/2002 09:10:39]

CAUTION CAUTION CAUTION

At this point, we have the potential for one of the most common and most
perplexing problems of programming in C. The variable returned from the getc()
function is a character, so we can use a char variable for this purpose. There is a
problem that could develop here if we happened to use an unsigned char however,
because C returns a minus one for an EOF. An unsigned char type variable is not
capable of containing a negative value. An unsigned char type variable can only
have the values of zero to 255, so it will return a 255 for a minus one which can
never compare to the EOF. This is a very frustrating problem to try to find. The
program can never find the EOF and will therefore never terminate the loop. This is
easy to prevent. Always use a int type variable when the return can be an EOF,
because an int is always signed. According to the ANSI-C standard, a char can be
implemented as either a signed or an unsigned type by any particular compiler.

Some compilers use a char type that is not 8 bits long. If your compiler uses other
than 8 bits for a char type variable, the same arguments apply. Do not use an
unsigned type if you need to check for an EOF returned by the function, because an
EOF is usually defined as -1 which cannot be returned in an unsigned type variable.

There is yet another problem with this program but we will worry about it when we
get to the next program and solve it with the one following that.

After you compile and run this program and are satisfied with the results, it would
be a good exercise to change the name of TENLINES.TXT and run the program
again to see that the NULL test actually works as stated. Be sure to change the name
back because we are still not finished with TENLINES.TXT. In a real production
program, you would not actually terminate the program. You would give the user
the opportunity to enter another filename for input. We are interested in illustrating
the basic file handling techniques here, so we are using a very simple error handling
method.

READING A WORD AT A TIME

Example program ------> READTEXT.C

Load and display the file named READTEXT.C for an example of how to read a
word at a time. This program is nearly identical to the last except that this program
uses the fscanf() function to read in a string at a time. Because the fscanf() function
stops reading when it finds a space or a newline character, it will read a word at a
time, and display the results one word to a line. You will see this when you compile
and run it, but first we must examine a programming problem.

It is left as an exercise for the student to include a check for proper file opening and
performing a meaningful response if it does not open. A meaningful response is to
simply output an error message and exit to the operating system.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (5 of 9) [02/04/2002 09:10:39]

THIS IS A PROBLEM

Inspection of the program will reveal that when we read data in and detect the EOF,
we print out something before we check for the EOF resulting in an extra line of
printout. What we usually print out is the same thing printed on the prior pass
through the loop because it is still in the buffer named oneword. We therefore must
check for EOF before we execute the printf() function. This has been done in
READGOOD.C, which you will shortly examine, compile, and execute.

Compile and execute the program we have been studying, READTEXT.C and
observe the output. If you haven't changed TENLINES.TXT you will end up with
"Additional" and "lines." on two separate lines with an extra "lines." displayed at the
end of the output because of the printf() before checking for EOF. Note that some
compilers apparently clear the buffer after printing so you may get an extra blank
line instead of two lines with "lines." on them.

Notice that we failed to check that the file opened properly. This is very poor
practice, and it will be left as an exercise for you to add the required code to do so in
a fashion similar to that used in the READCHAR.C example program.

NOW LET'S FIX THE PROBLEM

Example program ------> READGOOD.C

Compile and execute READGOOD.C and observe that the extra "lines." does not
get displayed because of the extra check for the EOF in the middle of the loop. This
was also the problem referred to when we looked at READCHAR.C, but I chose not
to expound on it there because the error in the output was not so obvious.

Once again there is no check for the file opening properly, but you know how to fix
it by now and you should do so as an exercise.

We should point out that an experienced C programmer would not write the code as
given in this example because it compares c to EOF twice during each pass through
the loop and this is inefficient. We have been using code that works and is very easy
to understand, but as you gain experience with C, you will begin to use more
efficient coding methods, even if they tend to become harder to read and understand.
An experienced C programmer would code lines 12 through 17 of READGOOD.C
in the following manner;

 while((c = fscanf(fp1, "%s", oneword) != EOF)
 {
 printf("%s\n", oneword);
 }

There is no question that this code is more difficult to read, but if you spend some
time studying it, you will find that it is identical to the code in the example program.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (6 of 9) [02/04/2002 09:10:39]

Even though is is more efficient, it is not clear whether the slight gain in efficiency
is worth the reduced readability. If the program saves ten milliseconds when reading
in a file once a day, and it takes a programmer an hour longer to make a
modification to the code a year after the program is released, there is not much
savings in using such code. Even though the time assumptions are all judgement
calls in the above text, it is plain to see that there are often tradeoffs when writing a
program. You will make many decisions concerning execution efficiency and
readability when you are writing non-trivial programs.

This is a rather contrived example, because most experienced C programmers would
not think this code is at all cryptic, but is written in a standard C notation. As you
gain experience, you will come to accept this as clearly written C code. The
philosophical argument about code complexity and readability has been made
however, and should be considered for all software development.

FINALLY, WE READ A FULL LINE

Example program ------> READLINE.C

Load and display the file READLINE.C for an example of reading a complete line.
This program is very similar to those we have been studying except that we read a
complete line in this example program.

We are using fgets() which reads an entire line, including the newline character, into
a buffer. The buffer to be read into is the first argument in the function call, and the
maximum number of characters to read is the second argument, followed by the file
pointer. This function will read characters into the input buffer until it either finds a
newline character, or it reads the maximum number of characters allowed minus
one. It leaves one character for the end of string null character. In addition, if it finds
an EOF, it will return a value of NULL. In our example, when the EOF is found, the
pointer named c will be assigned the value of NULL. NULL is defined as zero in
your stdio.h file.

When we find that the pointer named c has been assigned the value of NULL, we
can stop processing data, but we must check before we print just like in the last
program. Last of course, we close the file.

HOW TO USE A VARIABLE FILENAME

Example propgram ------> ANYFILE.C

Load and display the program ANYFILE.C for an example of reading from any file.
This program asks the user for the filename desired, and reads in the filename,
storing it in a string. Then it opens that file for reading. The entire file is then read
and displayed on the monitor. It should pose no problems to your understanding so
no additional comments will be made.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (7 of 9) [02/04/2002 09:10:39]

Compile and run this program. When it requests a filename, enter the name and
extension of any text file available, even one of the example C programs.

