CÁTEDRA

FÍSICA III

RESPONSABLE DE LA CÁTEDRA

Dr. Jorge Reyna Almandos - Profesor Titular

PLAN DE ESTUDIOS

Universidad Tecnológica Nacional Facultad Regional La Plata

CARRERA

INGENIERÍA ELÉCTRICA

CARACTERÍSTICAS DE LA ASIGNATURA

2005

ORDENANZA CSU. Nº	1026 y 1549	
OBLIGATORIA	X	
ELECTIVA		
ANUAL	Χ	
PRIMER CUATRIMESTRE	 	
SEGUNDO CUATRIMESTRE	 	
NIVEL / AÑO	3º	
HORAS CÁTEDRA SEMANALES	2	

OBJETIVOS

OBJETIVO GENERAL

Al finalizar el curso el alumno deberá ser capaz de interpretar y describir los fenómenos fundamentales, identificando las magnitudes y leyes fundamentales que los determinan, referidos a la física de las radiaciones y reacciones.

Durante el desarrollo de la materia se pretende que el estudiante adquierael conocimiento y comprensión de los diversos fenómenos y teorías que constituyen la base del desarrollo de la física del Siglo XX hasta el presente, con especial énfasis en sus aplicaciones a la tecnología e ingeniería.

Adquirir losfundamentos básicos y elcriterio adecuado para el análisis de los eventos físicos estudiados, así como en laaplicación del razonamiento lógico para la resolución de los problemas planteados. Esto implica que deberá ser capaz de describir e interpretar los fenómenos analizados, a través de las leyes fundamentales y magnitudes características propias de los diversos temas de la física moderna tratados. Fomentar asimismo su capacidad para la discusión conjuntamente con el desarrollo del sentido crítico, necesario en su formación como futuro profesional.

OBJETIVOS ESPECÍFICOS

Están citados en losContenidos Analíticos, que a continuación se detallanpara cada unidad temática.

CONTENIDOS

CONTENIDOS SINTÉTICOS

- 1) Conducción de gases
- 2) Radiación térmica
- 3) Modelos atómicos
- 4) Radiaciones y radioactividad
- 5) Reacciones nucleares y reactores
- 6) El láser

CONTENIDOS ANALÍTICOS

UNIDADTEMÁTICA: FUNDAMENTOS DE LA FÍSICA CUÁNTICA CONTENIDOS

1) Propiedades corpusculares de las ondas

Descargas eléctricas en gases. Radiación del cuerpo negro. Hipótesis de Planck. Efecto fotoeléctrico. Series espectrales. Atomo de Bohr. Experiencia de Frank y Hertz. Rayos X. Efecto Compton.

2) Propiedades ondulatorias de las partículas

Hipótesis de de Broglie. Dualidad onda-partícula. Principio de incertidumbre. Nociones básicas de mecánica cuántica. Ecuación de Schrödinger. Aplicaciones a átomos y moléculas. Barrera y pozo de potencial.

TIEMPO ASIGNADO 38 horas

OBJETIVOS DE LA UT Permitir al estudiante el aprendizaje y comprensión de los diversos fenómenos y teorías que constituyen la base del desarrollo de la física del Siglo XX hasta el presente.

MATERIALES CURRICULARES Se utilizan apuntes de trabajos prácticos, elementos de laboratorio, página web y material audiovisual.

UNIDAD TEMÁTICA: PROPIEDADES DE LA MATERIA

CONTENIDOS

Estadísticas Clásica y Cuánticas. Teoría de bandas. Semiconductores.

TIEMPO ASIGNADO 8 horas

OBJETIVOS DE LA UT Permitir al estudiante el aprendizaje y comprensión de los diversos fenómenos y teorías que constituyen la base del desarrollo de la física del Siglo XX hasta el presente.

MATERIALES CURRICULARES Se utilizan apuntes de trabajos prácticos, elementos de laboratorio, página web, material audiovisual así como visitas a laboratorios de investigación en el tema.

UNIDAD TEMÁTICA: FÍSICA NUCLEAR

CONTENIDOS

El núcleo atómico. Radioactividad. Reacciones nucleares. Fisión y fusión nuclear. Reactores nucleares.

TIEMPO ASIGNADO 12 horas

OBJETIVOS DE LA UT Permitir al estudiante el aprendizaje y comprensión de los diversos fenómenos y teorías que constituyen la base del desarrollo de la física del núcleo atómico y sus aplicaciones.

MATERIALES CURRICULARES Se utilizan apuntes de trabajos prácticos, página web y material audiovisual.

UNIDAD TEMÁTICA: EL LASER

CONTENIDOS

Fundamentos. Aplicaciones.

TIEMPO ASIGNADO 6 horas

OBJETIVOS DE LA UT Permitir al estudiante el aprendizaje y comprensión de los fundamentos teóricos que dieron origen al láser, su funcionamiento y aplicaciones.

MATERIALES CURRICULARES Se utilizan apuntes de trabajos prácticos, elementos de laboratorio, página web, elementos audiovisuales, así comola visita a centros de investigación y desarrollo en el tema.