Enter an invalid file name to see what the system does when it cannot open the file.
If you were a user of this program, and possibly not very computer literate, would
you prefer that the program gave you a cryptic message of some sort, or would you
prefer that the program displayed a neat message such as "The file you have asked
for is not available. Would you like to enter another filename?". Of course this is the
message that you can emit when you find that the file did not open properly. Your
users will appreciate the effort you put into error handling for their program.

HOW DO WE PRINT?

Example program ------> PRINTDAT.C

Load the last example program in this chapter, the one named PRINTDAT.C for an
example of how to print. This program should not present any surprises to you, so
we will move very quickly through it.

Once again, we open TENLINES.TXT for reading and we open PRN for writing.
Printing is identical to writing data to a disk file except that we use a standard name
for the filename. Many C compilers use the reserved filename of PRN that instructs
the compiler to send the output to the printer. There are other names that are used
occasionally such as LPT, LPT1, or LPT2. Check the documentation for your
particular compiler. Some of the newest compilers use a predefined file pointer such
as stdprn for the print file. Once again, check your documentation.

The program is simply a loop in which a character is read, and if it is not the EOF, it
is displayed and printed. When the EOF is found, the input file and the printer
output files are both closed. Note that good programming practice includes checking
both file pointers to assure that the files opened properly. You can now erase
TENLINES.TXT from your disk. We will not be using it in any of the later
chapters.

A READING ASSIGNMENT

Spend some time studying the documentation for your compiler and reading about
the following functions. You will not understand everything about them but you will
get a good idea of how the library functions are documented.

fopen(), fclose(), putc(), putchar(), printf(), fprintf(), scanf(), fgets()

Also spend some time studying stdio.h, looking for prototypes for the above
functions and for the declaration of FILE.

PROGRAMMING EXERCISES
Write a program that will prompt for a filename for an input file, prompt for a1.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (8 of 9) [02/04/2002 09:10:39]

filename for a write file, and open both plus a file to the printer. Enter a loop
that will read a character, and output it to the file, the printer, and the monitor.
Stop at EOF.

Prompt for a filename to read. Read the file a line at a time and display it on
the monitor with line numbers.

2.

Modify ANYFILE.C to test if the file exists and print a message if it doesn't.
Use a method similar to that used in READCHAR.C.

3.

Return to Table of Contents

Advance to Chapter 11

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 10

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap10.htm (9 of 9) [02/04/2002 09:10:39]

mailto:dodrill@swcp.com

C Tutorial - Chapter 11

STRUCTURES AND UNIONS
WHAT IS A STRUCTURE?

Example program ------> STRUCT1.C

A structure is a user defined data type. Using a structure you have the ability to define a new type of data
considerably more complex than the types we have been using. A structure is a combination of several
different previously defined data types, including other structures we have defined. A simple definition is, "a
structure is a grouping of related data in a way convenient to the programmer or user of the program." The best
way to understand a structure is to look at an example, so if you will load and display STRUCT1.C, we will do
just that.

The program begins with a structure definition. The keyword struct is followed by three simple variables
between the braces, which are the components of the structure. After the closing brace, you will find two
variable names listed, boy, and girl. According to the definition of a structure, boy is now a variable composed
of three elements, initial, age, and grade. Each of the three fields are associated with boy, and each can store a
variable of its respective type. The variable named girl is also a variable containing three fields with the same
names as those of boy but are actually different variables. We have therefore defined 6 simple variables, but
they are grouped into 2 variables of a structure type.

A SINGLE COMPOUND VARIABLE

Let's examine the variable named boy more closely. As stated above, each of the three elements of boy are
simple variables and can be used anywhere in a C program where a variable of their type can be used. For
example, the age element is an int variable and can therefore be used anywhere in a C program where it is
legal to use an int type variable, in calculations, as a counter, in I/O operations, etc. We now have the problem
of defining how to use the simple variable named age which is a part of the compound variable named boy. To
do so we use both names with a decimal point between them with the major name first. Thus boy.age is the
complete variable name for the age field of boy. This construct can be used anywhere in a C program that it is
desired to refer to this field. In fact, it is illegal to use the name boy or age alone because they are only partial
definitions of the complete field. Alone, the names refer to nothing. (Actually the name boy alone does have
meaning when used with a modern C compiler. We will discuss this later.)

ASSIGNING VALUES TO THE VARIABLES

Using the above definition, we can
assign a value to each of the three
fields of boy and each of the three
fields of girl. Note carefully that
boy.initial is actually a char type
variable, because it was defined as
one in the structure, so it must be
assigned a character of data. In line
12, boy.initial is assigned the
character R in agreement with the
above rules. The remaining two
fields of boy are assigned values in accordance with their respective types. Finally the three fields of girl are
assigned values but in a different order to illustrate that the order of assignment is not critical. You will notice
that we used the value of the boy's age when we defined the girl's age. This illustrates the use of one member
of the structure. Figure 11-1 is a graphical representation of the data following execution of line 18.

HOW DO WE USE THE RESULTING DATA?

Now that we have assigned values to the six simple variables, we can do anything we desire with them. In
order to keep this first example simple, we will simply print out the values to see if they really do exist as
assigned. If you carefully inspect the printf() statements, you will see that there is nothing special about them.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (1 of 8) [02/04/2002 09:11:02]

The compound name of each variable is specified because that is the only valid name by which we can refer to
these variables.

Structures are a very useful method of grouping data together in order to make a program easier to write and
understand. This first example is too simple to give you even a hint of the value of using structures, but
continue on through these lessons and eventually you will see the value of using structures. Compile and run
STRUCT1.C and observe the output.

AN ARRAY OF STRUCTURES

Example program ------> STRUCT2.C

Load and display the next program named STRUCT2.C. This program contains the same structure definition as
before but this time we define an array of 12 variables named kids. It should be clear that this program
contains 12 times 3 = 36 simple variables, each of which can store one item of data provided that it is of the
correct type. We also define a simple variable named index for use in the for loops.

In order to assign each of the fields a value, we use a for loop and each pass through the loop results in
assigning a value to each of the fields of one structure variable. One pass through the loop assigns all of the
values for one of the kids. This would not be a very useful way to assign data in a real situation, but a loop
could read the data in from a file and store it in the correct fields in a real application. You might consider this
the crude beginning of a data base, which it is.

In the next few instructions of this program we assign new values to some of the fields to illustrate the method
used to accomplish this. It should be self explanatory, so no additional comments will be given. Figure 11-2 is
a graphical representation of the data for this program following execution of line 25.

A RECENT UPGRADE TO THE C LANGUAGE

All good C compilers will allow you to copy an entire structure with one statement. This was not always
permitted in the C language but it is a part of the ANSI standard, so you should feel free to use it with your C
compiler if it is available. Line 27 is an example of using a structure assignment. In this statement, all 3 fields
of kids[4] are copied into their respective fields of kids[10].

WE FINALLY DISPLAY ALL OF THE RESULTS

The last few statements contain a for loop in which all of the generated values are displayed in a formatted list.
Compile and run the program to see if it does what you expect it to do. You will need to remove line 27 if your
compiler does not support structure assignments.

USING POINTERS AND STRUCTURES TOGETHER

Example program ------> STRUCT3.C

Examine the file named STRUCT3.C for an example of using pointers with structures. This program is
identical to the last program except that it uses pointers for some of the operations.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (2 of 8) [02/04/2002 09:11:02]

The first difference shows up in the definition of variables following the structure definition. In this program
we define a pointer named point which is defined as a pointer that points to the structure. It would be illegal to
try to use this pointer to point to any other variable type. There is a very definite reason for this restriction in C
as we have alluded to earlier and will review in the next few paragraphs.

The next difference is in the for loop where we use the pointer for accessing the data fields. Recall from
chapter 8 of this tutorial that we said that the name of an array is actually a pointer to the first element of the
array. Since kids is a pointer constant that points to the first element of the array which is a structure, we can
define point in terms of kids. The element named kids is a constant so it cannot be changed in value, but point
is a pointer variable and can be assigned any value consistent with its being required to point to the structure. If
we assign the value of kids to point then it should be clear that point will also point to the first element of the
array, a structure containing three fields. Figure 11-3 is a graphical representation of the data space following
the first pass through the loop starting in line 16.

POINTER ARITHMETIC

Adding 1 to point will now cause it to point to the second field of the array because of the way pointers are
handled in C. The system knows that the structure contains three variables and it knows how many memory
elements are required to store the complete structure. Therefore if we tell it to add one to the pointer, it will
actually add the number of memory elements required to get to the next element of the array. If, for example,
we were to add 4 to the pointer, it would advance the value of the pointer 4 times the size of the structure,
resulting in it pointing 4 elements farther along the array. This is the reason a pointer cannot be used to point to
any data type other than the one for which it was defined.

Now to return to the program displayed on your monitor. It should be clear from the previous discussion that as
we go through the loop, the pointer will point to one of the array elements each time. We can therefore use the
pointer to reference the various elements of each of the structures as we go through the loop. Referring to the
elements of a structure with a pointer occurs so often in C that a special method of notation was devised. Using
point->initial is the same as using (*point).initial which is really the way we did it in the last
two programs. Remember that *point is the stored data to which the pointer points and the construct should be
clear. The "->" is made up of the minus sign and the greater than sign. You will find experienced C
programmers using this pointer dereference profusely when you read their code in magazines and other
publications.

Since the pointer points to the structure, we must once again define which of the elements we wish to refer to
each time we use one of the elements of the structure. There are, as we have seen, several different methods of
referring to the members of the structure. When executing the for loop used for output at the end of the
program, we use three different methods of referring to the structure elements. This would be considered very
poor programming practice, but is done this way here to illustrate to you that they all lead to the same result.
This program will probably require some study on your part to fully understand, but it will be worth your time
and effort to grasp these principles.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (3 of 8) [02/04/2002 09:11:02]

Lines 34 and 35 are two additional examples of structure assignment which do nothing useful, but are included
here for your benefit. Compile and run this program, and once again, if your compiler does not support
structure assignment, you will need to remove lines 34 and 35.

NESTED AND NAMED STRUCTURES

Example program ------> NESTED.C

Examine the file named NESTED.C for an example of a nested structure. The structures we have seen so far
have been very simple, although useful. It is possible to define structures containing dozens and even hundreds
or thousands of elements but it would be to the programmers advantage not to define all of the elements at one
pass but rather to use a hierarchical structure definition. This will be illustrated with the program on your
monitor.

The first structure contains three elements but is followed by no variable name. We therefore have not defined
any variables, only a structure, but since we have included a name at the beginning of the structure, the
structure is named person. The name person can be used to refer to the structure but not to any variable of this
structure type. It is therefore a new type that we have defined, and we can use the new type in the same way we
use int, char, or any other types that exist in C. The only restriction is that this new name must always be
associated with the keyword struct.

The next structure definition contains three fields with the middle field being the previously defined structure
which we named person. The variable which has the type of person is named descrip. So the new structure
contains two simple variables, grade and a string named lunch, and the structure named descrip. Since
descrip contains three variables, the new structure actually contains 5 variables. This structure is also given a
name alldat, which is another type definition. Finally, within the main() function, we define an array of 53
variables each with the structure defined by the type alldat, and each with the name student. If that is clear,
you will see that we have defined a total of 53 times 5 variables, each of which is capable of storing a value.

Since we have a new type definition we can use it to define two more variables. The variables teacher and sub
are defined in line 23 to be variables of the type alldat, so that each of these two variables contain 5 fields in
which we can store data. Figure 11-4 is a graphical representation of the variable named teacher after it is
defined in line 23.

NOW TO USE SOME OF THE FIELDS

In lines 25 through 29 of the program, we will assign values to each of the fields of teacher. The first field is
the grade field and is handled just like the other structures we have studied because it is not part of the nested
structure. Next we wish to assign a value to her age which is part of the nested structure. To address this field
we start with the variable name teacher to which we append the name of the group descrip, and then we must
define which field of the nested structure we are interested in, so we append the variable name age. The
teachers status is handled in exactly the same manner as her age, but the last two fields are assigned strings
using the string copy function strcpy() which must be used for string assignment. Notice that the variable
names in the strcpy() function are still variable names even though they are made up of several parts each. We

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (4 of 8) [02/04/2002 09:11:02]

included the string.h header file in line 2 so we could call the string copy function.

The variable sub is assigned nonsense values in much the same way, but in a different order since they do not
have to occur in any required order. Finally, a few of the student variables are assigned values for illustrative
purposes and the program ends. None of the values are printed for illustration since several were printed in the
last examples.