BIBLIOGRAFÍA

BIBLIOGRAFÍA OBLIGATORIA

TITULO	AUTOR	EDITORIAL	AÑO DE EDICIÓN /ISBN	EJEMPLARES DISPONIBLES
Física Vol. 2C	Tipler - Mosca	Reverté	2005	4
Física para la Ciencia y la Tecnología. Vol II	P. Tipler	Reverté	1999	17
Conceptos de Física Moderna	A. Beiser	Mc. Graw Hill	1986	5
Fundamentos Cuánticos y Estadísticos. Vol III	Alonso-Finn	Addison Wesley	1995	5
Física	Serway	Mc. Graw Hill	1999	5
Física Universitaria	Sears-Zemansky- Young	Pearson	1999	

BIBLIOGRAFÍA COMPLEMENTARIA

TITULO	AUTOR	EDITORIAL	AÑO DE EDICIÓN /ISBN	EJEMPLARES DISPONIBLES
Fundamentos de Física Moderna	Eisberg	Limusa	1978	
Problemas de Física Moderna	Rogers-Stephens	Aguilar	1975	
.Física. Volumen II	Feyman – Leighton - Sands	Addison Wesley	1987	1
Curso Introductorio de Física en Internet	Franco García	Página Web		
Temas de física moderna	Diversos	Página Web		

FORMACIÓN PRÁCTICA

FORMACIÓN EXPERIMENTAL: 22 horas

RESOLUCIÓN DE PROBLEMAS DE INGENIERÍA: 0 horas

ACTIVIDADES DE PROYECTO Y DISEÑO:0 horas

ARTICULACIÓN CON OTRAS ASIGNATURAS

ASIGNATURAS CON QUE SE VINCULA

Para la comprensión de los conceptos involucrados en esta asignatura es imprescindible la articulación con Física I y II, Análisis Matemático I y II. Los conceptos físicos de la mecánica, el electromagnetismo, la óptica y termodinámica, el análisis diferencial y el cálculo integral son necesarios y aplicados en el desarrollo de la materia.

CORRELATIVAS PARA CURSAR

CURSADAS

Análisis Matemático II Física II

APROBADAS

Análisis Matemático I Álgebra y Geometría Analítica Física I

CORRELATIVAS PARA RENDIR EXAMEN FINAL

APROBADAS

Análisis Matemático II Física II

CARACTERÍSTICAS DE LA ACTIVIDAD CURRICULAR

DESCRIPCIÓN

Las clases del curso se desarrollan de manera teórico-prácticas.

MODALIDAD DE LA ENSEÑANZA

Con respecto a la metodología de trabajo aplicada para el desarrollo de los temas de Física III, hay que tomar en cuenta fundamentalmente que en el proceso de enseñanza-aprendizaje de los distintos temas de la física se debe dar, como mínimo:

-Una fuerte motivación por parte del profesor a sus alumnos en clase, incluyendo experiencias demostrativas, tratando de generar, a partir de la curiosidad despertada en los educandos, mecanismos de razonamiento y abstracción que permitan establecer conexiones entre los fenómenos observados y las leyes que los gobiernan.

Todo esto en un marco de trabajo que implique una relación interactiva entre el docente y el alumno, propendiendo a evitar la actitud pasiva de este último durante el proceso de aprendizaje.

-Elección adecuada de los ejemplos sobre los temas expuestos, tratando de lograr con estos el máximo de profundización en los conceptos fundamentales.

Esto es válido sobre todo en el caso de las prácticas de resolución de problemas en donde se debe tratar de evitar la aplicación recetaria de fórmulas, y sí tratar de que el alumno encuentre una lógica de razonamiento que lo conecte en forma adecuada con el principio, fundamento o ley física que debe utilizar.

- -Es muy importante que los docentes afectados a estas tareas trabajen coordinadamente, sobre todo en cursos de tipo teórico-práctico, como es este caso.
- -El curso es dictado de manera de efectuar la mayor cantidad posible de experiencias demostrativas en clase, con una discusión profunda sobre las mismas. Esta tarea se realiza conjuntamente con el personal Auxiliar Docente y de Técnicos de Laboratorio.
- -Los alumnos realizan también visitas programadas a laboratorios externos a la Facultad (centros de investigación por ejemplo), en donde realizan observaciones y actividades complementarias a los temas vistos en clase.
- -Como complemento al dictado de temas se utiliza la página web y elementos audiovisuales.

EVALUACIÓN

Se trata de un sistema evaluativo que posee como premisa fundamental interpretar el nivel de conocimiento alcanzado por el alumno con respecto a los objetivos generales y específicos de cada Unidad Temática.