Compile and run this program, but when you run it, you may get a stack overflow error. C uses its own internal
stack to store the automatic variables, but some C compilers predefine a stack as small as 2048 bytes as a
default. This program requires more than that for the defined structures so it will be necessary for you to
increase the stack size. Consult your compiler documentation for details concerning the method of increasing
the stack size. There is no standard way to do this. There is another way around this problem, and that is to
move the variable definitions outside of the main program where they will be external variables and will not be
allocated on the stack. The result is that they will not be kept on the internal stack and the stack will not
overflow. It would be good experience for you to try both methods of fixing this problem.

MORE ABOUT STRUCTURES

It is possible to continue nesting structures until you get totally confused. If you define them properly, the
computer will not get confused because there is no stated limit as to how many levels of nesting are allowed.
There is probably a practical limit of three beyond which you may get confused, but the language has no limit.
In addition to nesting, you can include as many structures as you desire in any level of structures, such as
defining another structure prior to alldat and using it in alldat in addition to using person. The structure
named person could be included in alldat two or more times if desired, as could pointers to it.

Structures can contain arrays of other structures which in turn can contain arrays of simple types or other
structures. It can go on and on until you lose all reason to continue. I am only trying to illustrate to you that
structures are very valuable and you will find them great aids to programming if you use them wisely. Be
conservative at first, and get bolder as you gain experience. Keep in mind that a structure is designed to group
related data together.

More complex structures will not be illustrated here, but you will find examples of additional structures in the
example programs included in the last chapter of this tutorial. For example, see the include file named VC.H
on the distribution disk.

WHAT ARE UNIONS?

Example program ------> UNION1.C

Examine the file named UNION1.C for an example of a union. Simply stated, a union allows you a way to
look at the same data with different types, or to use the same data with different names.

In this example we have two elements to the union, the first part being the integer named value, which is
stored as a two byte variable somewhere in the computers memory. The second element is made up of two
character variables named first and second. These two variables are stored in the same storage locations that
value is stored in, because that is what a union does. A union allows you to store different types of data in the
same physical storage locations. In this case, you could put an integer number in value, then retrieve it in its
two halves by getting each half using the two names first and second. This technique is often used to pack data
bytes together when you are, for example, combining bytes to be used in the registers of the microprocessor.

Accessing the fields of the union are very similar to accessing the fields of a structure and will be left to you to
determine by studying the example.

One additional note must be given here about the program. When it is run using some C compilers, the data
will be displayed with leading f's due to the hexadecimal output promoting the char type variables to int and
extending the sign bit to the left. Converting the char type data fields to int type fields prior to display should
remove the leading f's from your display. This will involve defining two new int type variables and assigning
the char type variables to them. This will be left as an exercise for you. Note that the same problem will come
up in a few of the later files in this tutorial.

Compile and execute this program and observe that the data is displayed as an int and as two char variables.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (5 of 8) [02/04/2002 09:11:02]

The char variables may be reversed in order because of the way an int variable is stored internally in your
computer. If your system reverses these variables, don't worry about it. It is not a problem but it can be a very
interesting area of study if you are so inclined.

ANOTHER UNION EXAMPLE

Example program ------> UNION2.C

Examine the file named UNION2.C for another example of a union, one which is much more common.
Suppose you wished to build a large database including information on many types of vehicles. It would be
silly to include the number of propellers on a car, or the number of tires on a boat. In order to keep all pertinent
data, however, you would need those data points for their proper types of vehicles. In order to build an efficient
data base, you would need several different types of data for each vehicle, some of which would be common,
and some of which would be different. That is exactly what we are doing in the example program on your
monitor.

In this program, we will define a complete structure, then decide which of the various types can go into it. We
will start at the top and work our way down. First, we define a few constants with the #defines, and begin the
program itself. We define a structure named automobile containing several fields which you should have no
trouble recognizing, but we define no variables at this time.

A NEW CONCEPT, THE TYPEDEF

Next we define a new type of data with a typedef. This defines a complete new type that can be used in the
same way that int or char can be used. Notice that the structure has no name, but at the end where there would
normally be a variable name there is the name BOATDEF. We now have a new type, BOATDEF, that can be
used to define a structure anyplace we would like to. Notice that this does not define any variables, only a new
type. Using all caps for the name is a personal preference only and is not a C standard but is used by many
experienced C programmers. It makes the typedef look different from a variable name.

We finally come to the big structure that defines our data using the building blocks already defined above. The
structure is composed of 5 parts, two simple variables named vehicle and weight, followed by the union, and
finally the last two simple variables named value and owner. Of course the union is what we need to look at
carefully here, so focus on it for the moment. You will notice that it is composed of four parts, the first part
being the variable car which is a structure of the type that we defined previously. The second part is a variable
named boat which is a structure of the type BOATDEF previously defined. The third part of the union is the
variable airplane which is a structure defined in place in the union. Finally we come to the last part of the
union, the variable named ship which is another structure of the type BOATDEF.

I hope it is obvious to you that all four could have been defined in any of the three ways shown, but the three
different methods were used to show you that any could be used. In practice, the clearest definition would
probably have occurred by using the typedef for each of the parts.

WHAT DO WE HAVE NOW?

We now have a structure that can be used to store any of four different kinds of data structures. The size of
every record will be the size of that record containing the largest union. In this case part 1 is the largest union
because it is composed of three integers, the others being composed of an integer and a character each. The
first member of this union would therefore determine the size of all structures of this type. The resulting
structure can be used to store any of the four types of data, but it is up to the programmer to keep track of what
is stored in each variable of this type. The variable named vehicle was designed into this structure to keep track
of the type of vehicle stored here. The four defines at the top of the page were designed to be used as indicators
stored in the variable named vehicle.

A few examples of how to use the resulting structure are given in the next few lines of the program. Some of
the variables are defined and a few of them are printed out for illustrative purposes.

The union is not used too frequently, and almost never by beginning programmers. You will encounter it
occasionally so it is worth your effort to at least know what it is. You do not need to know the details of it at
this time, so don't spend too much time studying it. When you do have a need for a variant structure, a union,

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (6 of 8) [02/04/2002 09:11:02]

you can learn it at that time. For your own benefit, however, do not slight the structure. You should use the
structure often.

WHAT IS A BITFIELD?

Example program ------> BITFIELD.C

Load and display the program named BITFIELD.C for an example of how to define and use a bitfield. In this
program, we have a union made up of a single int type variable in line 6 and the structure defined in lines 7
through 12. The structure is composed of three bitfields named x, y, and z. The variable named x is only one
bit wide, the variable y is two bits wide and adjacent to the variable x, and the variable z is two bits wide and
adjacent to y. Moreover, because the union causes the bits to be stored in the same memory location as the
variable index, the variable x is the least significant bit of the variable index, y is the next two bits, and z is
stored in the next two bits of index.

Compile and run the program and you will see that as the variable index is incremented by one each time
through the loop, and you will see the bitfields of the union counting due to their respective locations within
the integer definition.

One thing must be pointed out, the bitfields must be defined as parts of an unsigned int or your compiler will
issue an error message.

WHAT IS THE BITFIELD GOOD FOR?

The bitfield is very useful if you have a lot of data to separate into individual bits or groups of bits. Many
systems use some sort of a packed format to get lots of data stored in a few bytes. Your imagination is your
only limitation to the efficient use of this feature of C.

MORE STYLE ISSUES

Example program ------> STYLE3.H

Examine the file named STYLE3.H for our first example of a header file that really looks like one. You will
notice several constant declarations, a few structure declarations, and some prototypes. Nothing in this file
generates anything that uses memory, since there are no variables defined and no code is defined here. Each of
those use some memory, but all of the constructs in this file do nothing but create declarations which are then
used by other portions of the program. This header file, if it is general enough, can be used by many different
implementations.

Spend a few minutes and observe the style. Take notice especially of the order of the various entities. The
constants are defined first, followed by the structures since they generally use one or more of the constants.
Finally, the prototypes are defined since they often make use of one or more of the structures in their parameter
lists or their return values.

Example program ------> STYLE3.C

Examine the file named STYLE3.C which uses some of the definitions in the header STYLE3.H header file.
The observant student will notice that not everything that is defined in the header file is used in this
implementation file, and it really doesn't need to be. Since a header file is meant to be general purpose, all
things within the file will not be used every time the header file itself is used in a program.

In this case, the structure named alldat is used in lines 13 and 14, after being included here in line 9. The rest
of the program is written in exactly the same manner that it was written when we defined the structure locally.
This program can be compiled and executed just like all of the other programs in this tutorial.

PROGRAMMING EXERCISES
Define a named structure containing a string for a name, an integer for feet, and another for arms. Use
the new type to define an array of about 6 items. Fill the fields with data and print them out as follows.

 A human being has 2 legs and 2 arms.
 A dog has 4 legs and 0 arms.
 A television set has 4 legs and 0 arms.

1.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (7 of 8) [02/04/2002 09:11:02]

 A chair has 4 legs and 2 arms.

Rewrite exercise 1 using a pointer to print the data out.2.

Return to Table of Contents

Advance to Chapter 12

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 11

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap11.htm (8 of 8) [02/04/2002 09:11:02]

mailto:dodrill@swcp.com

C Tutorial - Chapter 12

DYNAMIC ALLOCATION
WHAT IS DYNAMIC ALLOCATION?

Example program ------> DYNLIST.C

Dynamic allocation is very intimidating to a person the first time he comes across it,
but that need not be. Simply relax and read this chapter carefully and you will have a
good grounding in a very valuable programming resource. All of the variables in every
program up to this point have been static variables as far as we are concerned.
(Actually, some of them have been automatic and were dynamically allocated for you
by the system, but it was transparent to you.) In this chapter, we will study some
dynamically allocated variables. They are variables that do not exist when the program
is loaded, but are created dynamically as they are needed while the program is running.
It is possible, using these techniques, to create as many variables as needed, use them,
and deallocate their memory space for reuse by other variables. As usual, the best
teacher is an example, so examine the program named DYNLIST.C.

We begin by defining a named structure, animal, with a few fields pertaining to dogs.
We do not define any variables of this type, only three pointers. If you search through
the remainder of the program, you will find no variables defined, so we have nothing to
store data in. All we have to work with are three pointers, each of which are capable of
pointing to variables of the defined structure named animal. In order to do anything,
we need some variables, so we will create some dynamically.

DYNAMIC VARIABLE CREATION

The statement in line 16, which assigns something to the pointer pet1 will create a
dynamic structure containing three variables. The heart of the statement is the malloc()
function buried in the middle of the statement. This is a memory allocate function that
needs the rest of the code in this line to completely define it. The malloc() function, by
default, will allocate a piece of memory on a heap that is "n" characters in length and
will be of type character. The "n" must be specified as the only argument to the
function. We will discuss "n" shortly, but first we need to define the heap.

WHAT IS A HEAP?

A heap is a predefined area of memory which can be accessed by the program to store
data and variables. The data and variables are allocated on the heap by the system as
calls to malloc() are made. The system keeps track of where the data is stored. Data and
variables can be deallocated as desired, leading to holes in the heap. The system knows
where the holes are and will use them for additional data storage as more malloc() calls
are made. The structure of the heap is therefore a very dynamic entity, changing
constantly.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (1 of 11) [02/04/2002 09:11:29]

BACK TO THE MALLOC FUNCTION

Hopefully the very brief description of the heap and the overall plan for dynamic
allocation helped you to understand what we are doing with the malloc() function. It
simply asks the system for a block of memory of the size specified, and returns a
pointer which is pointing to the first element of the block. The only argument in the
parentheses is the size of the block desired and in our present case, we desire a block
that will hold one of the structures we defined at the beginning of the program. The
sizeof operator is new, new to us at least. It returns the size in bytes of the argument
within its parentheses. It therefore, returns the size of the structure named animal, in
bytes, and that number is used as a parameter of the malloc() call. At the completion of
that call, we have a block on the heap allocated to us, with the pointer named pet1
pointing to the block of data.

WHAT IF malloc() FAILS?

If there is not enough memory available to supply you with the block of data requested,
malloc() does not return a valid pointer but instead returns the value of NULL. The
return value should always be checked before attempting to use it, but we are ignoring
it in this program for two reasons. First, and foremost, there is a huge load of
information already introduced here and we wish to keep it as simple as possible and
study C in byte-sized chunks. And secondly, we are asking for a tiny amount of
memory in this example program, so there should be no problem with allocating it.