En relación con lo establecido por la ORDENNZA N°: 1549 del año 2016 y Resoluciones complementarias de la Facultad Regional La Plata de la UTN, el régimen de cursado y evaluación será el siguiente:

La asignatura presenta la posibilidad de **APROBACIÓN DIECTA** (aprobación sin examen final, incisos d) cumpliendo los siguientes requisitos:

- **D1)** Aprobar 3(tres) instancias de evaluación con la calificación de 7(siete) o superior. Cada instancia de evaluación tendrá 1(un) recuperatorio. La fecha para las evaluaciones será fijadas por la Cátedra. El hecho de que el alumno no utilice las fechas estipuladas para las evaluaciones o recuperatorios, no lo habilitará a contar con una fecha adicional, independientemente de la causa que motivara su ausencia.
- **D2)** El alumno que no haya podido aprobar alguna de las 3(tres) instancias de evaluación, para lograr su aprobación dispondrá de una sola fecha adicional, fijada por la Catedra fuera del periodo de cursada y antes de la fecha de cierre estipulado por la Facultad.
- **D3)** La calificación se expresará con números enteros, dentro de la escala del 1(uno) al 10(diez), y en caso de promedios con decimales se redondeara al valor más próximo. La nota promedio de las instancias de evaluación aprobadas así obtenida será la calificación definitiva de aprobación directa.
- **D4)** Asistir al 75% de la totalidad de las clases desarrolladas.
- **D5)** Presentar y aprobar la carpeta de trabajos prácticos y/o problemas en forma individual. La presentación tiene que estar al día a la fecha de cada parcial.

Aquellos alumnos que no cumplan con lo establecido para aprobar la asignatura por PROMOCIÓN DIRECTA dispondrán de la posibilidad de aprobarla a través de pasar satisfactoriamente una **EVALUACIÓN FINAL** (aprobación con examen final, incisos F), para lo cual tendrán que aprobar la cursada cumpliendo con lo siguiente:

F1) Aprobar como mínimo 2(dos) de las 3(tres) instancias de evaluaciones con una calificación de 6(seis) o superior. Cada instancia de evaluación tendrá 2(dos) recuperatorios. La fecha para las evaluaciones serán fijadas por la Cátedra, razón por para la cual ésta asignará las fechas para las instancias de evaluación y 2(dos) fechas adicionales para cada una, con el objeto de que el alumno pueda utilizar estas fechas

para las instancias de recuperación correspondiente. El hecho de que el alumno no utilice las fechas estipuladas para los parciales o recuperatorios, no lo habilitará a contar con una fecha adicional, independientemente de la causa que motivara su ausencia.

- **F2)** El alumno que no haya podido aprobar alguna de las 3(tres) instancias de evaluación citadas en los ítems F1, para lograr su aprobación, dispondrá de una sola fecha adicional, fijada por la Catedra fuera del periodo de cursada y antes de la fecha de cierre estipulado por la Facultad.
- **F3)** Asistir al 75% de la totalidad de las clases, o bien al 60% de las mismas con previa autorización del Secretario Académico de la UTN FRLP, siguiendo a tal efecto el procedimiento establecido por la Ordenanza N°: 1549.
- **F4)** Presentar y aprobar la carpeta de trabajos prácticos y/o problemas en forma individual. La presentación tiene que estar al día a la fecha de cada parcial.

ESTRUCTURA DE LA CÁTEDRA

RESPONSABLE DE CÁTEDRA: Dr. Jorge Reyna Almandos. Profesor Titular

ESTRUCTURA DOCENTE

PROFESORES: Dr. Jorge Reyna Almandos. Profesor Titular

AUXILIAR/ES DOCENTE/S: Lic. Pablo De León. Jefe de Trabajos Prácticos

NUMERO DE COMISIONES: 1

NÚMERO DE ALUMNOS POR COMISIÓN:15

PARA ACTIVIDADES TEÓRICAS: 15

PARA ACTIVIDADES PRÁCTICAS:15

PROBLEMAS DE EJERCITACIÓN:15

FORMACIÓN EXPERIMENTAL: 15

CRONOGRAMA

UNIDAD Y /O TEMA	ACTIVIDADES	TIEMPO
Introducción y repaso de algunos tópicos	Presentación de la materia y	4 horas
	de algunas experiencias	
	introductorias.	
Descarga en gases	Clase teórico-práctica y	4 horas
	experiencias	
Radiación térmica	Clase teórico-práctica y	4 horas
	experiencias	
Efecto fotoeléctrico	Clase teórico-práctica y	4 horas
	experiencias	
Series espectrales y Modelos atómicos	Clase teórico-práctica y	6 horas
	experiencias	
Rayos X y efecto Compton	Clase teórico-práctica.	6 horas
Ondas de De Broglie y principio de incerteza	Clase teórico-práctica.	2 horas
Ecuación de Schrodinger	Clase teórico-práctica.	4 horas
Atomo de Hidrógeno	Clase teórico-práctica.	4 horas
Estadísticas clásica y cuánticas	Clase teórico-práctica.	4 horas
Teoría de bandas. Semiconductores	Clase teórico-práctica. Visita	4 horas
	a laboratorios	
Radioactividad natural	Clase teórico-práctica.	4 horas
Modelos nucleares y reacciones nucleares	Clase teórico-práctica. Uso	4 horas
	de material audiovisual.	
Reactores nucleares	Clase teórico-práctica.	4 horas
El láser y aplicaciones	Clase teórico-práctica. Visita	6 horas
	a laboratorios de I y D.	