Keep in mind that all dynamically allocated memory must be carefully checked in any
meaningful program, and to illustrate it, we will be very careful to check the return
value in the next two example programs as an illustration to you of exactly how to do
it.

WHAT IS A CAST?

We still have a funny looking construct at the beginning of the malloc() function call,
which is called a cast. The malloc() function returns a pointer to type void by default.
You really cannot use a pointer to void, so it must be changed to some other type. You
can define the pointer type with the construct given on the example line. In this case we
want the pointer to point to a structure of type animal, so we tell the compiler with this
cast. Even if you omit the cast, most compilers will return a pointer correctly, give you
a warning, and go on to produce a working program. It is better programming practice
to provide the compiler with the cast to prevent getting a warning message.

The
data
space
of the

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (2 of 11) [02/04/2002 09:11:29]

computer is depicted graphically by figure 12-1 following execution of line 16. The
graphical notation defines the pointer as pointing to the structure. As far as the program
is concerned, the pointer is actually pointing to all three members taken as a group
rather than to only the first element.

USING THE DYNAMICALLY ALLOCATED STRUCTURE

If you

remember our studies of structures and pointers, you will recall that if we have a
structure with a pointer pointing to it, we can access any of the variables within the
structure. In lines 20 through 22 of the program, we assign some silly data to the
structure for illustration. It should come as no surprise to you that these assignment
statements look just like assignments to statically defined variables. Figure 12-2
illustrates the state of the data space following execution of line 22.

In line 24, we assign the value of pet1 to pet2 also via a pointer assignment statement
which we introduced in chapter 8. This creates no new data, we simply have two
pointers to the same object. Since pet2 is pointing to the structure we created above,
pet1 can be reused to get another dynamically allocated structure which is just what we
do next. Keep in mind that pet2 could have just as easily been used for the new
allocation. The new structure is filled with silly data for illustration in lines 27 through
29.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (3 of 11) [02/04/2002 09:11:29]

Finally, we allocate another block on the heap using the pointer pet3, and fill its block
with illustrative data. Figure 12-3 illustrates the condition of the data space after
execution of line 34 of the program.

Printing the data out should pose no problem to you since there is nothing new in the
three print statements.

Even though it is not illustrated in this tutorial, you can dynamically allocate and use
simple variables such as a single char type variable. This should be discouraged
however since it is very inefficient.

GETTING RID OF THE DYNAMICALLY ALLOCATED DATA

Another new function is used to get rid of the data and free up the space on the heap for
reuse, the function free(). To use it, you simply call it with the pointer to the
dynamically allocated block of data as the only argument, and the block is deallocated.

In order to illustrate another aspect of the dynamic allocation and deallocation of data,
an additional step is included in the program on your monitor. The pointer pet1 is
assigned the value of pet3 in line 47. In doing this, the block that pet1 was pointing to
is effectively lost since there is no pointer that is now pointing to that block. It can
therefore never again be referred to, changed, or deallocated. That memory, which is a
block on the heap, is wasted from this point on. This is not something that you would
ever purposely do in a program. It is only done here for illustration.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (4 of 11) [02/04/2002 09:11:29]

The
first
free()

function call removes the block of data that pet1 and pet3 were pointing to, which
deallocates the structure and returns the memory to the heap for further use. The second
free() call deallocates the block of data that pet2 was pointing to. We therefore have
lost access to all of our data generated earlier. There is still one block of data that is on
the heap but there is no pointer to it since we lost the address to it. Figure 12-4
illustrates the data space as it now appears. Trying to free the data pointed to by pet1
would result in an error because it has already been freed by the use of pet3. There is
no need to worry, however. When we return to the operating system, the entire heap
will be disposed of with no regard to what we have put on it. The point does need to
made that, if you lose a pointer to a block of the heap, it forever removes that block of
data storage from our use and we may need that storage later.

Compile and run the program to see if it does what you think it should do based on this
discussion.

THAT WAS A LOT OF DISCUSSION

It took several pages to get through the discussion of the last program but it was time
well spent. It should be somewhat exciting to you to know that there is nothing else to
learn about dynamic allocation, the previous discussion covered it all. Of course, there
is a lot to learn about the technique of using dynamic allocation, and for that reason,
there are two more example programs to study.

AN ARRAY OF POINTERS

Example program ------> BIGDYNL.C

Load and display the file BIGDYNL.C for another example of dynamic allocation. This
program is very similar to the last one since we use the same structure, but this time we
define an array of pointers to illustrate the means by which you could build a large
database using an array of pointers rather than a single pointer to each element. To keep
it simple we define 12 elements in the array and another working pointer named point.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (5 of 11) [02/04/2002 09:11:29]

The *pet[12] is new to you so a few words would be in order. What we have defined is
an array of 12 pointers, the first being pet[0], and the last pet[11]. Actually, since an
array is itself a pointer, the name pet by itself is a constant pointer to a pointer. This is
valid in C, and in fact you can go farther if needed but you will get quickly confused.
There is no limit as to how many levels of pointing are possible, so the definition int
****pt; is legal as a pointer to a pointer to a pointer to a pointer to an integer type
variable, if I counted right. Such usage is discouraged until you gain considerable
experience.

Now that we have 12 pointers which can be used like any other pointer, it is a simple
matter to write a loop to allocate a data block dynamically for each and to fill the
respective fields with any data desirable. In this case, the fields are filled with simple
data for illustrative purposes, but we could be reading from a database, from some test
equipment, or from any other source of data.

You will note that this time we carefully check the return value from the malloc()
function to see that it contains a non-zero value. If it returns a NULL value, we print a
message that the allocation failed and exit the program. In a real production program,
you would not simply terminate the program. It would be much more agreeable with
the user to report the error to him and give him the opportunity to make more memory
available before actually terminating the program. Error handling and recovery is a
topic you will need to study someday, but it is beyond the scope of your programming
experience at this point.

A few fields are randomly picked in lines 33 through 35 to receive other data to
illustrate that simple assignments can be used, and the data is printed out to the
monitor. The pointer point is used in the printout loop only to serve as an illustration.
The data could have been easily printed using the pet[n] means of definition. Finally,
all 12 blocks of data are freed before terminating the program.

Compile and run this program to aid in understanding this technique. There was
nothing new here about dynamic allocation, only about an array of pointers.

A LINKED LIST

Example program ------> DYNLINK.C

We finally come to the granddaddy of all programming techniques as far as being
intimidating. Load the program DYNLINK.C for an example of a dynamically
allocated linked list. It sounds terrible, but after a little time spent with it, you will see
that it is simply another programming technique made up of simple components that
can be a powerful tool.

In order to set your mind at ease, consider the linked list you used when you were a
child. Your sister gave you your birthday present, and when you opened it, you found a
note that said, "Look in the hall closet." You went to the hall closet, and found another
note that said, "Look behind the TV set." Behind the TV you found another note that
said, "Look under the coffee pot." You continued this search, and finally you found

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (6 of 11) [02/04/2002 09:11:29]

your pair of socks under the dogs feeding dish. What you actually did was to execute a
linked list, the starting point being the wrapped present and the ending point being
under the dogs feeding dish. The list ended at the dogs feeding dish since there were no
more notes.

In the program DYNLINK.C, we will be doing the same thing your sister forced you to
do. However, we will do it much faster and we will leave a little pile of data at each of
the intermediate points along the way. We will also have the capability to return to the
beginning and traverse the entire list again and again if we so desire.

THE DATA DEFINITIONS

This program starts similarly to the last two with the addition of a constant declaration
to be used later. The structure is nearly the same as that used in the last two programs
except for the addition of another field within the structure in line 13, the pointer. This
pointer is a pointer to another structure of this same type and will be used to point to
the next structure in order. To continue the above analogy, this pointer will point to the
next note, which in turn will contain a pointer to the next note after that.

We define three pointers to this structure for use in the program, and one integer to be
used as a counter, and we are ready to begin using the defined structure for whatever
purpose we desire. In this case, we will once again generate nonsense data for
illustrative purposes.

THE FIRST FIELD

Using
the

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (7 of 11) [02/04/2002 09:11:29]

malloc() function, we request a block of storage on the heap and fill it with data being
careful to check the return to assure that we did get a good allocation. The additional
field in this example, the pointer, is assigned the value of NULL, which is used to
indicate that this is the end of the list. We will leave the pointer named start pointing at
this structure, so that it will always point to the first structure of the list. We also assign
prior the value of start for reasons we will see soon. Keep in mind that the end points
of a linked list will always have to be handled differently than those in the middle of a
list. We have a single element of our list now and it is filled with representative data.
Figure 12-5 is the graphical representation of the data space following execution of line
33.

FILLING ADDITIONAL STRUCTURES

The next group of assignments and control statements are included within a for loop so
we can build our list fast once it is defined. We will go through the loop a number of
times equal to the constant RECORDS defined at the beginning of the program. Each
time we go through the loop, we allocate memory, test the allocation return, fill the first
three fields with nonsense, and fill the pointers. The pointer in the last record is given
the address of this new record because the prior pointer is pointing to the prior record.
Thus prior->next is given the address of the new record we have just filled. The
pointer in the new record is assigned the value NULL, and the pointer prior is given
the address of this new record because the next time we create a record, this one will be
the prior one at that time. That may sound confusing but it really does make sense if
you spend some time studying it.

Figure 12-6 illustrates the data space following execution of the loop two times. The
list is growing downward by one element each time we execute the statements in the
loop. When we have gone through the for loop 6 times, we will have a list of 7
structures including the one we generated prior to the loop. The list will have the
following characteristics.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (8 of 11) [02/04/2002 09:11:29]

The pointer named start points to the first structure in the list.1.

Each structure contains a pointer to the next structure.2.

The last structure has a pointer containing the value NULL which can be used to
detect the end.

3.

It should be clear to you, if you understand the overall data structure, that it is not
possible to simply jump into the middle of the list and change a few values. The only
way to get to the third structure is by starting at the beginning and working your way
down through the list one record at a time. Although this may seem like a large price to
pay for the convenience of putting so much data outside of the program area, it is
actually a very good way to store some kinds of data.

A word processor would be a good application for this type of data structure because
you would never need to have random access to the data. In actual practice, this is the
basic type of storage used for the text in a word processor with one line of text per
record. Actually, a program with any degree of sophistication would use a doubly
linked list. This would be a list with two pointers per record, one pointing down to the
next record, and the other pointing up to the record just prior to the one in question.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (9 of 11) [02/04/2002 09:11:29]

Using this kind of a record structure would allow traversing the data in either direction.

PRINTING THE DATA OUT

To print the data out, a similar method is used as that used to generate the data. The
pointers are initialized and are then used to go from record to record, reading and
displaying each record one at a time. Printing is terminated when the NULL in the last
record is found, so the program doesn't even need to know how many records are in the
list. Finally, the entire list is deleted to make room in memory for any additional data
that may be needed, in this case, none. Care must be taken to assure that the last record
is not deleted before the NULL is checked. Once the data is gone, it is impossible to
know if you are finished yet.

MORE ABOUT DYNAMIC ALLOCATION AND LINKED LISTS

It is not difficult, nor is it trivial, to add elements into the middle of a linked list. It is
necessary to create the new record, fill it with data, and point its pointer to the record it
is desired to precede. If the new record is to be installed between the 3rd and 4th, for
example, it is necessary for the new record to point to the 4th record, and the pointer in
the 3rd record must point to the new one. Adding a new record to the beginning or end
of a list are each special cases. Consider what must be done to add a new record in a
doubly linked list.

Entire books are written describing different types of linked lists and how to use them,
so no further detail will be given. The amount of detail given should be sufficient for a
beginning understanding of C and its capabilities.

TWO MORE FUNCTIONS

Two additional functions must be mentioned, the calloc() and the realloc() functions.
The calloc() function allocates a block of memory and clears it to all zeros which may
be useful in some circumstances. It is similar to malloc() and will be left as an exercise
for you to read about and use calloc() if you desire. Generally, you allocate a block of
memory and immediately fill it with meaningful data so it wastes time to fill it with
zeros in the calloc(), then fill it with real data. For this reason, the calloc() function is
rarely used.

The realloc() is used to change the size of an allocated block, either bigger or smaller.
You should ignore this until you gain a lot of experience with C. It is rarely used, even
by experienced programmers.

PROGRAMMING EXERCISES
Rewrite the example program STRUCT1.C from chapter 11 to dynamically
allocate the two structures.

1.

Rewrite the example program STRUCT2.C from chapter 11 to dynamically
allocate the 12 structures.

2.

Return to Table of Contents

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (10 of 11) [02/04/2002 09:11:29]

Advance to Chapter 13

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 12

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap12.htm (11 of 11) [02/04/2002 09:11:29]

mailto:dodrill@swcp.com

C Tutorial - Chapter 13

CHARACTER AND BIT MANIPULATION
UPPER AND LOWER CASE

Example program ------> UPLOW.C

Examine the program named UPLOW.C for an example of a program that does lots of
character manipulation. More specifically, it changes the case of alphabetic characters.
It illustrates the use of four functions that have to do with case. It should be no problem
for you to study this program on your own and understand how it works. The four
functions on display in this program are all within the user written function,
mix_up_the_chars(). Compile and run the program with the file of your choice. The
four functions are;

 isupper(c); Is the character upper case?
 islower(c); Is the character lower case?
 toupper(c); Make the character upper case.
 tolower(c); Make the character lower case.

Many more classification and conversion routines are listed in the reference material for
your compiler. You should spend time studying these at this time to get an idea of what
functions are available.

CLASSIFICATION OF CHARACTERS

Example program ------> CHARCLAS.C

Load and display the next program, CHARCLAS.C for an example of character
counting. We have repeatedly used the backslash n character representing a new line.
These are called escape sequences, and some of the more commonly used are defined in
the following table;

 \n Newline
 \t Tab
 \" Double quote
 \\ Backslash
 \0 NULL (zero)

Consult your compiler documentation for a complete list of escape sequences available
with your compiler.

By preceding each of the above characters with the backslash character, the character
can be included in a line of text for display, or printing. In the same way that it is
perfectly all right to use the letter n in a line of text as a part of someone's name, and as
an end-of-line, the other characters can be used as parts of text or for their particular
functions.

C Tutorial - Chapter 13

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap13.htm (1 of 3) [02/04/2002 09:11:35]

This example program uses three of the functions that can determine the class of a
character, and counts the characters in each class. The number of each class is displayed
along with the line itself. The three functions are as follows;

 isalpha(c); Is the character alphabetic?
 isdigit(c); Is the character a numeral?
 isspace(c); Is the character any of, \n, \t, or blank?

As noted above, many more classification routines are available with your compiler.

This program should be simple for you to find your way through, so no explanation will
be given. It was necessary to give an example with these functions used. Compile and
run this program with any file you choose.

THE LOGICAL FUNCTIONS

Example program ------> BITOPS.C

Load and display the program BITOPS.C. The functions in this group of functions are
used to do bitwise operations, meaning that the operations are performed on the bits as
though they were individual bits. No carry from bit to bit is performed as would be done
with a binary addition. Even though the operations are performed on a single bit basis,
an entire byte or integer variable can be operated on in one instruction. The operators
and the operations they perform are given in the following table;

 & Logical AND, if both bits are 1, the result is 1.
 | Logical OR, if either bit is one, the result is 1.
 ^ Logical XOR, (exclusive OR), if one and only one
 bit is 1, the result is 1.
 ~ Logical invert, if bit is 1, the result is 0, and
 if bit is 0, the result is 1.

The example program uses several fields that are combined in each of the ways given
above. The data is in hexadecimal format. It will be assumed that you already know
hexadecimal format if you need to use these operations. If you don't, you will need to
study it on your own. Teaching the hexadecimal format of numbers is beyond the scope
of this tutorial. Be sure to compile and execute this program and observe the output.

THE SHIFT INSTRUCTIONS

Example program ------> SHIFTER.C

The last two operations to be covered in this chapter are the left shift and the right shift
instructions. Load the example program SHIFTER.C for an example using these two
instructions. The two operations use the following operators;

 << n Left shift n places.
 >> n Right shift n places.

Once again the operations are carried out and displayed using the hexadecimal format.
The program should be simple for you to understand on your own, there is no tricky

C Tutorial - Chapter 13

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap13.htm (2 of 3) [02/04/2002 09:11:35]

code.

WHERE DO I GO FROM HERE?

Now that you have completed this tutorial, you are filled with knowledge of the C
programming language, but you have relatively little experience with using it. I can
make three recommendations to improve your knowledge of C and to give you
additional exposure to it.

First, obtain a copy of the second edition of "The C Programming Language" written by
Brian Kernighan and Dennis Ritchie, Prentice Hall, 1988. A careful reading of this book
will provide you with a wealth of knowledge of the C programming language including
many details which I felt were beyond the scope of this beginning tutorial. The book
does not cover prototyping, since it was added later by the ANSI-C standardization
committee, but that is the only major deficiency in the book and is easily compensated
for. Simply use prototypes and the modern method of function definition when studying
any of the example programs.

Secondly, and probably the most important recommendation, is to write programs in C.
Writing C code, finding and fixing the errors that you will inadvertently introduce into
the code, and finally seeing your program execute just the way you intended it to,
provides a great feeling of accomplishment.

The third recommendation is to read current information on the language. Good sources
for information are programming magazines, possibly a new book on C, or time spent
reading Usenet newsgroups such as comp.lang.c or comp.lang.c.moderated. There are
other newsgroups devoted to various operating systems, or to specific compilers which
you may find interesting and informative.

The more you expose yourself to the C programming language, the more you will learn
about it, and the more you will enjoy using it.

Good luck!

Return to Table of Contents

Copyright © 1988-1997 Coronado Enterprises - Last update, March 15, 1997
Gordon Dodrill - dodrill@swcp.com - Please email any comments or suggestions.

C Tutorial - Chapter 13

http://www.ufrmeca.univ-lyon1.fr/ISTIL/OutilsInfo/C/chap13.htm (3 of 3) [02/04/2002 09:11:35]

mailto:dodrill@swcp.com

	www.ufrmeca.univ-lyon1.fr
	C Language Tutorial
	How to Register
	Email payment
	Post office payment
	Payment by Check
	C Tutorial - Introduction
	C Tutorial - Chapter 1
	C Tutorial - Chapter 2
	C Tutorial - Chapter 3
	C Tutorial - Chapter 4
	C Tutorial - Chapter 5
	C Tutorial - Chapter 6
	C Tutorial - Chapter 7
	C Tutorial - Chapter 8
	C Tutorial - Chapter 9
	C Tutorial - Chapter 10
	C Tutorial - Chapter 11
	C Tutorial - Chapter 12
	C Tutorial - Chapter 13

